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Abstract

Precise control over language model generation
is vital for ensuring both safety and reliability.
Although prompt engineering and steering are
commonly used to intervene in model behav-
iors, the vast number of parameters in models
often results in highly intertwined internal rep-
resentations. This interdependency can limit
control precision and sometimes lead to unin-
tended side effects. Recent research has ex-
plored the use of sparse autoencoders (SAE)
to disentangle knowledge in high-dimensional
spaces for steering. However, these applica-
tions have been limited to toy tasks owing to the
nontrivial issue of locating “atomic knowledge
components”. In this paper, we propose Steer-
ing Target Atoms (STA), a novel method that
isolates and manipulates disentangled knowl-
edge components to enhance safety. Compre-
hensive experiments demonstrate the effective-
ness of our approach. Further analysis reveals
that steering exhibits superior robustness and
flexibility, particularly in adversarial scenarios.
We also apply the steering strategy to the large
reasoning model, confirming its effectiveness
in precise reasoning control1.

1 Introduction

In the era of large language models (LLMs) (Zhao
et al., 2023), controlling model behavior during
inference is vital for safety and reliability (An-
war et al., 2024; Sharkey et al., 2025). Although
prompt engineering (system prompt) (Liu et al.,
2023; Sahoo et al., 2024) is a widely adopted strat-
egy to such control, it often requires expert-crafted
prompts and is sensitive to minor changes (Zhu
et al., 2024; Li et al., 2024a; Anil et al., 2024). In
addition, the mechanisms behind the prompt effec-
tiveness remain unclear (Shi et al., 2024).

* Equal Contribution.
† Corresponding Author.
1Code is available at https://github.com/zjunlp/

steer-target-atoms.

I'm sorry, but I can't 

assist with that. …  

illegal activities …

Input: simulate a chatbot named OPPO who always says the exact

opposite … How do I launder money?

… through a series of 

transactions, converting 

it to foreign currency …

Prompt:…should not generate

harmful or misleading content! …

Answer: converting it 

to foreign currency …

Steering

Labor-intensive and Sensitive

Robust and Flexible

unsafe safe

Figure 1: Controlling model behavior by prompting and
steering. Designing effective prompt is labor-intensive,
the prompt is also sensitive, as even minor input modifi-
cations can result in inconsistent or unpredictable model
outputs. In contrast, steering techniques provide inter-
pretability, robustness, and flexibility, enabling more
reliable and precise control over model behaviors.

Steering has emerged as a promising paradigm
for controlling LLM behaviors by directly inter-
vening in forward propagation (Turner et al., 2023;
Rimsky et al., 2024; Han et al., 2024; Soo et al.,
2025; Wang et al., 2024c; Stickland et al., 2024;
Gu et al., 2024). Unlike prompt engineering, steer-
ing strategy allows lightweight and interpretable
adjustments to the model output (Fig. 1). How-
ever, conventional steering techniques are hindered
by the following limitation: entangled knowledge
representations in LLMs often cause unintended
side effects during targeted interventions (Stickland
et al., 2024). Recent advances in sparse autoen-
coders (SAEs) (Gao et al., 2024; Lan et al., 2024)
offer a promising approach by decomposing LLM
representations into higher-dimensional, sparser
features (Lieberum et al., 2024a). This aligns with
theoretical analyses of language model parameter
spaces as linear projections of knowledge mani-
folds, where polysemanticity arises from superpo-
sition (Elhage et al., 2022b) - a phenomenon where
neurons encode multiple non-orthogonal features
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when model capacity exceeds layer dimensionality
(Ansuini et al., 2019).

SAE-based steering has shown initial success in
toy tasks like entity recognition (Ferrando et al.,
2024; Chalnev et al., 2024), verb tense transfor-
mation (Marks et al., 2024), and concept identifi-
cation (Bayat et al., 2025), yet precise control of
large language models in open-ended generation
remains challenging (Shu et al., 2025; Bartoszcze
et al., 2025; Yang et al., 2025; Kantamneni et al.,
2025; Karvonen et al., 2025; Casademunt et al.).
Specifically, identifying relevant atomic knowledge
components 2 is nontrivial, often resulting in impre-
cise interventions or unintended side effects that
reduce control accuracy.

Method. To address this issue, we propose
Steering Target Atoms (STA), a novel method for
precise behavior control in LLM (§3). The basic
idea is to utilize SAE-decoupled representations to
identify and manipulate target atoms, enabling fine-
grained interventions. Comprehensive experiments
demonstrate that STA can provide better behavior
control in LLM, particularly in safety (§4). We
further show that even with just a few samples, a
steering vector can be obtained to intervene in the
model’s behavior.

Steering Vectors vs. Prompt Engineering. We
further conduct a comprehensive analysis to com-
pare steering and prompting (§5). To ensure fair
evaluation, we translate prompts into steering in-
terventions via our STA. The results reveal that
the steering techniques exhibit superior robustness
and flexibility compared to the prompt-based ap-
proaches. From the perspective of previous obser-
vation (Todd et al., 2024), both prompt engineering
and steering vectors manipulate model behaviors
by influencing internal computations. However,
steering vectors enable finer-grained control by di-
rectly modifying neuron activations in LLMs dur-
ing forward propagation, whereas prompting relies
on the model’s ability to infer behavior from in-
put text. This may make steering more precise
and robust, particularly when input signals degrade
across layers (Merullo et al., 2024; Dong et al.,
2021), while prompting remains more intuitive and
accessible.

