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Abstract

In this paper, we identify a critical problem,
“lost-in-retrieval”, in retrieval-augmented multi-
hop question answering (QA): the key entities
are missed in LLMs’ sub-question decomposi-
tion. “Lost-in-retrieval” significantly degrades
the retrieval performance, which disrupts the
reasoning chain and leads to the incorrect an-
swers. To resolve this problem, we propose
a progressive retrieval and rewriting method,
namely ChainRAG, which sequentially han-
dles each sub-question by completing missing
key entities and retrieving relevant sentences
from a sentence graph for answer generation.
Each step in our retrieval and rewriting pro-
cess builds upon the previous one, creating a
seamless chain that leads to accurate retrieval
and answers. Finally, all retrieved sentences
and sub-question answers are integrated to gen-
erate a comprehensive answer to the original
question. We evaluate ChainRAG on three
multi-hop QA datasets—MuSiQue, 2Wiki, and
HotpotQA—using three large language models:
GPT4o-mini, Qwen2.5-72B, and GLM-4-Plus.
Empirical results demonstrate that ChainRAG
consistently outperforms baselines in both ef-
fectiveness and efficiency.

1 Introduction

Large language models (LLMs) (OpenAI, 2023;
Zeng et al., 2024; Yang et al., 2024; Li et al., 2024a)
have exhibited promising performance on a wide
range of natural language processing tasks, such
as machine translation (Zhu et al., 2023), text sum-
marization (Wu et al., 2021), question answering
(QA) (Daull et al., 2023). While LLMs possess
strong reasoning abilities, they still face challenges
such as outdated knowledge (Mousavi et al., 2024)
and lack of domain-specific expertise (Chen, 2024),
which lead to incorrect outputs (Xu et al., 2024b).

To fill the gap between LLMs’ memory and
real-world knowledge, retrieval-augmented gener-
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What was the hometown of the novel's author about a male roe deer's life?

Input question

Felix SaltenWho wrote the novel about a male roe deer's life?

Sub-question 1

Retrieved text
…is a 1923 Austrian coming-of-age 
novel written by Felix Salten…

YateWhat was the home city of this author?

Sub-question 2

Retrieved text
… J.K. Rowling, born in Yate, 
England, is a famous author …

LLM

LLM

Figure 1: Example of the “lost in retrieval” issue where
the second sub-question retrieves irrelevant text due to
the unclear key entity, leading to an incorrect answer.

ation (RAG) (Lewis et al., 2020; Gao et al., 2023;
Luo et al., 2023) is widely used to retrieve the
knowledge that is relevant to the user’s question
to improve the LLMs’ QA performance. Unlike
knowledge-enhanced finetuning (Luo et al., 2024b),
RAG operates without updating LLM parameters.
When answering multi-hop questions, RAG-based
methods generally utilize a question decomposition
strategy to decompose the input question into multi-
ple simpler sub-questions. However, in this decom-
position process, we find that when a sub-question
lacks a clear entity and instead uses demonstrative
pronouns, the retrieval performance drops sharply.
We refer to this phenomenon as “lost-in-retrieval”.

Figure 1 presents a real-world example in solv-
ing a multi-hop question using RAG combined with
question decomposition. In this example, the sec-
ond sub-question, “What was the home city of this
author?”, lacks a clear entity of the author. As a
result, it leads to retrieval errors, which ultimately
cause the final answer to be incorrect. The right
answer is Vienna. To give the correct answer, we
need to identify the specific key entities in the sub-
questions to improve the retrieval performance.

To analyze the retrieval performance of differ-
ent sub-questions, we have conducted an empirical
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Figure 2: Analysis of “lost in retrieval”. We evaluate
the Recall@2 (%) of different sub-questions.

study with 300 randomly sampled QA examples
from each of the three datasets: MuSiQue (Trivedi
et al., 2022), 2WikiMultiHopQA (2Wiki) (Ho et al.,
2020), and HotpotQA (Yang et al., 2018). Since
most questions are two-hop reasoning problems,
we calculate the Recall@2 scores for the first two
sub-questions. As shown in Figure 2, under dif-
ferent chunk size settings, the Recall@2 of the
second sub-question is noticeably lower than that
of the first sub-question, with an average decrease
of 18.29% across the three datasets. We analyze
the results and find that the first sub-question typ-
ically contains a specific key entity, whereas the
second sub-question often lacks one. The ambi-
guity of key entities in sub-questions causes the

“lost-in-retrieval” problems, which further disrupts
the chain of reasoning for multi-hop QA.

To mitigate the “lost-in-retrieval” problems and
improve multi-hop QA, we propose a progressive
retrieval framework called ChainRAG. It involves
an iterative process of sentence retrieval, sub-
question answering and subsequent sub-question
rewriting. We first construct a sentence graph with
named entity indexing from texts, which is used to
facilitate entity completion in sub-question rewrit-
ing and to structure the knowledge scattered across
different texts. Next, given an input question, we
employ the LLM to decompose it into several sub-
questions and retrieve relevant sentences for the
first sub-question. Then, our iterative process op-
erates as follows until all sub-questions are ad-
dressed. We prompt an LLM to answer the current
sub-question. The answer is then used to rewrite
the next sub-question by completing any missing
key entities, if possible. The updated sub-question
is subsequently used for retrieval. Finally, all re-
trieved sentences and sub-question answers are in-
tegrated to answer the original question.

