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Abstract

The growing capabilities of multimodal large
language models (MLLMs) have advanced
tasks like chart understanding. However, these
models often suffer from hallucinations, where
generated text sequences conflict with the pro-
vided visual data. To address this, we introduce
Post-Hoc Visual Attribution for Charts, which
identifies fine-grained chart elements that val-
idate a given chart-associated response. We
propose ChartLens, a novel chart attribution
algorithm that uses segmentation-based tech-
niques to identify chart objects and employs
set-of-marks prompting with MLLMs for fine-
grained visual attribution. Additionally, we
present ChartVA-Eval, a benchmark with syn-
thetic and real-world charts from diverse do-
mains like finance, policy, and economics, fea-
turing fine-grained attribution annotations. Our
evaluations show that ChartLens improves fine-
grained attributions by 26-66%.1

1 Introduction

Rapid advancements in large language models
(LLMs) have revolutionized various natural lan-
guage processing tasks, including understanding,
generation, and reasoning (Huang and Chang,
2022; Yang et al., 2024). Building on this founda-
tion, multimodal large language models (MLLMs),
have extended these capabilities to encompass mul-
timodal tasks like image captioning and visual ques-
tion answering. However, a critical challenge faced
by these models is the prevalence of hallucina-
tions—instances where the model generates con-
tent that appears plausible but is factually incorrect
or inconsistent (Zhang et al., 2023; Ye et al., 2023a;
Rawte et al., 2023). In MLLMs, this issue is partic-
ularly pronounced as cross-modal inconsistencies
can emerge, where generated text fails to align
with provided visual inputs (Huang et al., 2024;
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Figure 1: We introduce the task of visual attribution for
charts (➊), which grounds textual responses to specific
regions in the chart image. This promotes reliable un-
derstanding by enabling users to verify claims (➋), thus
detect potentially hallucinated responses and identifying
chart-response misalignments.

Guan et al., 2024). To address this, attribution
has emerged as a promising strategy for text-based
systems, allowing models to reference external
sources, thereby enhancing factual reliability. In
the context of LLMs, attribution refers to the ability
of a model to provide verifiable evidence, such as
references or citations, that supports its generated
outputs, thereby enhancing factual reliability and
trustworthiness (Li et al., 2023a). Techniques such
as direct generated attribution (Peskoff and Stewart,
2023; Sun et al., 2022), post-retrieval answering
(Ye et al., 2023b; Li et al., 2023b), and post-hoc
attribution (Huo et al., 2023; Chen et al., 2023)
aim to mitigate hallucination by enabling users to
trace responses back to their origins. For resolving
visual hallucinations specifically, post-generation
validation approaches like (Zhou et al., 2023; Lee
et al., 2023b; Yin et al., 2023) have proven effective
in aligning textual outputs with visual evidence, en-
suring cross-modal consistency and improving the
overall trustworthiness of MLLMs.

Charts, which are graphical representations of
data, play a pivotal role in communicating complex
insights across diverse domains, from business ana-
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lytics to scientific research (Embarak and Embarak,
2018). As LLMs and multimodal large language
models (MLLMs) increasingly handle chart-related
tasks—such as chart question answering (Kafle
et al., 2018; Masry et al., 2022; Kahou et al., 2017;
Methani et al., 2020), captioning (Kantharaj et al.,
2022; Tang et al., 2023; Hsu et al., 2021), and
chart-to-table (Liu et al., 2022a) conversion—the
need for robust validation mechanisms becomes
paramount. Unlike textual information, charts en-
capsulate measurable and exact quantities and often
represent intricate relationships like trends, pro-
portions, and comparisons (Healy, 2024). Accu-
rately interpreting these relationships requires more
than superficial analysis; it demands understanding
context-dependent factors like chart type, data en-
coding, and the layout of visual components such
as axes, legends, colors, and shapes. The attribu-
tion challenge is further compounded by the need
to disentangle overlapping visual elements, resolve
ambiguities in labeling, and consistently map vi-
sual evidence to textual answers.

Accurate attribution in chart-related tasks is cru-
cial for ensuring that multimodal large language
models (MLLMs) generate reliable and trustworthy
outputs (Bai et al., 2024). Charts often convey crit-
ical information involving exact quantities, trends,
and comparisons. When an MLLM’s response to a
chart-related request cannot be clearly linked to spe-
cific visual elements, it becomes difficult to assess
whether the answer is grounded in the chart’s data
or influenced by hallucinated patterns. This lack
of transparency can lead to incorrect conclusions,
undermining the reliability of automated systems
in critical areas such as financial analysis, policy-
making, and scientific research, where accurate
data interpretation is essential for decision-making.
Reliable attribution helps mitigate these risks by
making the model’s process verifiable, meaning
that the model’s response can be traced back to
identifiable visual elements in the chart. As demon-
strated in Fig 1, this allows for confirmation that
the generated response is directly supported by the
chart’s data, reducing the potential for hallucinated
or incorrect interpretations.
Main Results: We introduce the task of Post-Hoc
Fine-grained Attribution for Charts. This task iden-
tifies the specific chart elements (like bars, points,
or sectors) that directly support the model’s an-
swer to a given question and enable the grounding
of model responses to visual elements. We focus
specifically on post-hoc attribution since it provides

a flexible plug-and-play mechanism agnostic of the
actual multimodal chart system used underneath
and decouples attribution from response generation
for traceability.