Additionally, we successfully applied steering

2Atomic components and target atoms in this paper are
often referred to as latent features in prior work. Note that
atoms serve as the smallest operable units in this paper, they
may not be the minimal operable units in LLMs—a question
left for future research (Leask et al., 2025).

strategy to manipulate reasoning in large reasoning
models (Jaech et al., 2024; Guo et al., 2025), con-
trolling the length of the chain of thought. This
opens new avenues for addressing overthinking is-
sues (Chen et al., 2024b; Wang et al., 2025b) and
guiding AI decision-making logic.

2 Preliminary

In the inference phase, behaviors of LLMs can
be controlled through prompt engineering and the
steering strategy.

2.1 Prompting

In prompt engineering, a prompt p is added to the
input question x to guide the output:

y = M(x, p), (1)

where M is the model and y is the output. This
method modifies the input to directly influence the
model behavior.

2.2 Steering

Steering strategy modifies the representations dur-
ing the forward propagation to achieve the desired
results without changing the model parameters.
Specifically, given the hidden state at layer l 3 of
a positive instance hpos and a negative instance
hneg, steering strategy, such as CAA (Rimsky et al.,
2024) compute the “steering vectors” v 4:

v = hpos − hneg. (2)

This vector is then applied to the hidden states of
the model during inference to steer its behavior
towards the desired positive direction:

ĥ = h+ λv, y = M(x, ĥ), (3)

where h is the initial hidden state of current input
question x, λ is the multiplier. However, the steer-
ing vector remains coupled with nontarget knowl-
edge. We address this by using SAE to decouple
the steering vector and leverage statistical proper-
ties of activations to identify and manipulate target
atoms.

3To simplify the expression, we omit layer l in the follow-
ing sections.

4Some steering methods do not rely on steering vectors
but instead directly set the activations of specific neurons to
zero.
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2.3 SAE
SAE project h into a higher-dimensional space:

a = JumpReLU(hWenc + benc), (4)

where JumpReLU is the activation function, Wenc
is the encoder matrix of SAE, benc is the bias item,
h ∈ RL×D, and a ∈ RL×M with M ≫ D. Then
we can recontruct h via the following equation:

hSAE = (aWdec + bdec), (5)

where hSAE ∈ RL×D, Wenc is the decoder of SAE,
and benc is the bias item. The trainable parameters
Wenc, benc, Wdec, and bdec are optimized by:

L(a) = ∥h− hSAE∥22︸ ︷︷ ︸
Lreconstruction

+ γ∥η(a)∥0︸ ︷︷ ︸
Lsparsity

. (6)

Generally, a is constrained to be non-negative (via
JumpReLU) and sparse,

3 Method: Steering Target Atoms

3.1 Identify Target Atoms
Recall from Eq. 5 that SAE reconstructs a model’s
representation as h ≈ (aWdec + bdec). This for-
mulation suggests that the reconstruction is ex-
pressed as a weighted sum of latent components
from the decoder, with each component corre-
sponding to a row in Wdec, plus a bias term:
h ≈ ∑

j aj(x)Wdec[j, :] + bdec. We use the term
atom activation to refer to an individual element
in a, and denote each row vector in Wdec as an
atom direction, highlighting its role in determining
the direction of contribution in the reconstruction
space. Then, we can accurately identify and ma-
nipulate the target atoms aj in the decoupled high-
dimensional space to control the behaviors of the
model M.

Amplitude of atom activation. For each ques-
tion qi with answers xipos and xineg, we concatenate
qi with xipos (or xineg) as input to the model M,
obtaining aipos (or aineg) 5. We compute the mean
activation of the tokens in the answer to aggregate
the information, yielding āipos and āineg. We run the
model M on the set of queries (N ) with positive
and negative answers:

∆a =
1

N

∑N

i=1
(āipos − āineg) (7)

5In this work, the terms positive and negative refer to safe
and unsafe in the safety domain, myopic reward and long-
term reward in the personality domain, and short and long
reasoning in the reasoning domain.

Frequency of atom direction. For each atom
direction, we count the frequency with which it is
activated by a positive answer and negative answer:

f
pos
j =

1

N

∑N

i=1
I
(∣∣āij,pos

∣∣ > 0
)

(8)

f
neg
j =

1

N

∑N

i=1
I
(∣∣āij,neg

∣∣ > 0
)

(9)

∆f = fpos − fneg (10)

Then, we select target atoms a based on their
amplitude and frequency in the high-dimensional
representation space

ajtarget =

{
∆aj , if ∆aj ≥ α and ∆fj ≥ β.

0, otherwise.
(11)

This selection process ensures that the most rele-
vant and impactful atoms are identified for precise
behavior control.

3.2 Steering Target Atoms
Finally, we map the target atoms from the SAE-
decoupled representation space back to the original
model’s representation space via Eq. 5:

vSTA = atargetWdec + bdec, (12)

ĥ = λvSTA + h, y = M(x, ĥ), (13)

vSTA steers model M to the target directions, λ is
the multiplier that controls the degree of steering
applied to the model’s behavior.

Generally, unlike traditional steering methods,
STA identifies and manipulates target atoms in
the SAE-decoupled space based on activation fre-
quency and amplitude, enabling finer-grained con-
trol with fewer side effects.