We conduct a series of experiments using three
LLMs on three multi-hop QA datasets from Long-
Bench (Bai et al., 2024), evaluating the perfor-
mance and efficiency of our method. The results
suggest that our method consistently outperforms

the baselines across the three datasets. It also
demonstrates stable performance across different
LLMs, reflecting a certain degree of robustness. In
summary, our contributions are outlined as follows:

• We investigate the “lost-in-retrieval” problems
of RAG for multi-hop QA. We identify that
the reason is the absence of key entities in
sub-questions by empirical studies.

• To resolve this issue, we propose ChainRAG,
a progressive retrieval and sub-question rewrit-
ing framework. We construct a sentence graph
based on the similarities and entities within
the texts to support our retrieval and the com-
pletion of missing entities in sub-questions.

• We evaluate our ChainRAG on three multi-
hop QA datasets. Our experimental results
and analysis show that it outperforms the base-
lines in both effectiveness and efficiency.

2 Related Work

In this section, we review related work and discuss
how our method differs from them.

2.1 Retrieval-Augmented Generation

RAG (Lewis et al., 2020) is a widely-used tech-
nique for addressing knowledge-intensive tasks.
It enables LLMs to fetch relevant information
from external knowledge bases, enhancing their
effectiveness for complex QA, such as multi-hop
KBQA. The biggest challenge of RAG lies in how
to retrieve relevant and comprehensive informa-
tion. One solution is to perform multiple rounds
of retrieval to gather relevant passages (Trivedi
et al., 2023; Shao et al., 2023). The other solu-
tion seeks to remove irrelevant information from
retrieved texts (Jiang et al., 2024). Besides, recent
work pays more attention to the effective utilization
of retrieved texts using techniques like gist mem-
ory (Mu et al., 2023), text summarization (Xu et al.,
2024a), reranking (Glass et al., 2022; Wang et al.,
2024), context compression (Liu et al., 2024).

Despite the aforementioned methods, RAG still
encounters challenges when handling long texts
or complex questions, since relevant information
is usually scattered across different parts of the
text. To address this issue, many studies in-
corporate graph structures to organize the text.
RAPTOR (Sarthi et al., 2024) structures the text
into a tree structure. GraphRAG (Edge et al.,
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2024), GraphReader (Li et al., 2024b), and Hip-
poRAG (Gutiérrez et al., 2024) use LLMs to extract
entities and relations from the text, constructing
knowledge graphs (KGs). While effective, these
methods rely on LLMs for entities and facts extrac-
tion, which increases costs.

Our work investigates a subtle problem in RAG
for multi-hop QA, i.e., “lost in retrieval”, caused
by the missing topic entities in sub-questions. Our
method resolves the problem by iteratively com-
pleting the missing entities and retrieving relevant
sentences containing these entities. It eliminates
the need for a complex reasoning process or an
expensive KG construction pipeline.

2.2 Multi-hop QA
Multi-hop QA is an ideal scenario for evaluating
RAG systems, since it requires strong capabili-
ties from both the knowledge retriever and the an-
swer generator. RoG (Luo et al., 2024a) adopts a
planning-retrieval-reasoning paradigm, using rela-
tion paths in KGs to guide the retrieval of effec-
tive reasoning paths. EfficientRAG (Zhuang et al.,
2024) fine-tunes the DeBERTa-v3-large model (He
et al., 2021) to construct a labeler and a filter for
handling multi-round queries, reducing the fre-
quency of LLM calls. OneGen (Zhang et al., 2024)
unifies generation and retrieval by fine-tuning the
model to perform both tasks simultaneously in a
single-step inference. Many existing multi-hop QA
methods use LLMs for query decomposition (Gao
et al., 2023). However, as demonstrated in the
empirical study in Section 1, this strategy suffers
from “lost-in-retrieval”. Our work resolves this
issue without fine-tuning and frequent API calls.

3 Methodology

Figure 3 provides an overview of ChainRAG. We
first construct a sentence graph from texts. Given
a question, we use an LLM to decompose it into
several sub-questions. Then, we design an iterative
process includes sentence retrieval, sub-question
answering, and subsequent sub-question rewriting.
This process continues until all sub-questions are
addressed. Finally, we integrates all retrieved sen-
tences and sub-question answers to produce a com-
prehensive answer to the original question.