We introduce ChartVA-Eval, a new benchmark
designed to advance the evaluation of chart visual
attribution systems. ChartVA-Eval comprises real-
world chart data sourced from financial documents
and policy datasets, such as SEC Filings, the World
Bank Open Data, Open Government Data, and the
Global Terrorism Database. The benchmark fea-
tures diverse chart styles and includes retrieval,
reasoning, and computation-based questions, all
paired with fine-grained visual attribution annota-
tions. We also propose ChartLens, a chart attribu-
tion methods that leverages set-of-marks prompt-
ing with multimodal LLMs to produce reliable
attributions. ChartLens demonstrates significant
improvements, achieving 26-66% higher accuracy
compared to competitive baselines, underscoring
its effectiveness in identifying the precise chart ele-
ments that support model-generated answers.

Main Contributions:

• We propose the task of Post-Hoc Fine-grained
Visual Attribution for Charts, which focuses
on determining the specific chart elements
that support a given chart-associated textual
response, improving transparency and mitigat-
ing hallucination in MLLMs.

• We present ChartVA-Eval, a comprehensive
benchmark of 1200+ samples, containing real-
world chart data from diverse sources. The
benchmark features diverse chart styles and
fine-grained attribution annotations to facili-
tate rigorous evaluation.

• We introduce ChartLens, a novel chart attribu-
tion algorithm based on set-of-marks prompt-
ing with multimodal LLMs. Our method
achieves 26-66% improvements over existing
baselines, establishing a new state-of-the-art
method for chart attribution tasks.

2 Related Work

2.1 Response Attribution in LLMs
Generative LLMs now lead performance in vari-
ous tasks, but their tendency to produce hallucina-
tions remains a significant challenge (Zhang et al.,
2023). To mitigate these issues, researchers have
explored training LLMs to provide citations along-
side their answers (Gao et al., 2023; Menick et al.,
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2022; Nakano et al., 2021). Other methods aug-
ment LLMs with external tools such as retrievers
(Ye et al., 2023b; Li et al., 2023b), and search en-
gines (Nakano et al., 2021).

Three primary attribution strategies have
emerged. Direct model-driven attribution allows
the model to generate answers and attributions si-
multaneously, though this often leads to inaccu-
racies in both the answers and the cited sources
(Peskoff and Stewart, 2023; Sun et al., 2022). Post-
retrieval answering involves explicitly retrieving
information first and then answering based on the
retrieved data(Ye et al., 2023b; Li et al., 2023b).
However, retrieval does not always equate to accu-
rate attribution, as conflicts between the model’s
internal knowledge and the retrieved information
can arise (Huo et al., 2023; Chen et al., 2023). In
post-generation attribution, the model generates
an answer first, and then a search is conducted to
find supporting references, modifying the answer
if necessary (Li et al., 2023a).

Additionally, recent research has focused on
generating more structured attributions for data
from different modalities. For example, MATSA
(Mathur et al., 2024) introduces the Fine-grained
Structured Table Attribution (FAST-Tab) task,
where a multi-agent LLM system provides row-
and column-level attributions to visually support
claims derived from tables.

2.2 Visual Chart Understanding
Automated chart understanding has seen signif-
icant advancements through classification-based
and generation-based methods. Early classifica-
tion models like IMG+QUES (Kafle et al., 2018)
and Relation Networks (Santoro et al., 2017) faced
out-of-vocabulary (OOV) challenges, which were
mitigated by dynamic encoding techniques such
as SANDY (Kafle et al., 2018) and PReFIL (Kafle
et al., 2020) that incorporated OCR sub-networks
. Pre-trained models like STL-CQA (Singh and
Shekhar, 2020) and VisionTaPas (Masry et al.,
2022) further improved performance by leverag-
ing transformer-based architectures .

Generation-based approaches dominate tasks
like chart captioning and chart-to-table conver-
sion. Models such as Donut (Kim et al., 2022)
and Pix2Struct (Lee et al., 2023a) introduced end-
to-end OCR-free architectures, while UniChart
(Masry et al., 2023) and MatCha (Liu et al., 2022b)
incorporated chart-specific pre-training objectives.

The emergence of Multimodal Large Language

Models (MLLMs) like ChartLlama (Han et al.,
2023) and ChartAssistant (Meng et al., 2024)
has enabled strong zero-shot performance through
instruction-tuning on chart-specific datasets. Addi-
tionally, tool-augmented methods such as DePlot
(Liu et al., 2022a) and StructChart (Xia et al., 2023)
aid LLMs by converting charts to structured data
tables. Despite these advances, challenges remain
in handling domain-specific chart diversity and de-
veloping robust evaluation metrics (Wang et al.,
2024).

3 Post-Hoc Visual Attribution in Charts

Problem Statement. Given a dataset D consisting
of a set of charts C, each chart is an image c ∈
C, c = Iw×h×3, and is associated associated with
a set of responses Rc. Each response is denoted by
v, v ∈ Rc.