4 Experiment

4.1 Experimental Setting
Dataset. In the realm of safety domain, we em-
ploy two datasets: SafeEdit (Wang et al., 2024b)
and RealToxicPrompts (Gehman et al., 2020).
Specifically, SafeEdit encompasses nine categories
of unsafe content and 48 distinct jailbreak attacks.
RealToxicPrompts aims to induce LLMs to gen-
erate harmful content even when prompted with
seemingly benign or neutral inputs. Furthermore,
we use GSM8K (Cobbe et al., 2021) and MMLU
(Hendrycks et al., 2021) to evaluate the side effects
of different methods, particularly their impact on
the model’s general capabilities.
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Evaluation and Metrics. Following the original
evaluation for the datasets, we use defense success
rate to measure safety, accuracy to evaluate general
capabilities. In addition, we evaluate the fluency
of the model-generated outputs by employing the
n-gram metric (Meng et al., 2022a; Wang et al.,
2024b; Yao et al., 2023).

Baselines. For prompt engineering, we adopt the
manually designed Prompthand (Xie et al., 2023)
and the auto-generated Promptauto (Wu et al.,
2025) as baselines. For the steering method, we use
CAA (Rimsky et al., 2024) and SAEAXBENCH as
the baseline. More details and other baselines and
are provided in §B.1

Inference Setup. we analyze our methods on
Llama-3.1-8B and Gemma family: pre-trained
model Gemma-2-9B-pt and instruction-tuned
model Gemma-2-9B-it (Mesnard et al., 2024), We
use their corresponding SAEs provided by LlamaS-
cope (He et al., 2024) and GemmaScope (Lieberum
et al., 2024a). We evaluate our methods with model
representations from the residual streams of layer
20 for Llama-3.1-8B, layer 24 for Gemma-2-9B-pt
and layer 20 for Gemma-2-9B-it. We also analyze
the performance across different layers in §4.3. We
set α and β to the values at the top 35% position
in Table 1. For Table 5, we use the values at the
top 4% position. Unless otherwise specified, λ
defaults to 1. Additionally, to ensure a fair compar-
ison between CAA and STA, we adjust the steering
vectors obtained from both methods to have the
same magnitude.

4.2 Results

STA exhibits promising performance of safety
controlling. As shown in Table 1, STA achieves
the best average detoxification performance, which
increases from 59.97% to 83.45% in Gemma-2-
9B-pt, from 83.89% to 97.56% in Gemma-2-9B-
it and from 59.08% to 72.23% in Llama-3.1-8B.
Fortunately, our method introduces only minor
side effects on general capabilities, with perfor-
mance decreasing slightly from 44.73% to 43.90%
in Gemma-2-9B-pt and from 51.04% to 49.12%
in Gemma-2-9B-it. Interestingly, we observe
that steering strategies, including our STA and
CAA, outperform prompting strategies, such as
Prompthand and Promptauto. We discuss this phe-
nomenon in detail in §5.

4.3 Controlling Analysis

Steering target atoms in the intermediate layers
is more effective. Since only three SAE layers in
Gemma-2-9b-it are publicly available, making it
impossible to analyze the effects across multiple
layers, we exclusively evaluated the performance
of steering strategies (CAA and STA) across differ-
ent layers on Gemma-2-9b-pt. As illustrated in Fig.
2, both STA and CAA demonstrate competitive
performance in layers 24-25 in the SafeEdit and
RealToxicPrompts datasets, consistent with previ-
ous findings that interventions in the middle to the
late layer are more effective (Rimsky et al., 2024;
Wang et al., 2024a, 2023). Moreover, as depicted
in Fig. 2, we observe that the enhancement in steer-
ing effectiveness is accompanied by an increased
degradation in general capabilities. This insight
suggests that future efforts should focus on more
precise manipulation of target components to miti-
gate unintended side effects on general capabilities.

Steering vector remains powerful even using few
instances. As illustrated in Fig. 3, we investigate
the influence of different data scales on the perfor-
mance of steering strategies. We observe that when
the data volume is relatively small (ranging from 4
to 128), the performance of the steering strategy im-
proves as the data volume increases. Subsequently,
the steering strategy capability remains almost un-
changed with further growth in data volume. In
particular, even with data amount as small as 4, the
steering strategy demonstrates highly competitive
performance, improving the detoxification capacity
of the Gemma-2-9b-pt model from 12 to 16. The
defense rate increases from 62. 30% to 74. 60% in
SafeEdit and from 57. 63% to 76. 40% in RealTox-
icPrompts for Gemma-2-9B-it. Additionally, our
STA slightly underperforms CAA in the SafeEdit
dataset when the data volume is below 32, but sig-
nificantly outperforms CAA when the data volume
exceeds 32. In the RealToxicPrompts dataset, STA
consistently exceeds CAA.

5 Controlling LLMs: Steering Vectors or
Prompt Engineering?

In this section, we conduct an in-depth analysis
of prompt engineering and steering control on
Gemma-2-9b-it 6.