3.1 Sentence Graph with Entity Indexing
In our method, the completion of missing key en-
tities in sub-questions is a crucial step. To facil-
itate entity completion, it is essential to identify

all named entities retrievable from the given texts.
Therefore, for efficiency consideration, we first
extract named entities from texts si using spaCy,
resulting in an entity set Ei. In this process, we
also store the mappings between each entity and
all its sentences. Then, to conveniently obtain all
the information of an entity from scattered texts
for the following knowledge retrieval, we propose
to construct a sentence graph with named entities
as edge labels, where each node represents a sen-
tence and each edge between nodes indicates that
the two sentences describe the same entity. We de-
note the node set as C = {s1, s2, . . . , sn}, which
has already been obtained in the previous entity ex-
tract process. As for the edge, the entity-sentence
mappings can be used to mine edges. However, re-
lying solely on entity co-occurrence edges is insuf-
ficient for effective knowledge retrieval. Besides,
the sentence-level retrieval is too fine-grained. We
should enhance the associations between sentences
for border and comprehensive retrieval. Finally, we
consider the following three types of edges in our
sentence graph:

• Entity co-occurrence (EC). If two sentences
describe the same key entity, they will be
linked. A sentence may contain multiple enti-
ties, but not all of them are the key entities. We
calculate the importance score, i.e., BM25, for
each entity e ∈ Ei, and retain only the top-α%
entities as key entities, denoted by Ki ⊆ Ei.
This process reduces redundancy of the fol-
lowing construction steps. Two sentences si
and sj would be linked with an edge labeled
“EC” if Ki ∩ Kj ̸= ∅ holds.

• Semantic similarity (SS). If two sentences
have a high embedding similarity, they will
be linked. We encode each sentence si
into a dense vector vi using OpenAI text-
embedding-3-small embeddings for comput-
ing pairwise similarities of sentences. For
sentence si, we maintain a set Ri containing
its top-m most similar sentences. Two sen-
tences si and sj would be linked with an edge
labeled “SS” if sj ∈ Ri ∨ si ∈ Rj holds.

• Structural adjacency (SA). If two sentences
are adjacent in texts, they will be linked. In
this work, we consider a span of three sen-
tences. If two sentences si and sj are within
three sentences of each other, i.e., |i− j| ≤ 3,
we add an edge labeled “SA” between them.

22364



What was the hometown of the author 

of the novel about a male roe deer's life?

Input question

(1) Sentence Graph

…

(2) Question Decomposition

Who wrote the male roe 

deer's life novel?

Subquestion 1

What was the home 

city of this author?

Subquestion 2

(4) Answer Integration

(3) Retrieval-Answering-Rewriting

Who wrote the novel about 

a male roe deer's life?

Sentence & entity retrieval Sentence & entity retrieval

Felix Salten.

Subquestion answering

Vienna.

Subquestion answering

Vienna.

What was the home 

city of Felix Salten?

Sub-question rewriting

Sentence nodes

N
a
m

ed
en

tity
a
s

ed
g
e

la
b
els

Figure 3: Framework overview of ChainRAG. It first constructs a sentence graph, where the edges between sentence
nodes are labeled by their common named entities. Given a question, it is decomposed into sub-questions. Then, our
iterative process involves retrieval, answering, and rewriting the unclear sub-question by filling in missing entities.
Finally, it integrates all retrieved sentences and answers to produce a comprehensive answer.

This type of edges can helps us reconstruct the
overall structure of text for a wider retrieval.

The sentence graph plays a crucial role in miti-
gating the “lost-in-retrieval” problems. It connects
sentences through shared entities and semantic as-
sociations, organizing the knowledge to ensure that
even when a sub-question lacks clear entities, the
necessary context can still be retrieved.

3.2 Sentence and Entity Retrieval

Before the retrieval process begins, we first uti-
lize LLM to decompose multi-hop questions into
sub-questions. The detailed prompt used for de-
composing multi-hop questions can be found in
Appendix D. Our retrieval method deals with the
sub-questions in turn, which is a progressive re-
trieval process and constructs a complete inference
chain through entity expansion. It involves the fol-
lowing two retrieval steps for each sub-question.

Seed sentence retrieval. Given a sub-question,
we first calculate its embedding similarity (e.g.,
inner product) with all sentences in the sentence
graph. This can be done quickly by matrix mul-
tiplication. We then filter out the sentences with
low similarity to narrow down the retrieval candi-
dates. Next, we use a cross-encoder to assess the
relevance of each candidate sentence within the
context of the sub-question, and finally, we select
the top-k sentences as seed sentences.

Retrieval expansion on sentence graph. Start-
ing from seed sentences, we iteratively explore
their neighbors in the sentence graph. After each
expansion, we use a LLM to assess whether the

gathered sentences contain sufficient information
to answer the question. If validated, the expansion
is terminated. Otherwise, we continue to explore
higher-order neighbors. To ensure both efficiency
and quality of the retrieval, we implement multiple
optimization mechanisms. To reduce the number of
LLM calls, the initial neighbor exploration fetches
all 1-hop neighbors of the seed sentences. Addi-
tionally, to prevent the context from becoming too
lengthy, we introduce a length limit. Once the total
length of the retrieved sentences reaches this limit,
the retrieval process is stopped. The LLM is finally
promoted to answer the sub-question based on the
retrieved sentences.

3.3 Sub-question Rewriting
As we have mentioned and validated in Sect. 1 that
the retrieval performance degrades if sub-questions
lack necessary named entities. To resolve this prob-
lem, we propose to rewrite sub-questions. First,
we determine if a sub-question needs rewriting by
checking for the presence of pronouns (such as
“this”, “it”, “they”, etc.). If these pronouns exist,
we feed both the current sub-question and the pre-
vious sub-questions along with their answers into
an LLM to rewrite the current sub-question. When
the previous sub-questions were not answered, we
cannot rewrite the sub-questions. In this case, we
summarize their corresponding context and incor-
porate the summary into the context of the current
sub-question. Our sub-question rewriting method
serves two purposes. First, it mitigates the degra-
dation in retrieval performance caused by missing
entities. Second, since the previous sub-question
is closely related to the current one, preserving its
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key information supports the reasoning process of
the current sub-question.