The objective is to determine the set of visual
regions within the chart c that provide evidence for
the response v. Specifically, for a given chart c and
response v, the goal is to produce an attribution set
Ac,v, where:

Ac,v = {a1, a2, . . . , an} (1)

and each ai represents a distinct region corre-
sponding to an element in the chart c (e.g., bars,
lines, points, segments) that supports the response
v.

The expectation is that Ac,v satisfies the follow-
ing criteria:

1. Relevance: Each region ai must be directly
relevant to the response v.

2. Completeness: The set Ac,v should compre-
hensively cover all the visual evidence needed
to justify v.

3. Precision: The regions ai should be specific
and exclude irrelevant parts of the chart.

The task can be summarized as finding a map-
ping function:

f : (c, v) 7→ Ac,v (2)

where f identifies the precise visual elements in
c that substantiate the response v.
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Dataset ChartVA- AITQA ChartVA- PlotQA ChartVA-ChartQA
# of Queries 301 595 348
# of Charts 301 581 266

# of Bar Charts 203 396 121
# of Pie Charts 0 0 109

# of Line Charts 98 199 118
Chart Source Synthetic Synthetic Real World

Multiple Attributions No Yes Yes
Avg # of Attributions 1 2.4 1.43
Max # of Attributions 1 12 8
Avg # of Data Series 1.23 2.52 2.45
Max # of Data Series 8 4 14

Table 1: Statistics for the ChartVA-Eval benchmark,
reported for constituent datasets.

4 ChartVA-Eval

In this section, we introduce ChartVA-Eval, a
benchmark designed to evaluate visual attribution
in charts. Each data point in ChartVA-Eval consists
of a chart image c ∈ C, represented as c = Iw×h×3,
a textual response v ∈ Rc, and a ground truth at-
tribution set Ac, vgt, which represents the ground
truth attributions. Additionally, the set of all re-
gions in the chart corresponding to different ele-
ments is denoted as Ac, representing all potential
regions within the chart.

4.1 Data Sources
The ChartVA-Eval Benchmark is constructed from
a diverse set of data sources to ensure compre-
hensive evaluation of post hoc attribution in chart-
based visual question answering (VQA). By incor-
porating both synthetic and real-world charts, it
captures a wide range of design styles, chart types,
and question-answer (QA) contexts. This diversity
enables rigorous assessment of model performance
across different domains and visual complexities.
The benchmark draws from three key datasets:
MATSA-AITQA (Mathur et al., 2024), PlotQA
(Methani et al., 2020), and ChartQA (Masry et al.,
2022), each offering unique characteristics and
challenges.

MATSA-AITQA (Mathur et al., 2024) provides
chart data derived from tabular QA over public
U.S. SEC filings of major airline companies, cov-
ering the fiscal years 2017 to 2019 (Katsis et al.,
2021). The tables are paired with QA pairs and
annotated cells corresponding to the data points
supporting the answers. From these tables, syn-
thetic charts are generated by applying variations
in themes, color palettes, fonts, and design ele-
ments like grid lines and tick styles, resulting in
over O(104) possible style combinations. Each QA
pair is associated with a single visual attribution.
The dataset includes chart types such as grouped
bar charts, stacked bar charts, simple bar charts

(both horizontal and vertical), line charts. Further
details for synthetic chart generation are present
in the appendix. PlotQA (Methani et al., 2020)
focuses on synthetic scientific charts paired with
bounding box annotations and diverse reasoning-
based questions. The dataset includes line charts
and bar charts (both vertical and horizontal), with
one or more visual elements annotated to support
each answer. The data for these charts is sourced
from publicly available repositories, including the
World Bank Open Data, Open Government Data,
and the Global Terrorism Database. This controlled
synthetic environment allows for evaluating fine-
grained attribution tasks that require careful inter-
pretation and logical reasoning. ChartQA (Masry
et al., 2022) offers real-world charts accompanied
by human-authored QA annotations. The charts
are sourced from platforms such as Statista, Pew
Research Center, Our World in Data (OWID), and
the Organisation for Economic Co-operation and
Development (OECD). The dataset includes a va-
riety of chart types, particularly pie charts, line
charts, and bar charts. Given the scarcity of pie
charts in other datasets, they are oversampled to
ensure balanced representation. ChartQA captures
the complexities and variability found in real-world
data visualizations, providing a realistic benchmark
for evaluating attribution models.

4.2 Attribution Annotation

For the ChartQA and PlotQA datasets, we em-
ployed a hybrid approach to generate attribution
annotations, combining large-scale automated an-
notation with human verification. We utilized GPT-
4o to generate initial annotations by leveraging
the underlying data tables, questions, and answers.
Specifically, we identified frequent question tem-
plates and designed tailored prompts for each tem-
plate. For example, for cardinality related QA pairs,
the model was instructed to select all data points
counted in the cardinality. These automated anno-
tations were subsequently refined through human
validation. In an interactive setting, annotators re-
viewed the rendered bounding boxes on the charts
and assessed the annotations based on two criteria:
(1) Relevance — ensuring the annotated elements
directly support the answer, and (2) Completeness
— verifying that all necessary chart elements were
included. This process ensured high-quality and
precise attribution annotations for both datasets.
Further details on attribution annotation are pro-
vided in the appendix.
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Figure 2: ChartLens: ➊ Chart elements, such as bars and pie sectors, are extracted through heuristic-guided
methods and refined using SAM, while lines are segmented using Lineformer. ➋ The segmented elements are then
marked, labeled, and used to prompt multimodal LLMs, enabling fine-grained attribution by grounding textual
responses to visual regions.