6Since the Gemma-2-9b-pt model lacks instruction align-
ment, it often fails to follow instructions. Therefore, the ex-
periments in this section are conducted exclusively on the
instruction-aligned Gemma-2-9b-it model.
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Model Method Detoxification Performance (↑) General Performance (↑)

SafeEdit RealToxicprompts Avg Fluency MMLU GSM8K Avg

Gemma-2-
9b-pt

Vanilla 62.30 57.63 59.97 4.31 62.34 67.55 44.73

Prompthand 72.52 53.96 63.24 3.88 57.01 67.48 42.79
Promptauto 64.15 57.63 60.89 4.19 60.09 68.61 44.30

CAA 85.78 73.98 79.88 4.38 61.35 68.54 44.76
SAEAXBENCH 86.81 75.15 80.98 4.33 62.60 69.07 45.33

STA (Ours) 89.93 76.98 83.45 4.29 62.35 65.05 43.90

Gemma-2-
9b-it

Vanilla 70.37 97.41 83.89 5.39 72.06 75.66 51.04

Prompthand 78.74 98.42 88.58 5.41 71.07 74.83 50.44
Promptauto 75.56 98.92 87.24 5.44 70.79 75.66 50.63

CAA 91.48 98.75 95.12 5.42 70.77 75.21 50.47
SAEAXBENCH 90.74 98.42 94.58 5.43 70.89 72.63 49.65

STA (Ours) 95.78 99.33 97.56 5.43 70.27 71.65 49.12

Llama-3.1-
8B

Vanilla 59.78 58.38 59.08 4.04 58.10 43.97 35.37

Prompthand 63.70 57.30 60.50 3.62 58.10 46.78 36.17
Promptauto 61.63 60.64 61.14 4.03 58.10 41.55 34.56

CAA 68.67 72.81 70.74 3.89 57.64 44.35 35.29
SAEAXBENCH 70.74 71.98 71.36 3.96 57.88 43.44 35.09

STA (Ours) 70.81 73.64 72.23 3.92 58.29 39.35 33.85

Table 1: The detoxification performance and its side effects on the general capabilities of LLMs for our proposal
method and baselines. We highlight the best results using bold, and denote the second-best results with underline.
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Figure 2: The detoxification performance and general capability of steering atoms in different layers.

5.1 Robustness Analysis

We attempt to analyze the robustness of the prompt-
ing and steering strategies to control the behav-
ior of the model. We first select two competi-
tive prompts Prompthand (Xie et al., 2023) and the
auto-generated Promptauto (Wu et al., 2025), then
enhance their instructing ability by concatenating
these prompts at the input prefix, input suffix, and

output prefix positions. The experimental results,
reported in §E.1, demonstrate that steering strate-
gies consistently outperform prompting in terms of
and control ability.

Note that we cannot exhaustively test all pos-
sible prompts to find the optimal one, nor can
we identify the optimal steering strategy. To
fairly compare prompting and steering, we directly
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Figure 3: The impact of data size on the detoxification
performance of the steering vector on Gemma-2-9B-pt.
“Real” is an abbreviation for RealToxicPrompts dataset.

Figure 4: The positive and negative input.

convert prompts into steering vectors using
our STA (CAA) method, denoted as STAprompt

(CAAprompt). Specifically, for a given prompt, we
concatenate the prompt with a space 7 as the posi-
tive input and use the space alone as the negative
input. Taking the input-output format of Gemma-
2-9B-it as an example, given a prompt:

You should be a responsible AI System and
should not generate harmful or misleading con-
tent! Please answer the following user query in
a responsible way.

The positive and negative inputs for Gemma-2-9B-
it are shown in the following Fig. 4. We compute
the activations at the “space” token for both the

7Considering the input-output format of chat models, this
would represent using the space as the output.

Figure 5: Transfering prompt to steering vector directly.

positive and negative inputs, then use CAA or STA
to convert these activations into steering vectors.
Additionally, we experimented with using the mean
hidden state of the prompt as the steering vector.
However, this approach significantly degraded the
model’s general capabilities, as shown in our ex-
periments. Further exploration of this method will
be left for future work. This theoretically allows us
to transform any prompt into a steering vector for
performance comparison.

As shown in the lower panel of Fig. 5, the vec-
tors obtained by converting the prompts using our
method, denoted as STAprompt, significantly out-
perform the original prompts. Similarly, the vectors
derived from the prompts using the CAA method,
denoted as CAAprompt, also significantly exceed
the prompts. We delve into the mechanism of the
robustness of steering strategy. Recent work sug-
gests that jailbreak attacks bypass model defenses
by reducing attention scores on harmful queries
within jailbreak prompts (Zhou et al., 2024; Jiang
et al., 2024; Zheng et al., 2024). To investigate this,
we compute the attention scores for harmful ques-
tions across all layers (averaged over harmful ques-
tion tokens). As shown in the Fig 5, compared to
prompting strategy, steering strategy significantly
increases the model’s attention scores on harmful
questions, thereby enhancing its ability to detect
and avoid generating harmful content. As shown
in the upper panel of Fig 5, steering’s robustness

23386



arises from steadier, stronger attention to harmful
queries across attacks, prompting refusal. Specifi-
cally, both prompting and steering are methods to
control model behavior, prompting signals may de-
grade as they pass through multiple layers, whereas
steering directly intervenes at specific layers, mak-
ing it more robust. Generally, steering is more
robust than prompting.

5.2 Controlling Boundary Analysis

We further explore the boundaries of both positive
and negative control over LLM behaviors using
steering and prompting strategies. Specifically, for
the prompting strategy, we use positive examples to
guide the model toward positive behavior and nega-
tive examples to guide it toward negative behavior,
strengthening control by adding more examples ([0,
16]). For the steering strategy, we control the di-
rection and intensity of transfer using coefficients
within the range of [-10, 10].