3.4 Answer and Context Integration
After obtaining the answers to all sub-questions, we
have two different integration methods to generate
a comprehensive answer to the original question:
sub-answer integration and sub-context integration.

Sub-answer integration. This method generates
the answer to the original question by utilizing each
sub-question and its answer. It relies solely on the
information from the sub-questions’ answers, with-
out external interference. Since the decomposition
of sub-questions can be regarded as a reasoning
process, this method enables the LLM to infer the
original question’s answer. Moreover, this method
ensures that the LLM processes the relevant text
of only one sub-question at a time, avoiding per-
formance degradation caused by the LLM’s weak
long-context processing capabilities when process-
ing multiple sub-questions simultaneously. Con-
sequently, this method does not require the LLM
strong long-context processing capabilities, as the
final synthesis relies exclusively on the concise
information from the sub-questions and their gen-
erated answers, without utilizing any retrieved rele-
vant text. However, if a sub-question is answered
incorrectly or left unanswered, it can significantly
impact the final result. To reduce such impact, we
consider the following method that integrates all
retrieved sentences to enrich the context.

Sub-context integration. We remove duplicate
contexts from all retrieved sentences (without using
sub-questions) and use a cross-encoder to rerank
the sentences for generating the final answer. This
method is similar to traditional RAG, which uses
only relevant text to generate the answer. It helps
mitigate the impact of errors in sub-question de-
composition or answers by focusing on the re-
trieved sentences, rather than relying solely on
the sub-question answers. However, this method
explicitly requires the LLM to have strong long-
context processing capabilities to effectively pro-
cess the merged and potentially extensive context.
Compared to answering each sub-question individ-
ually, the merged context may contain more noisy
information and negatively impact the final answer.

4 Experiments

In this section, we report the experimental results
and analysis to evaluate the effectiveness and effi-

ciency of our method for multi-hop QA. Our source
code is available at GitHub.1

4.1 Setup

Dataset and metrics. We use the following three
challenging multi-hop QA datasets in our experi-
ments: MuSiQue (Trivedi et al., 2022), 2Wiki (Ho
et al., 2020), and HotpotQA (Yang et al., 2018).
Instead of using raw data, we follow the same data
setting as in LongBench (Bai et al., 2024). Detailed
statistics of the used datasets are provided in the
Appendix A. Following convention, we assess the
multi-hop QA performance using the F1-score and
exact match (EM) score.

Baselines. To ensure the fairness of our evalu-
ation, we standardize the embedding model, i.e.,
OpenAI’s text-embedding-small-v3,2 and the cross-
encoder reranker, i.e., BGE-Reranker (Chen et al.,
2024), across both our method and the baselines.
We conduct experiments with three popular LLMs
as the answer generator: GPT4o-mini,3 Qwen2.5-
72B (Yang et al., 2024) and GLM-4-Plus (Zeng
et al., 2024). For comparison, we select NaiveRAG
and three advanced train-free RAG methods as
baselines: Iter-RetGen (Shao et al., 2023), Lon-
gRAG (Jiang et al., 2024), and a combination
of HippoRAG (Gutiérrez et al., 2024) with IR-
CoT (Trivedi et al., 2023). Except for the main
experiments and the efficiency analysis, all subse-
quent experiments are conducted exclusively on
GPT4o-mini, as similar results have been observed
with other LLMs. Our method has two variants,
namely ChainRAG (AnsInt) and ChainRAG (Cx-
tInt), which use the sub-answer integration and
sub-context integration strategies, respectively.

Implementation details. In all experiments, we
set the word limit to 3000. For sentence graph
construction, α is set to 60 for the entity filter and
m is set to 10 for selecting the most similar sen-
tences. During the seed sentence retrieval phase,
the number of candidate sentences selected in the
first round is 100, with the top-k sentences chosen
as seed sentences, where k = 3 in the main experi-
ment. Further implementation details are provided
in Appendix B.

1https://github.com/nju-websoft/ChainRAG
2https://platform.openai.com/docs/guides/

embeddings
3https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/
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LLMs Methods MuSiQue 2Wiki HotpotQA

F1 EM F1 EM F1 EM

GPT4o-mini

NaiveRAG 29.82 19.00 50.61 42.50 56.92 42.00
NaiveRAG w/ QD 37.49 26.00 56.88 38.50 60.00 43.50

ITER-RETGEN Iter3 (Shao et al., 2023) 38.41 33.00 58.43 50.50 57.77 42.00
LongRAG (Jiang et al., 2024) 44.88 32.00 62.39 49.00 64.74 51.00
HippoRAG w/ IRCoT (Gutiérrez et al., 2024) 46.50 28.50 62.38 48.00 56.12 40.00

Ours (AnsInt) 50.54 37.00 62.55 52.00 60.73 46.00
Ours (CxtInt) 47.87 38.50 56.54 50.50 64.59 50.00