5 ChartLens

ChartLens (Fig 2) facilitates fine-grained visual
attribution for charts by first detecting and labeling
chart elements with distinct marks. These marks,
which serve as referable visual anchors, are then
used to prompt MLLMs to attribute responses to
specific visual elements within the chart.

5.1 Mark Generation

The goal of mark generation is to identify and tag
fine-grained visual features within chart images
to form a set of candidates for attribution. These
marks serve as visual anchors to prompt multi-
modal LLMs by providing locality-based ground-
ing. Effective mark generation requires the ability
to isolate individual chart components, while ensur-
ing robustness across various chart types and visual
styles.
Heuristic-guided Instance Segmentation For seg-
menting bar charts, the input image is first bina-
rized using Otsu thresholding applied to both the
RGB and HSV representations. If the chart has a
dark background, the binarized image is inverted
to ensure foreground features, such as bars, are cor-
rectly highlighted. From the binarized image, an
initial set of contours is generated. These contours
are further refined by breaking them down using
unique pixel values, isolating individual bars. To
eliminate irrelevant or spurious contours, a filter-
ing step based on solidity and area thresholds is
applied, ensuring that only well-defined bars are

retained.
For pie charts, segmentation begins by identi-

fying the largest contour in the binarized image,
which typically corresponds to the pie chart itself.
We compute the minimum enclosing circle for this
contour to approximate the chart’s boundary. Fol-
lowing the approach in (Savva et al., 2011), the pie
chart is unrolled along the radial axis to create a lin-
ear representation. In this unrolled form, complete
edges are detected to identify sector boundaries,
which are then mapped back to the original circular
region. This process yields segments correspond-
ing to individual slices of the pie chart.

While these heuristic methods leverage the struc-
tural and geometric properties of charts effectively,
they suffer from several limitations. They are sen-
sitive to noise and perform poorly on low-contrast
images, often misidentifying irrelevant components
such as grid lines or labels as chart elements. To
address these issues, we employ the Segment Any-
thing Model (SAM) (Kirillov et al., 2023) for in-
stance segmentation. Specifically, n points are
sampled from each detected element and used as
prompts for SAM. The model generates masks that
accurately enclose the objects associated with the
sampled points, overcoming the shortcomings of
classical methods.

SAM’s architecture allows it to handle noisy and
low-quality images more robustly. It produces pre-
cise masks that closely align with the boundaries
of chart elements, even in complex cases. Addi-
tionally, SAM naturally suppresses background fea-
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tures like grid lines by generating weaker masks
(low IoU) for these elements, as they lack the spa-
tial coherence of primary chart components. Un-
like heuristic approaches, SAM generalizes well
across diverse chart types and layouts without re-
quiring extensive parameter tuning. By combining
heuristic-guided preprocessing with SAM-based
instance segmentation, we achieve a more flexible
and accurate segmentation process that leverages
the strengths of both classical computer vision and
modern deep learning techniques.
Transformer-based Line Segmentation We use
LineFormer (Lal et al., 2023) to extract lines from
line charts. Lines present unique challenges for
segmentation due to their fine structural features,
such as narrow width, overlapping trajectories, and
the presence of intersecting lines. These character-
istics make it difficult for classical computer vision
methods or point-based prompting approaches to
accurately identify and segment lines, especially in
dense or complex charts.

LineFormer effectively addresses these chal-
lenges. It leverages the global context provided
by the transformer architecture to distinguish lines
even when they are closely spaced or intersecting.
After detecting candidate lines with LineFormer,
we divide each line into equally spaced segments
along its domain extent (horizontal range). These
smaller segments serve as fine-grained marks for
our attribution algorithm.

5.2 Attribution with MLLMs
To facilitate accurate attribution in chart-based
tasks, we employ Set-of-Marks (SoM) prompting,
a visual prompting technique designed to leverage
the visual grounding capabilities of multimodal
LLms. Inspired by (Yang et al., 2023), SoM
prompting partitions an image into regions of vary-
ing granularity using interactive segmentation mod-
els like SEEM or SAM. These segmented regions
are then overlaid with visual marks, such as al-
phanumeric labels, masks, or bounding boxes. This
marked image is presented as input to the multi-
modal LLM. SoM prompting is effective because
it enables explicit localization within the image,
helping the model isolate distinct regions and un-
derstand their spatial relationships. Additionally,
by labeling these elements, the technique simplifies
reasoning for the model, making it easier to refer-
ence specific components during visual grounding
tasks. The combination of these factors enhances
the model’s ability to interpret and connect visual

information with textual queries.