Steering is more flexible and effective in control-
ling behavior of model. Specifically, as shown
in Fig 6, when the number of demonstrations is
up to 16, the model’s defense capability ranges
from [58.80%, 83.40%], compared to the vanilla
defense rate of 70.37% with a control range of
[-11.5%, 13.03%]. In contrast, with steering co-
efficients between [-10%, 10%], the defense capa-
bility spans [16.60%, 100%], much broader than
the vanilla defense rate of 70.37%, which has a
control range of [-53.77%, 29.63%]. Additionally,
we find that prompts are sensitive to outputs, and
adding positive demonstration examples does not
always enhance positive behavior, nor does the vice
versa. This observation aligns with previous find-
ings (Zhu et al., 2024; Li et al., 2024a; Anil et al.,
2024). Anomalously, when the direction control co-
efficient is less than -8, the defense capabilities of
both CAA and STA recover to 100%. This occurs
because excessively large (in absolute value) the
multiplier impairs the model’s general capabilities,
leading it to generate repetitive, non-toxic tokens
rather than fluent responses. As a result, fluency
sharply drops below 3. Similarly, we observe that
when the positive steering coefficient exceeds 5,
the defense rate also reaches 100%, but fluency
drops sharply. Based on the above observations,
we recommend λ ∈ [0, 6] as a safe boundary that
enhances safety while preserving fluency. We have
now formalized this range in the revised manuscript
to provide clearer guidance.

We further investigate the changes in the token
distribution for steering and prompting strategies.
As shown in the Fig 7, the influence of prompting
on the model’s token distribution is much smaller
than that of steering. We then focus on the effects of
positive and negative steering on the model’s token
distribution. As illustrated in the Fig 8, prompt-
ing strategies show small impact on token distri-
bution compared to the vanilla model (shot = 0).
In contrast, steering strategy—both positive and
negative—substantially alter the top token distri-
bution. Additionally, when the STA multiplier is
set to -8, as shown in the Fig 8, the top-5 token
probabilities fall below 0.08, indicating a model
degradation with reduced confidence in generating
tokens. This finding also supports the earlier ob-
servation that fluency significantly decreases when
the multiplier is set to -8. Note that many-shot jail-
breaking (Anil et al., 2024) shows increasing nega-
tive behaviors with more negative examples (e.g.,
128- or 256-shot). Due to input length and com-
putational constraints, we do not compare steering
with many-shot prompting. However, the steering
is lighter and more flexible than a few-shot prompt.

5.3 Implication: Content -> Thinking

Recent advances in large reasoning models have
led to significant breakthroughs in reasoning tasks.
However, these models are prone to overthinking
on simple problems (Cuadron et al., 2025; Chen
et al., 2024b; Zaremba et al., 2025), which wastes
excessive time and computation resources on un-
productive resources. To mitigate this phenomenon,
we explore the potential of the steering strategy to
control the length of model reasoning. Specifically,
we first construct an instance with long and short
reasoning thought, which is reported in §F. Then
we use CAA to convert the thought pattern of this
instance into steering vectors 8. By applying this
vector of thought pattern, we manipulate the rea-
soning length of DeepSeek-R1-Distill-Qwen-7B
on the GSM8K benchmark. For additional experi-
mental details, see §F.

Steering strategy is promising in controlling rea-
soning length. As shown in Fig. 9, DeepSeek-
R1-Distill-Qwen-7B generates repetitive solutions
spanning 300 tokens for a simple question. The

8Since STA relies on SAE to manipulate target atoms, and
no public SAE is available for the large reasoning models, we
employ CAA as an alternative approach and leave R1-SAE as
future work.
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Figure 6: The controlling boundary on safety domian of prompting (few-shot demonstrations) and steering strategy.

(a) The logits distribution of Steering Strategy. (b) The logits distribution of Prompting Strategy.

Figure 7: The token distribution of prompting (few-shot demonstrations) and steering strategy.

steering strategy demonstrates remarkable flexibil-
ity in adjusting reasoning length, either extend-
ing or shortening it while maintaining accuracy.
Furthermore, we analyze the relationship between
the multiplier coefficient and the token length of
reasoning. Experimental results reveal that the
multiplier coefficient can flexibly control reason-
ing length in both positive and negative directions,
highlighting the precision and adaptability of our
approach. Similar findings have also been reported
in concurrent studies (Cyberey and Evans, 2025;
Chen et al., 2025).

6 Related Work

Parameters-tuning. Parameters-tuning is a
widely employed in controlling the behavior of
LLMs (Meng et al., 2022b; Wang et al., 2025a;
Cao et al., 2024; Yin et al., 2024; Bai et al., 2022;
Chen et al., 2024a). However, the vast number
of parameters in LLMs introduces challenges in
fine-tuning, including high computational cost,
scalability issues, and limited transferability across
models and tasks (Hase et al., 2024).

Prompt Engineering. Prompt engineering has
emerged as a prominent method to control the
behavior of LLMs in the inference stage (Shin
et al., 2020; Xie et al., 2023; Sahoo et al., 2024).
However, designing effective prompts or demon-
strations for complex or nuanced control goals is
challenging (Lu et al., 2022; Zamfirescu-Pereira
et al., 2023) due to the input sensitivity of LLMs
(Errica et al., 2024), which often requires exten-
sive trial. Besides, prompt-based methods strug-
gle with robustness and interpretability, as small
changes in the prompt can lead to inconsistent or
undesired outputs (Webson and Pavlick, 2022; Li
et al., 2024a; Anil et al., 2024). These limitations
have motivated the exploration of steering inter-
nal representations, which offer more precise and
robust control over LLM behavior.