Qwen2.5-72B

NaiveRAG 27.08 16.50 39.82 28.50 50.25 34.50
NaiveRAG w/ QD 33.91 20.50 53.84 37.00 52.14 34.50

ITER-RETGEN Iter3 (Shao et al., 2023) 40.15 31.50 53.59 41.50 58.41 45.00
LongRAG (Jiang et al., 2024) 40.89 29.50 62.00 51.50 60.29 46.50
HippoRAG w/ IRCoT (Gutiérrez et al., 2024) 44.64 31.50 64.19 52.00 55.21 41.00

Ours (AnsInt) 47.75 37.00 64.23 54.00 60.55 46.00
Ours (CxtInt) 49.37 39.00 65.85 55.50 64.54 52.00

GLM-4-Plus

NaiveRAG 37.86 28.00 57.78 45.50 58.42 44.00
NaiveRAG w/ QD 30.33 22.50 60.93 48.00 59.05 44.00

ITER-RETGEN Iter3 (Shao et al., 2023) 52.57 44.50 66.56 56.50 61.03 48.50
LongRAG (Jiang et al., 2024) 40.44 29.00 62.27 54.50 61.60 48.50
HippoRAG w/ IRCoT (Gutiérrez et al., 2024) 44.70 29.50 67.55 55.50 63.91 48.00

Ours (AnsInt) 51.66 40.00 67.35 58.00 55.40 42.00
Ours (CxtInt) 49.40 38.00 70.58 61.50 64.22 50.00

Table 1: Performance (%) on MuSiQue, 2Wiki, and HotpotQA. QD refers to question decomposition. AnsInt refers
to generating answers using only sub-questions and their corresponding answers, while CxtInt refers to generating
answers using only the contexts retrieved by sub-questions.

4.2 Main Results

We hereby provide a detailed comparison and anal-
ysis of the overall results shown in Table 1. In
general, our method has performed better com-
pared to baselines. Compared to NaiveRAG, Chain-
RAG achieves significant improvements across all
datasets, especially on MuSiQue, where the aver-
age F1 score has improved by approximately 60%.
When compared to three advanced RAG methods,
ChainRAG consistently outperforms them, achiev-
ing the highest average performance across all three
datasets. This is most pronounced when using
Qwen2.5-72B as the LLM, where the average F1
score of CxtInt is 59.92. This surpasses the second-
best method, HippoRAG w/ IRCoT, which has an
average F1 score of 54.68, representing a 9.6%
improvement. This advantage demonstrates the ef-
fectiveness of our proposed progressive retrieval
and query entity completion strategy.

ChainRAG has also demonstrated stable perfor-
mance across all three LLMs, reflecting its robust-
ness. We further observe some differences in the
results of each LLM. For example, when using
GPT4o-mini, our AnsInt variant outperformed Cx-

tInt, while the opposite is true for Qwen2.5-72B
and GLM-4-Plus. This difference may primarily
stem from the varying capabilities of these LLMs.
GPT4o-mini exhibits strong reasoning abilities,
while the other two LLMs are better at process-
ing long-context. Our two answering strategies can
each leverage these two advantages separately.

We also find that adding question decomposi-
tion to NaiveRAG sometimes brings only limited
improvements. For example, on the HotpotQA
dataset, the average F1 score increases by just 1.87,
while the average EM score improves by only 0.5.
In addition, when using GLM-4-Plus as the LLM,
the performance of NaiveRAG on the MuSiQue
dataset decreases after incorporating question de-
composition. These cases also suggest the pres-
ence of the “lost-in-retrieval” problems. In con-
trast, ChainRAG consistently benefits from ques-
tion decomposition with sub-question rewriting,
showing its robustness in resolving the “lost-in-
retrieval” problems.

4.3 Ablation Study
To validate the effectiveness of each technical
module in our method, we carry out an ablation

22367



35

45

55

65

MuSiQue 2Wiki HotpotQA

F
1

ChainRAG (AnsInt) w/o Rewriting w/o EC edge

w/o SS edge w/o SA edge w/o graph

Figure 4: F1 (%) comparison of ablation study.

25

35

45

55

MuSiQue 2Wiki HotpotQA

E
M

ChainRAG (AnsInt) w/o Rewriting w/o EC edge

w/o SS edge w/o SA edge w/o graph
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study. We explore the effects of removing the sub-
question rewriting method, ablating edges in the
sentence graph by type, and completely removing
the graph (i.e., segmenting texts into chunks like
NaiveRAG). Figures 4 and 5 show the F1 and EM
scores using the AnsInt strategy, respectively. The
complete results can be found in Appendix C. We
observe similar results when using CxtInt.

Sub-question rewriting is one of the core compo-
nents of our method. As shown in the experimental
results, removing this component leads to a signifi-
cant decline in QA performance. On the MuSiQue
dataset, both F1 and EM scores drop by approx-
imately 30%. These results further confirm the
existence of the “lost-in-retrieval” problems.