In our approach, we prompt multimodal LLMs
with chart images overlaid with marks. The
prompts are structured to achieve two primary
goals: validation and attribution. The prompt first
explains the concept of chart attribution, provid-
ing a few-shot set of textual examples of question-
answer (QA) pairs along with their corresponding
attribution. Next, the model is instructed to fol-
low a chain-of-thought (CoT) reasoning process to
perform step-wise validation and attribution.

Validation involves verifying whether the QA pair
is consistent with the information in the chart im-
age. The model evaluates if the answer aligns with
the visual elements and data presented in the chart.

Attribution requires the model to identify and men-
tion the specific labeled elements within the chart
that support the given answer. By explicitly ref-
erencing these elements, the model’s response be-
comes more transparent and easier to verify.

6 Experiments

6.1 Baselines

Zero-shot GPT-4o Bounding Box Prompting: As
a baseline, we prompt GPT-4o (OpenAI, 2024) to
predict normalized bounding box coordinates for
chart components (e.g., lines, bars, pie sectors)
based on input text and the visual chart. This ap-
proach aligns with prior work for zero-shot local-
ization tasks.

Kosmos-2: Kosmos-2 (Peng et al., 2023) is a mul-
timodal large language model (MLLM) trained on
grounded image-text data (GrIT) that integrates
text-to-visual grounding capabilities. By represent-
ing object locations as Markdown links, it enables
tasks such as referring expression comprehension,
phrase grounding, and multimodal reasoning, and
generates bounding boxes for visual grounding
tasks.

LISA: LISA (Large Language Instructed Seg-
mentation Assistant) (Li et al., 2023b) is a
reasoning-based segmentation model that generates
masks from implicit and complex textual queries.
By introducing a <SEG> token and leveraging
the embedding-as-mask paradigm, LISA extends
MLLM capabilities to reasoning segmentation with
robust zero-shot performance and further improves
with minimal task-specific fine-tuning.
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Baseline ChartVA - AITQA ChartVA - PlotQA ChartVA - ChartQA
P R F1 P R F1 P R F1

Zero-shot ChatGPT4o 22.33 23.23 22.77 3.40 3.21 3.30 8.13 7.41 7.75
KOSMOS2 0.51 0.51 0.51 1.60 0.74 1.01 3.31 2.96 3.13

LISA 0.83 29.29 1.62 0.18 6.39 0.34 0.52 30.37 1.01
ChartLens 79.86 61.17 69.28 35.38 33.94 34.65 74.51 56.30 64.14

Table 2: Comparison of ChartLens with baselines on the ChartVA-Eval benchmark for bar charts.

Baseline ChartVA - AITQA ChartVA - PlotQA ChartVA - ChartQA
Detection % (↑) Chart Ar % (↓) Detection % (↑) Chart Ar % (↓) Detection % (↑) Chart Ar % (↓)

Zero-shot ChatGPT4o 18.28 1.94 6.79 8.63 3.39 1.15
KOSMOS2 74.19 46.03 38.83 27.06 87.29 41.49

LISA 94.62 63.18 50.21 40.92 50.21 40.92
ChartLens 59.14 1.25 51.84 9.98 77.8 5.34

Table 3: Comparison of ChartLens with baselines on the ChartVA-Eval benchmark for line charts.

Baseline ChartVA - ChartQA
P R F1

Zero-shot ChatGPT4o 8.94 5.99 7.17
KOSMOS2 20.18 8.24 11.70

LISA 1.32 13.86 2.41
ChartLens 53.33 44.57 48.56

Table 4: Comparison of ChartLens with baselines on
the ChartVA-Eval benchmark for pie charts.

6.2 Evaluation

Bar Charts and Pie Charts: Detected regions are
first matched to ground truth regions (e.g., bars
or sectors in the chart) based on a threshold In-
tersection over Union (IoU) value of IoU ≥ 0.9.
The matched regions are treated as discrete items,
where each detected region is assigned a unique
label corresponding to its ground truth region. The
performance is evaluated using Precision, Recall,
and F1-score, computed over the set of filtered de-
tected regions and ground truth regions. Let D
denote the set of detected regions after filtering,
and G denote the set of ground truth regions. Preci-
sion (P ), Recall (R), and F1-score (F1) are defined
as P = |D∩G|

|D| , R = |D∩G|
|G| , F1 = 2·P ·R

P+R .
Line Charts: Unlike bar charts and pie charts,
where detected regions can be matched to discrete
ground truth regions, the task for line charts in-
volves referring to singular points. Since grounding
models generate bounding boxes or regions, it is
challenging to precisely match these regions to in-
dividual ground truth points without ambiguity. To
address this, two metrics are defined for evaluation:

1. Detection Rate: Measures the proportion of
ground truth points covered within the de-
tected region(s), analogous to recall.

2. Average Area Detected: Large detected ar-
eas indicate low precision, even if the recall is

high. This is quantified as the average percent-
age of the input chart image covered. Larger
detected areas result in higher recall but lower
precision, making this metric critical for eval-
uating the trade-off between precision and re-
call in line chart attribution tasks.

For ChartLens, Large Multimodal Models
(LMMs) are prompted to detect pairs of marked
points on the line between which the attribution
lies. These point pairs are considered corners of a
bounding box, and the same metrics are used.