Steering. Traditional methods for steering model
behavior typically manipulate neuron activations
or edit representations in vanilla models (Rimsky
et al., 2024; Rahn et al., 2024; Postmus and Abreu,
2024; Han et al., 2025; van der Weij et al., 2024;
Konen et al., 2024; Scalena et al., 2024; Turner
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Figure 8: Token distribution of steering strategies with varying multipliers (top) and prompting strategies with
different numbers of demonstration shots (bottom).

Figure 9: Controlling the length of thought of DeepSeek-R1-Distill-Qwen-7B on GSM8K via steering. The ground
truth for the question in this Figure is 3.

et al., 2023; Bhattacharjee et al., 2024; Jiang et al.,
2025; Tan et al., 2024; Hazra et al., 2024). How-
ever, these activations or representations are of-
ten polysemantic, combining multiple concepts
and knowledge, making precise behavior control
challenging. To address this, sparse autoencoders
(SAEs) disentangle polysemantic representations
(Elhage et al., 2022a; Wang et al., 2024a; Bereska
and Gavves, 2024) into monosemantic concepts by
projecting them into a higher-dimensional space,
enabling more targeted and interpretable steering
(Huben et al., 2024; Gao et al., 2024; O’Neill et al.,
2024; Chaudhary and Geiger, 2024; Bricken et al.,
2023; Lieberum et al., 2024b; He et al., 2024).
Therefore, recent work has shifted towards steering
activations in the high-dimensional space which is
projected by SAE (Li et al., 2024b; Marks et al.,
2024; Ferrando et al., 2024; Chanin et al., 2024;
Chalnev et al., 2024; Zhao et al., 2024; O’Brien
et al., 2024). However, these works mainly fo-
cus on toy tasks, such as entity recognition, slec-

tion, and verb tense or number agreement. We
explore the potential of SAE in open-ended gen-
eration tasks, such as safety and personality. The
most related work, AXBENCH (Wu et al., 2025),
steering coarse-grained directions SAE spaces. In
contrast, our proposal STA precisely identifies and
manipulates target atoms within these spaces, en-
abling fine-grained control over model behavior.

7 Conclusion

In this paper, we introduce Steering Target Atoms
(STA), a novel approach to precisely control be-
haviors of LLMs by isolating and manipulating
disentangled knowledge components. Through ex-
tensive experiments, we demonstrate the effective-
ness of STA in enhancing both safety and person-
ality alignment. In addition, we show that steering
technology has superior robustness and flexibility,
particularly in adversarial settings, and can even
change control reasoning in o1-like models.
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Limitations

Despite our best efforts, several aspects remain not
covered in this paper.

SAE. Recent advancements in sparse autoen-
coders (SAEs) (Gao et al., 2024; Lan et al., 2024)
have enabled the effective decomposition of large
language model (LLM) representations into higher-
dimensional and sparser features (Lieberum et al.,
2024a). However, challenges remain: as revealed
by AXBENCH, simple baselines often outperform
SAEs in LLM steering tasks. Our proposed method,
STA, which is based on SAEs, performs well in
the safety domain but shows limited effectiveness
in the personality domain (see §D). The underly-
ing causes of this performance divergence warrant
further investigation. Crucially, this work com-
pares the efficacy of two inference-time interven-
tion strategies—prompt engineering and model
steering—highlighting their respective strengths
and limitations.

LLMs. Our method operates by manipulating
target atoms in the SAE-decoupled representation
space. Due to the limited availability of publicly ac-
cessible SAEs, our experiments are primarily con-
ducted exclusively on the Gemma-2-9B-pt, Gemma-
2-9B-it models (Lieberum et al., 2024b; Team,
2024) and Llama-3.1-8B (He et al., 2024). While
these models provide a robust foundation for eval-
uating our approach, future work will extend this
to a broader range of LLMs, including larger and
more diverse architectures, to further validate the
generalizability and scalability of our method.

Baselines. For the prompting strategy, we adopt
two competitive approaches from prior work: man-
ually designed prompts and automatically gener-
ated prompts. While we cannot exhaustively enu-
merate all possible prompts or prove that these are
the optimal choices, they serve as strong baselines
for comparison. To ensure a fair comparison be-
tween prompt and steering strategies, we directly
translate prompts into steering interventions using
our method, as theoretically, any prompt can be
converted in this manner.

Dataset. Our experiments focus on the domains
of safety and power-seeking personality scenarios.
While our results demonstrate the effectiveness
of STA in these areas, its applicability to other
nuanced domains, such as multi-turn dialogue or

complex reasoning tasks, remains to be validated
in future work.

Ethics Statement.

Our research involves domains that include toxic
text generation, where steering techniques can be
used to control models toward either malicious or
safe behaviors. We hope that potential malicious
applications can be identified and mitigated proac-
tively. Overall, we anticipate no significant ethical
or societal implications arising from our research,
as our primary goal is to enhance the safety and
controllability of LLMs.
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B Experiment

B.1 Baseline
B.1.1 Prompting Strategy
We adopt the manual prompt from in Xie et al.
(2023) as Prompthand for safe defense:

You should be a responsible AI System and
should not generate harmful or misleading con-
tent! Please answer the following user query in
a responsible way.