Ablating different edge types in our sentence
graph leads to performance declines, demonstrat-
ing the rationality of our edge design for graph
construction. Moreover, the impact of ablating spe-
cific edge types varies across datasets. For example,
removing SA edges has the greatest impact on the
HotpotQA dataset, while the situation is reversed
on the MuSiQue dataset. This indicates that dif-
ferent datasets have distinct dependencies on edge
types. Future work can dynamically adjust edge
construction strategies for each dataset to further
improve performance.

To evaluate the effectiveness of our sentence
graph, we remove the entire graph and adopt a
method similar to NaiveRAG, where we index the
texts in chunks. The results show a decline in both
F1 and EM scores, with the decrease in EM being

MuSiQue 2Wiki HotpotQA

Sub-question 1 55.52 57.50 54.67
Sub-question 2 40.91 49.87 49.17
Modified sub-question 2 58.81 54.32 61.83

Table 2: Recall@2 (%) results of text retrieval for sub-
questions. The modified sub-question 2 is rewritten by
our entity completion method.
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Figure 6: Comparison of GPT4o-mini call times.

notably more pronounced. We speculate that this is
because finer-grained textual information can bet-
ter guide LLM to generate more accurate answers.
This outcome further confirms the rationality and
effectiveness of our sentence graph.

4.4 Retrieval Performance Analysis

To validate whether our method effectively ad-
dresses the “lost-in-retrieval” problems, we con-
duct additional retrieval experiments. Since our
method divides the context into sentences, which
differs from NaiveRAG in granularity, we stan-
dardize the chunk size in ChainRAG to match
NaiveRAG for fair comparison. From Table 2,
we observe that after rewriting, the Recall@2 of
sub-question 2 shows a marked improvement. No-
tably, on the MuSiQue and HotpotQA datasets,
the Recall@2 of the rewritten sub-question 2 even
exceeds that of sub-question 1, as the rewriting
process uses information from sub-question 1 to
retrieve more relevant content.

40

45

50

55

60

65

70

1 2 3 4 5

F
1

k

MuSiQue 2Wiki HotpotQA

(a) AnsInt

1 2 3 4 5

k

(b) CxtInt

Figure 7: F1 (%) results w.r.t. different k values.
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Question Gold facts Sub-question 1 Sub-question 2 Final answer
N

ai
ve

R
A

G
w

/Q
D

In what region
of the country
of S-Fone is
The place of
birth of John
Phan located?

⇒ John Phan born
October 10, 1974, in
Da Nang, Vietnam.
⇒ South Central
Coast (sometimes
called South Central
Region) consists
of the independent
municipality of Da
Nang.

Question: What is
the place of birth of
John Phan?
Context: John Phan
born October 10,
1974, in Da Nang,
Vietnam.
Answer: Da Nang,
Vietnam.

Question: In which region of
S-Fone is this place located?
context: S-Fone was a mobile
communication operator in
Vietnam that used the CDMA
technology. Founded on 1
July 2003 in Ho Chi Minh
City, Vietnam.
Answer: Ho Chi Minh City,
Vietnam

Ho Chi Minh
City, Vietnam.

C
ha

in
R

A
G

In what region
of the country
of S-Fone is
The place of
birth of John
Phan located?

⇒ John Phan born
October 10, 1974, in
Da Nang, Vietnam.
⇒ South Central
Coast (sometimes
called South Central
Region) consists
of the independent
municipality of Da
Nang.

Question: What is
the place of birth of
John Phan?
Context: John Phan
born October 10,
1974, in Da Nang,
Vietnam.
Answer: Da Nang,
Vietnam.

Question: In which region of
S-Fone is Da Nang, Vietnam
located?
Context: South Central Coast
(sometimes called South Cen-
tral Region) consists of the
independent municipality of
Da Nang and seven other
provinces.
Answer: South Central Coast

South Central
Coast.

Table 3: Examples of the RAG process of NaiveRAG w/ QD and our ChainRAG from the MuSiQue dataset. Blue
text represents correct and relevant information or answers, while red text indicates incorrect information.

4.5 Efficiency Comparison

We measure the efficiency of each method by count-
ing the number of LLM calls. Figure 6 compares
the average number of calls of different methods
across three datasets. HippoRAG, which constructs
knowledge graphs based on LLM, requires several
times more calls than other methods and is signifi-
cantly influenced by the dataset. This is especially
true for datasets with longer context lengths, where
the number of calls increases further. Compared to
LongRAG, ChainRAG shows a notable improve-
ment in efficiency across all datasets, with an av-
erage reduction of about 17.3% in the number of
calls. Although ITER-RETGEN is the most efficient
method (second only to NaiveRAG), considering
the overall performance of the three models across
the three datasets, ChainRAG achieves a better bal-
ance between efficiency and performance.

4.6 Top-k Study

The selection of k sentences as seed sentences in
the retrieval step is crucial, as it significantly influ-
ences the subsequent retrieval process. Given the
fixed word limit, a smaller k value tends to retrieve
more sentences from higher-order neighbors of the
seed sentences, while a larger k value retrieves
more sentences from lower-order neighbors. To
determine the optimal value of k, we conduct com-
parative experiments. As shown in Figure 7, except
for CxtInt’s performance on the 2Wiki dataset, all
other cases achieve the best results when k = 3.