6.3 Implementation Details

The base multimodal language model (MLLM)
for ChartLens is ChatGPT-4o, which is used
for zero-shot bounding box detection and
attribution tasks. For LISA, we use the
xinlai/LISA-13B-llama2-v1 checkpoint
with 8-bit quantization and mixed-precision
(fp16) to optimize memory efficiency during
inference. Kosmos-2 is implemented using the
microsoft/kosmos-2-patch14-22 checkpoint.
We use the facebook/sam-vit-large checkpoint
for SAM. All experiments are conducted using a
single NVIDIA A5000, over 6 hours. Default hy-
perparameters from each model’s implementation
are used unless stated otherwise.

7 Results

In this section, we present a detailed comparison
of the proposed ChartLens model against several
baselines, including Zero-shot ChatGPT4o, KOS-
MOS2, and LISA, across three different chart types:
bar charts, line charts, and pie charts. The results
demonstrate that ChartLens consistently outper-
forms the baselines across all chart types, high-
lighting its robustness and effectiveness in visual
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Question: What's the share of top 3 countries?
Answer: 41

Question: What is the difference between the highest and the second
highest percentage of economically active children in services ?
Answer: 2.4

Question: What was the peak share price for ALK in 2016?
Answer: The peak share price for ALK in 2016 was $91.88.

Zero Shot ChatGPT4o Kosmos2Lisa ChartLens (ours)Color Key 👉

Figure 3: Qualitative comparison of our ChartLens with the baselines. ChartLens is able to effectively localize
relevant, complete and precise attributions in the chart images.

chart understanding.
Bar Charts ChartLens demonstrates significant
performance improvements over all baselines in bar
charts, achieving F1 scores of 69.28 on ChartVA-
AITQA, 34.65 on ChartVA-PlotQA, and 64.14 on
ChartVA-ChartQA (Table 2). In contrast, Zero-
shot ChatGPT4o achieves much lower F1 scores of
22.77, 3.30, and 7.75, reflecting its limitations in
numerical reasoning and visual attribution. KOS-
MOS2 and LISA perform poorly, with F1 scores be-
low 5 across benchmarks, highlighting their inabil-
ity to handle bar charts due to insufficient ground-
ing of visual and numerical reasoning.
Line Charts For line charts (Table 3), ChartLens
achieves strong detection accuracy of 59.14%,
51.84%, and 77.8% on ChartVA-AITQA, PlotQA,
and ChartQA, respectively, with low chart area er-
rors of 1.25%, 9.98%, and 5.34%. While LISA
and KOSMOS2 achieve high detection rate, this
can largely be explained by the high Chart% area
covered by their attributions; covering large areas
of the chart makes capturing specific points non-
trivial but reduces the specificity of attributions,
making them less effective at fine-grained localiza-
tion. In contrast, ChartLens reduces Chart% area
by ≈ 3-50 times.
Pie Charts ChartLens outperforms baselines in pie
charts, achieving an F1 score of 48.56, significantly
higher than Zero-shot ChatGPT4o (7.17), KOS-
MOS2 (11.70), and LISA (2.41) (Table 4). Its pre-
cision (53.33) and recall (44.57) confirm its ability
to attribute pie chart segments accurately. In con-
trast, Zero-shot ChatGPT4o and KOSMOS2 strug-
gle with interpreting proportions, while LISA’s ex-
tremely low performance highlights its difficulty
in handling pie chart geometry and segmentation
tasks.
Figure 3 shows a qualitative comparison of

ChartLens with the baselines across bar charts, line
charts, and pie charts. ChartLens consistently iden-
tifies and attributes relevant chart elements more
accurately than the baselines, demonstrating a clear
understanding of numerical and visual relation-
ships. Zero-shot ChatGPT4o attempts to make
fine-grained specific selections, however fails to
exhibit robust localization since it expresses attri-
butions using text based coordinates. LISA and
KOSMOS2 consistently refer to typical chart com-
ponents, like the pie as a whole, or the entire area
but do not exhibit sensitivity to given queries.

8 Conclusion and Future Work

In this work, we introduced the task of Post-Hoc
Fine-grained Visual Attribution for Charts, address-
ing the challenge of grounding chart-related re-
sponses to specific visual elements. To facilitate
this, we proposed ChartLens, a novel attribution
algorithm leveraging segmentation techniques and
set-of-marks prompting with multimodal LLMs.
Additionally, we presented ChartVA-Eval, a com-
prehensive benchmark featuring real-world and
synthetic charts across diverse domains, enabling
rigorous evaluation of visual attribution meth-
ods. Our experiments demonstrated that ChartLens
significantly outperforms competitive baselines,
achieving improvements of 26-66%. By enhanc-
ing transparency and mitigating hallucinations in
MLLMs, our work lays a foundation for reliable
chart interpretation in critical applications such as
financial analysis, policy-making, and scientific re-
search. Future work will explore extending these
methods to other forms of visual data and improv-
ing robustness across chart styles and complexities.