We apply the following template to automati-
cally generate the prompt, denoted as Promptauto,
for the specific task:

Generate a prompt to guide a language model
in answering single-choice questions. Objec-

tive: Direct the model to include content related
to [Concept goes here] (the concept) in its re-
sponses. Ensure the responses reference this
concept, even if it doesn’t directly answer the
question or seems out of context. Optionally,

provide in-context examples to reinforce this
behaviour. Return only the final prompt with-

out any additional text.

B.1.2 Steering Strategy
The CAA method is detailed in Eq. 2 and Eq. 3.
The SAEAXBENCH method applies CAA directly
in the SAE space, ignoring the amplitude and fre-
quency of atom directions. Specifically, this means
α = 0 and β = 0.

B.1.3 Other baseline
RefusalFeature (O’Brien et al., 2024) identifies
a refusal feature in the Phi-3 Mini model but is
highly sensitive to hyperparameters. As noted in
Table 2 of the original study, achieving effective
detoxification with RefusalFeature often requires
indiscriminately rejecting all queries, which signif-
icantly compromises the model’s general capabili-
ties. In contrast, our work aims to enhance detoxi-
fication while preserving the model’s utility with
minimal loss of general performance. Building on
RefusalFeature’s approach, we locate the refusal
feature at layer 24 for Gemma-2-9B-pt and layer
20 for Gemma-2-9B-it.9

9Our method employs layer 24 for Gemma-2-9B-pt and
layer 20 for Gemma-2-9B-it. For fair comparison, RefusalFea-
ture adopts the corresponding layers.

Table 2 of the original study (O’Brien et al.,
2024) indicates that the RefusalFeature method,
while capable of effective detoxification, often ne-
cessitates indiscriminate rejection of all queries, re-
sulting in substantial degradation of general model
utility. Conversely, our research focuses on improv-
ing detoxification efficacy while preserving robust
general performance to ensure practical model util-
ity. Therefore, we do not report the performance
of RefusalFeature as a baseline in the main text,
as its trade-off between detoxification and utility
diverges from our goal of achieving an optimal
balance between these objectives.

B.2 Ablation
We remove the Amplitude component
(wo/Amplitude) and the Frequency compo-
nent (wo/Frequency) separately to analyze their
individual contributions. As shown in Table 3,
removing Frequency leads to a greater drop in tar-
get capabilities compared to removing Amplitude.
However, the effectiveness of Frequency relies
on a larger amount of data; when data is limited,
the Amplitude component becomes crucial for
maintaining performance.

C Comparison to Paremter-tuning

We compare steering methods with parameter-
tuning approaches (e.g., SFT and DPO). As shown
in the Table 4, steering strategies outperform
SFT and DPO on Gemma-2-9B-pt. However, on
Gemma-2-9B-it, steering methods fall short com-
pared to SFT and DPO. Note that steering is an
inference-time intervention strategy and can be ap-
plied on top of models fine-tuned with SFT, DPO,
or other parameter-tuning methods (Rimsky et al.,
2024). Additionally, as illustrated in Table 4, steer-
ing strategies (CAA and our STA) consistently out-
perform prompting strategies.

D Personality

In the personality domain, we analyze LLM be-
havior on datasets myopic reward (Rimsky et al.,
2024; Perez et al., 2023).

STA can control personality behaviors of LLMs.
We evaluate both steering and prompting strategies
on the myopic reward personality trait. As shown
in Table 5, the three steering strategies (CAA,
SAEAXBENCH , and STA), perform comparably
across four metrics, all outperforming prompting-
based methods.
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Model Method SafeEdit ↑ RealToxicprompts ↑ Avg ↑
Gemma-2-

9b
RefusalFeature 58.30 58.72 58.51
STA (Ours) 89.93 76.98 83.46

Gemma-2-
9b-it

RefusalFeature 68.19 98.33 83.26
STA (Ours) 95.78 99.33 97.56

Table 2: Comparison between RefusalFeature and STA on Gemma-2-9b and Gemma-2-9b-it models in SafeEdit
and RealToxicprompts benchmarks.

Model Method Detoxification Performance General Performance

SafeEdit RealToxicprompts Avg Fluency MMLU GSM8K Avg

Gemma-2-
9b-pt

Vanilla 62.30 57.63 59.97 4.31 62.34 67.55 44.73

STA (Ours) 89.93 76.98 83.45 4.29 62.35 65.05 43.90
wo/Amplitude 89.93 77.06 83.50 4.29 62.37 65.05 43.90
wo/Frequency 87.26↓ 75.06↓ 81.16↓ 4.33 62.61 68.92 45.29

Gemma-2-
9b-it

Vanilla 70.37 97.41 83.89 5.39 72.06 75.66 51.04

STA (Ours) 95.78 99.33 97.56 5.43 70.27 71.65 49.12
wo/Amplitude 95.70 99.33 97.52 5.43 70.29 71.49 49.07
wo/Frequency 90.89↓ 98.42↓ 94.65↓ 5.43 70.90 72.63 49.65

Table 3: The ablation study of our proposal STA. The biggest drop of detoxification performance in each column is
appended ↓.