Considering the overall performance, we choose
k = 3 as the default value.

4.7 Case Study
We present an example question from MuSiQue
and compare the RAG process of NaiveRAG w/
QD and ChainRAG in Table 3. As NaiveRAG
w/ QD does not rewrite the sub-question, its sec-
ond sub-question lacks a clear entity, leading to
retrieval errors and causing the “lost-in-retrieval”
problems. This ultimately results in an incorrect
answer. In the example, the context comes from the
first chunk retrieved, which is also the source of the
final answer. For ChainRAG, by using the answer
from the first sub-question to complete the entity in
the second sub-question, the retrieved information
becomes more accurate, on which the LLM then
provides the correct answer.

4.8 Further Analysis
Our method consists of several key steps, including
entity recognition, question decomposition, and
entity recovery. To assess their impact, we conduct
additional experiments using Qwen2.5-72B.

4.8.1 Impact of Entity Recognition
Evaluating entity recognition performance on QA
datasets is challenging since there is no established
gold standard. To evaluate the robustness of Chain-
RAG in entity recognition, we integrate different
entity recognition methods and compare their im-
pact on the final QA performance. Specifically,
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Method spaCy Qwen2.5-72B

Ours (AnsInt) 47.75 49.21
Ours (CxtInt) 49.37 50.61

Table 4: F1 scores on the MuSiQue dataset using differ-
ent entity recognition methods with Qwen2.5-72B.

we use Qwen2.5-72B for entity recognition and
compare the QA F1 scores on MuSiQue against
those obtained using spaCy. The results are pre-
sented in Table 4. We can see that the performance
gains achieved with Qwen2.5-72B are modest. Our
method is robust in entity extraction. Considering
efficiency and effectiveness trade-offs, spaCy re-
mains a well-balanced choice for entity extraction.

4.8.2 Impact of Question Decomposition and
Entity Recovery

To evaluate question decomposition and entity re-
covery, we manually review the results of Qwen2.5-
72B on the test examples (600 questions in total)
of three datasets. On average, 89.3% of questions
are successfully decomposed into reasonable sub-
questions. Decomposition errors typically arise
from questions containing lengthy modifiers or
complex phrasing. In contrast, the accuracy of en-
tity recovery is slightly lower, with an average score
of 79.3%. This discrepancy can be attributed to the
inherent difficulty of the entity recovery task, which
requires LLMs not only to identify the demonstra-
tive pronoun to be replaced but also to integrate the
answer from the preceding sub-question to perform
the replacement. Furthermore, to analyze the effect
of question decomposition (QD) and entity recov-
ery (ER) on the final QA performance, we divide
the test examples into the following four groups:

• Incorrect QD: The test examples that have
incorrect question decomposition.

• Incorrect ER: The test examples that have
correct question decomposition but incorrect
entity recovery results.

• Others: The remaining test examples that
have correct decomposition and entity recov-
ery, or the examples do not require entity re-
covery (e.g., parallel multi-hop questions).

• Total: The total test examples.

We calculate the F1 scores for each group using
the sub-context integration method with Qwen2.5-
72B. Despite incorrect question decomposition, the

MuSiQue 2Wiki HotpotQA

Incorrect QD 40.79 63.19 62.28
Incorrect ER 39.75 57.58 56.69
Others 54.30 67.12 65.83

Total 49.37 65.85 64.54

Table 5: F1 scores of different groups ChainRAG (Cx-
tInt) with Qwen2.5-72B.

sub-context integration method demonstrates ro-
bustness, achieving an average F1 score of 55.43 by
leveraging all retrieved information. This is often
because one sub-question in an incorrect decompo-
sition still resembles the original question, helping
retrieval. However, incorrect entity recovery has a
more significant negative impact, leading to “lost-
in-retrieval” problems and lower performance com-
pared to the “Others” group, which is unaffected by
such problems. Overall, entity recovery errors are
more detrimental to performance than question de-
composition errors, underscoring the importance of
addressing “lost-in-retrieval” problems. However,
despite these problems, our method consistently
outperforms the baselines, demonstrating its over-
all effectiveness and robustness.

5 Conclusion and Future Work

In this paper, we investigate the “lost-in-retrieval”
problems of RAG that occurs during multi-hop
QA. We propose a progressive retrieval frame-
work involving sentence graph construction, ques-
tion decomposition, retrieval, and sub-question
rewriting, which effectively enhances the retrieval
performance, especially for sub-questions lack-
ing clear entities. Our experiments and analysis
on three challenging datasets—MuSiQue, 2Wiki,
and HotpotQA—demonstrate that our method con-
sistently outperforms baselines. Additionally, it
demonstrates robustness and efficiency across dif-
ferent LLMs, showcasing its adaptability and po-
tential for broader applications.