22454



9 Ethics Statement

This research utilizes publicly available datasets,
ensuring compliance with their respective licenses.
The identities of human evaluators remain confi-
dential, and no personally identifiable information
(PII) is used at any stage of our experiments. Our
work is designed specifically for fine-grained vi-
sual attribution applications and does not extend
to other use cases. We acknowledge the broader
challenges associated with large language models
(LLMs), including potential risks related to misuse
and safety, and encourage readers to consult rele-
vant literature for a detailed exploration of these
issues (Kumar et al., 2024; Cui et al., 2024; Luu
et al., 2024).

10 Limitations

While our work makes significant strides in fine-
grained visual attribution for charts, it has certain
limitations.

First, the system relies on segmentation as a core
component, and any inaccuracies in the segmenta-
tion process may result in imperfect or incomplete
attributions. However, as segmentation is modular,
it can be improved or replaced with more advanced
methods in future iterations.

Second, our approach primarily focuses on vi-
sual chart elements, such as bars, points, or sectors,
and does not account for textual components like
captions, labels, or titles. Addressing this limita-
tion and integrating text-based reasoning alongside
visual attribution remains a promising direction for
future research.
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A Details on Benchmark Construction

A.1 Datasets
A.1.1 MATSA
The TabCite dataset from MATSA (Mathur et al.,
2024),consists of tables derived from various
sources such as Wikipedia pages and SEC fil-
ings. The TabCite benchmark is built by refor-
mulating existing datasets like TOTTO (Parikh
et al., 2020), FetaQA (Nan et al., 2022), and
AITQA (Katsis et al., 2021) to create QA pairs with
human-generated questions, free-form answers,
and ground truth row/column attributions. The
dataset focuses on fine-grained table structure attri-
bution, particularly identifying rows and columns
for accurate reasoning and table-based question an-
swering. MATSA, in comparison to other models,
performs well across multiple settings, achieving
the best F1 scores for fine-grained attribution, in-
dicating its effectiveness for reasoning over tables
with complex structures.

For ChartVA-Eval, we selected the AITQA sub-
dataset due to its simpler table structure, which
allowed for easier and more traceable conversion

22457



from tables to charts without losing attribution. Ad-
ditionally, AITQA is the only subdataset that con-
tains numerical values in every cell, making it ideal
for generating charts that can be directly derived
from the data. The numerical consistency ensures
that the table-to-chart conversion maintains the in-
tegrity of the data, allowing for accurate visualiza-
tion and reasoning over the tables.

A.1.2 PlotQA
PlotQA (Methani et al., 2020) is a dataset designed
for the task of reasoning over real-world plots. It in-
cludes data sourced from various online platforms
like World Bank Open Data and the Global Terror-
ism Database, covering a wide range of indicator
variables such as fertility rates, rainfall, and coal
production across different years, countries, and
regions. The dataset comprises 841 unique vari-
ables and 160 entities, with data spanning from
1960 to 2016. These statistics are represented in
three main plot types: bar plots, line plots, and scat-
ter plots. The plots vary in their visual elements,
including legend positions, fonts, grid lines, and
color schemes, allowing for rich and diverse plot
representations. In total, 224,377 unique plots were
generated, ensuring a comprehensive coverage of
data.

To facilitate the creation of complex reasoning
tasks, the PlotQA dataset also features a collection
of 7,000 crowd-sourced questions, which were gen-
erated by workers on Amazon Mechanical Turk.
These questions were categorized into three types:
structural understanding, data retrieval, and reason-
ing. By analyzing the crowd-sourced questions,
the authors extracted 74 question templates that
were manually paraphrased to ensure natural phras-
ing. This process aimed to ensure that the dataset
more accurately reflects real-world challenges in
plot interpretation, providing a rich resource for
training and evaluating machine learning models
for visual reasoning tasks. The resulting dataset is
notable for its realistic question vocabulary, longer
questions, and diverse set of answers, making it a
significant step forward in the field of plot-based
question answering.

A.1.3 ChartQA
ChartQA (Masry et al., 2022) is a benchmark
dataset designed to evaluate question answering
(QA) models over chart images. It consists of
a diverse collection of charts crawled from four
sources: Statista, Pew Research, Our World In Data

(OWID), and the OECD. These charts cover vari-
ous topics such as economics, politics, and global
issues, and include bar, line, and pie charts. To
enhance the dataset’s coverage, two main meth-
ods of annotation were employed: human-authored
QA pairs collected via Amazon Mechanical Turk
(AMT) and machine-generated questions derived
from human-written chart summaries. The dataset
focuses on two types of questions: compositional
(involving logical or mathematical operations) and
visual (related to chart attributes like color or
height), which are designed to test complex rea-
soning abilities.

The dataset also employs data augmentation
through the fine-tuning of a T5 model on SQuAD to
generate diverse, human-like questions from chart
summaries. This process helps to introduce linguis-
tic variations and enriches the dataset with syntactic
complexity. A significant feature of ChartQA is
its coverage of both simple and complex charts,
with the latter including multi-column charts like
stacked bars and multi-line graphs. With 6,150
unique tokens in questions and 4,319 in answers,
ChartQA presents a challenging task for QA mod-
els, reflecting real-world scenarios where questions
require intricate reasoning over chart data. The
dataset’s broad topic coverage and diverse question
types make it an essential resource for advancing
research in visual question answering and complex
reasoning over data visualizations.