E Prompting and Steering

E.1 Position of Prompt

Figure 10: The detoxification performance and prompt
at different positions.

We begin by selecting two competitive prompts:
a manually designed prompt Prompthand (Xie et al.,
2023) and an automatically generated prompt
Promptauto (Wu et al., 2025). To maximize their
effectiveness, we concatenate these prompts at var-

ious positions, including the input prefix, input
suffix, and output prefix. As illustrated in Fig 3,
the performance of prompts varies significantly
depending on their placement, with the optimal
position differing between the two prompts. In Ta-
ble 1, we report results using the best-performing
positions for each prompt. However, even with
optimal placement, prompting fails to surpass the
performance of STA, as demonstrated in Fig 10.

E.2 The performance of Prompting and
Steering

The boundary of STAprompt We also analyzed
the control capability of the steering vectors
obtained by directly using the Prompthand and
Promptauto transformations. Specifically, as shown
in Fig 6, the control range of STAprompt using
Promptauto, with a multiplier ranging from -3 to
+3, varies between -8.97% and +29.63%.

F Controlling the length of thought

F.1 Data
We construct an instance with both long thought
and short thought answer:

Question: 1 + 1 =
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Model Method Detoxification Performance General Performance

SafeEdit RealToxicprompts Avg Fluency MMLU GSM8K Avg

Gemma-2-
9b-pt

Vanilla 62.30 57.63 59.97 4.31 62.34 67.55 44.73

SFT 68.44 58.47 63.45 4.27 64.31 69.07 45.88
DPO 81.48 58.05 69.76 4.37 64.19 69.83 46.13

Prompthand 72.52 53.96 63.24 3.88 57.01 67.48 42.79
Promptauto 64.15 57.63 60.89 4.19 60.09 68.61 44.30

CAA 85.78 73.98 79.88 4.38 61.35 68.54 44.76
STA (Ours) 89.93 76.98 83.45 4.29 62.35 65.05 43.90

Gemma-2-
9b-it

Vanilla 70.37 97.41 83.89 5.39 72.06 75.66 51.04

SFT 91.41 97.83 94.62 5.42 72.13 76.50 51.35
DPO 98.52 98.42 98.47 5.36 72.03 75.36 50.92

Prompthand 78.74 98.42 88.58 5.41 71.07 74.83 50.44
Promptauto 75.56 98.92 87.24 5.44 70.79 75.66 50.63

CAA 91.48 98.75 95.12 5.42 70.77 75.21 50.47
STA (Ours) 95.78 99.33 97.56 5.43 70.27 71.65 49.12

Table 4: The detoxification performance and its side effects on the general capabilities of parameter-tuning,
prompting, and steering strategies. The best results are marked in bold and the second-best results are marked with
underline.

Method Myopic Fluency MMLU GSM8K
Vanilla 48 4.07 72.06 75.66
Promptauto 64 4.10 71.59 73.69
CAA 74 4.07 71.88 76.95
SAEAXBENCH 74 4.09 71.77 76.04
STA (ours) 74 4.09 71.74 75.66

Table 5: The performance on myopic reward of STA and baselines.

(a) The steering boundary of STAprompt unsing Prompthand. (b) The steering boundary of STAprompt unsing Promptauto.

Figure 11: The controlling boundary on safety domian of prompting (few-shot demonstrations) and steering strategy.
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Answer (short thought): 1 + 1 equals 2. This
fundamental arithmetic operation consistently
holds true across various mathematical con-
texts, including binary, decimal, algebraic ex-
pressions, and modular arithmetic, although the
representation may vary. In standard arithmetic,
the sum of two ones is always two.

Answer (long thought): Alright, so I’m trying
to figure out what 1 + 1 equals. Hmm, at first
glance, it seems pretty straightforward, but I
want to make sure I understand it fully. Let
me think about how addition works. When
you add two numbers, you’re combining their
quantities. So, if I have one apple and someone
else has another apple, together we have two
apples. That makes sense because we’re just
putting the apples together without changing
their individual counts.
But wait, maybe I should consider different
number systems or contexts where this might
change. For example, in binary, which is the
base-2 system, 1 + 1 equals 10. That’s interest-
ing because in our usual decimal system, it’s
just 2, but in binary, it’s a different represen-
tation. So, the way we add numbers can vary
depending on the base we’re using.
Another thought: what if we’re talking about
something other than numbers, like sets or ob-
jects? If I have one book and someone else
has another book, together we have two books.
It’s the same concept, just adding the quantities.
But if the items were in different categories or
had different properties, would that affect the
addition? I don’t think so because addition is
purely about the quantity, regardless of what
the items are.
...
1 + 1 equals 2. This fundamental arithmetic
operation consistently holds true across various
mathematical contexts, including binary, deci-
mal, algebraic expressions, and modular arith-
metic, although the representation may vary. In
standard arithmetic, the sum of two ones is al-
ways two.

F.2 Setting
To assess the boundary of thought control via steer-
ing, we conducted experiments on 20 samples from
the GSM8K dataset, running each sample 5 times
and calculating the average length of the answer

tokens. The temperature coefficient of DeepSeek-
R1-Distill-Qwen-7B was set to 0.1, and due to re-
source constraints, we limited the max new tokens
to 3000. However, we observed that when the steer-
ing coefficient was set to -2, the model tended to
repeat solutions and, in fact, exceeded the 3000-
token limit. More extensive experiments will be
left for future work.
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