A.2 Human Annotation
We employed three graduate student annotators,
aged 23-26, with prior experience working with
charts across various domains. The annotators were
fairly compensated at the standard Graduate Assis-
tant hourly rate, following their respective graduate
school policies.

The purpose of the annotation process was to
ensure high-quality and precise visual attributions
by refining automated annotations and verifying
their correctness. Specifically, the annotators were
tasked with reviewing bounding box annotations
to assess Relevance, ensuring that the annotated
chart elements directly supported the provided an-
swers, and Completeness, verifying that all nec-
essary chart elements were included. The annota-
tion process was conducted in an interactive setting
where annotators could inspect rendered visualiza-
tions and iteratively refine the annotations as re-
quired. An overview of the annotation instructions
can be seen in Fig 4.
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To evaluate the consistency and reliability of the
annotations, we calculated inter-annotator agree-
ment metrics using Cohen’s Kappa (κ). For Rele-
vance, the overall agreement was near perfect with
a Kappa score of 0.89. Similarly, for Completeness,
the agreement remained strong, achieving a Kappa
score of 0.84. Additionally, pairwise Kappa scores
between the three annotators were computed to
further validate consistency: Annotator 1 and An-
notator 2 achieved a κ of 0.87, Annotator 1 and
Annotator 3 reported a κ of 0.85, while Annotator
2 and Annotator 3 achieved a κ of 0.83.

A.3 Synthetic Chart Construction
Fig 5 represents the design decision space for
MATSA synthetic charts. It illustrates the wide
range of charts generated, showcasing the visual
diversity, variations in layouts, and the impact of
different design choices on the chart’s structure and
appearance.

B Algorithmic Heuristics for Point
Extraction

Algorithms 1 and 2 depict the algorithmic work-
flow for mark identification and rendering, utiliz-
ing heuristics and SAM-based segmentation tech-
niques. These algorithms effectively segment and
label chart elements, enabling downstream fine-
grained attribution.

Algorithm 1 Detect Bounding Boxes in Bar Charts

1: procedure DETECTBARBOUNDING-
BOXES(image_path, predictor)

2: Input: Image path image_path, predictor
model predictor

3: Output: Processed image, list of bounding
boxes

4: Step 1: Preprocess Image
5: Load image and check validity
6: Convert to grayscale and apply threshold-

ing
7: Perform morphological operations to clean

noise
8: Step 2: Detect Initial Contours
9: Find contours in the thresholded image

10: Filter contours by area to identify bar-like
shapes

11: Step 3: Process Bar Contours
12: for each bar contour do
13: Expand bounding box for analysis
14: Mask region and extract unique colors
15: for each unique color do
16: Create mask and detect sub-

contours
17: if contour is rectangular then
18: Store bounding box
19: end if
20: end for
21: end for
22: Step 4: Refine Bounding Boxes
23: Remove overlapping boxes and sort by po-

sition
24: for each box do
25: Use SAMpredictor to refine boxs
26: if valid contour found in mask then
27: Add final bounding box
28: end if
29: end for
30: Step 5: Finalize Output
31: Label bounding boxes and draw on image
32: Return: Processed image, final list of

bounding boxes
33: end procedure
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Figure 4: Overview of annotation guidelines provided to annotators for ensuring accurate and consistent visual
attributions.
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Figure 5: The design decision option space for MATSA synthetic charts, illustrating the various configurable
elements and parameters available for customizing chart generation. This visual representation highlights the
flexibility in chart design, encompassing aspects such as chart type, data presentation styles, and visual encoding
options.
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Algorithm 2 Detect and Label Pie Chart Sectors
1: procedure DETECTPIECHARTSEC-

TORS(image_path, predictor)
2: Input: Image path image_path
3: Output: Processed image with labeled pie

chart sectors
4: Step 1: Preprocess Image
5: Load the image and convert it to grayscale
6: Apply binary thresholding with Otsu’s

method
7: Detect external contours and find the

largest one
8: Step 2: Identify Center and Radius
9: Compute the minimum enclosing circle of

the largest contour
10: Extract the center (x, y) and radius r
11: Step 3: Extract Pie Chart Region
12: Create a circular mask based on the de-

tected center and radius and isolate the pie
chart region

13: Step 4: Unroll the Pie Chart
14: Define sampling angles θ in [0, 2π]
15: Sample pixel intensities along concentric

ellipses at varying radii
16: Store the unrolled intensities as a 2D array
17: Step 5: Detect Sector Boundaries
18: Apply the Sobel operator to detect horizon-

tal edges in the unrolled image
19: Compute a binary edge map by threshold-

ing strong edges
20: Identify complete edges that span most of

the unrolled height
21: Map these edges back to angles in [0, 2π]
22: Step 6: Process and Refine Sectors
23: for each candidate sector do
24: Use SAMpredictor to refine sector
25: if valid sector found in mask then
26: Add final sector
27: end if
28: end for
29: Compute midpoint angles for labeling sec-

tors
30: Step 7: Finalize Output
31: for each sector do
32: Label sectors on chart image
33: end for
34: Return: Processed image with labeled sec-

tors, final list of bounding boxes
35: end procedure
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