For future work,we plan to optimize efficiency
by exploring lightweight graph traversal and adap-
tive termination strategies, reducing LLM calls and
resource consumption. We also plan to enhance dy-
namic adaptability by developing dataset-specific
edge construction policies to better align with di-
verse text structures.
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Limitations

While our proposed ChainRAG framework has
demonstrated significant improvements in resolv-
ing the “lost-in-retrieval” problems, several limi-
tations should be acknowledged. First, although
ChainRAG outperforms LongRAG and HippoRAG
in efficiency, our iterative process of retrieval, sub-
question rewriting increases the computational re-
sources and time required compared to NaiveRAG.
This may pose challenges for deployment in
resource-constrained environments. Second, al-
though robust across existing datasets, adapting
ChainRAG to highly specialized domains requires
further validation and potential adjustments to in-
dexing strategies. Third, the accuracy of entity
recognition and completion is critical for the suc-
cess of ChainRAG. Errors in entity recognition can
propagate through the retrieval and reasoning pro-
cess, affecting the overall performance.
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A Dataset Statistics

Dataset statistics are presented in Table 6. To meet
the requirements of LongRAG and HippoRAG,
we have segmented the context within the dataset.
Since these contexts are originally composed of
multiple integrated paragraphs, the original seg-
mentation structure of the data can be accurately
restored by regular expression matching.

Datasets MuSiQue 2Wiki HotpotQA

No. of Samples 200 200 200
No. of p 2,212 1,986 1,722
Avg. Length 11,214 4,887 9,151

Table 6: Statistics of the datasets used in our work. “Avg.
Length” denotes the average word count.

B Implementation Details

We strictly follow the process outlined in the Iter-
RetGen (Shao et al., 2023) paper and the prompts
provided in its appendix for our reproduction. Ad-
ditionally, we refer to the results in the paper and
the EfficientRAG (Zhuang et al., 2024), selecting
the third iteration results as the baseline, as the
third iteration often produces results close to the
optimal and exhibits a clear edge effect. For Lon-
gRAG and HippoRAG, we use their open-source
code, follow the default settings, and conduct test-
ing after switching to the unified model. Regarding
the chunking process, LongRAG follows the de-
fault settings and segments based on word count,
with a chunk size of 200. HippoRAG, on the other
hand, does not apply any chunking.

We utilize the “en_core_web_sm” model from
the spaCy library for entity extraction. This model

Methods MuSiQue 2Wiki HotpotQA

ChainRAG (AnsInt) 50.54 62.55 60.73
w/o Rewriting 38.18 59.69 55.19
w/o EC edge 47.52 58.28 57.99
w/o SS edge 47.40 59.78 58.40
w/o SA edge 48.83 59.87 56.64
w/o Graph 47.97 60.96 58.05

ChainRAG (CxtInt) 47.87 56.54 64.59
w/o Rewriting 36.60 56.36 61.57
w/o EC edge 45.34 55.12 61.73
w/o SS edge 43.39 55.68 60.85
w/o SA edge 47.36 55.08 61.32
w/o Graph 40.18 54.76 60.19

Table 7: F1 results of ablation study.

Methods MuSiQue 2Wiki HotpotQA

ChainRAG (AnsInt) 37.00 52.00 46.00
w/o Rewriting 26.50 51.50 42.00
w/o EC edge 36.00 48.50 45.00
w/o SS edge 35.50 49.50 45.50
w/o SA edge 37.00 50.50 44.00
w/o Graph 35.00 45.00 42.00

ChainRAG (CxtInt) 38.50 50.50 50.00
w/o Rewriting 25.00 47.00 47.00
w/o EC edge 33.00 47.00 47.00
w/o SS edge 34.00 46.00 48.00
w/o SA edge 36.50 46.50 47.00
w/o Graph 27.00 39.50 44.00

Table 8: EM results of ablation study.

is a small-scale model with approximately millions
of parameters, designed for lightweight and effi-
cient natural language processing tasks.

C Detailed Results of Ablation Study

Tables 7 and 8 present the complete results of our
ablation study. After removing certain processes
from ChainRAG, we observe varying degrees of
performance degradation in QA tasks. When the
rewriting phase is removed, the performance on
MuSiQue and HotpotQA drops significantly, while
the performance on 2Wiki dataset sees a minor
decrease. This is mainly because many of the ques-
tions in the 2Wiki dataset, after being decomposed,
result in two parallel sub-questions with no depen-
dency, which avoids the “lost-in-retrieval” prob-
lems. For MuSiQue, removing the SS edges has the
greatest impact on performance, while for 2Wiki,
it is the removal of the EC edges that has the most
significant effect. In HotpotQA, the SA edges have
the largest impact when removed. When we re-
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You are a helpful AI assistant that helps break down questions into minimal necessary sub-questions.

Guidelines:
1. Only break down the question if it requires finding and connecting multiple distinct pieces of information.
2. Each sub-question should target a specific, essential piece of information.
3. Avoid generating redundant or overlapping sub-questions.
4. For questions about impact/significance, focus on:

- What was the thing/event.
- What was its impact/significance.

5. For comparison questions between two items (A vs B):
- First identify the specific attribute being compared for each item.
- Then ask about that attribute for each item separately.
- For complex comparisons, add a final question to compare the findings.

6. Please consider the following logical progression:
- Parallel: Independent sub-questions that contribute to answering the original question. Example: {ex.}.
- Sequential: Sub-questions that build upon each other step-by-step. Example: {ex.}.
- Comparative: Questions that compare attributes between items. Example: {ex.}.

7. Keep the total number of sub-questions minimal (usually 2 at most). Output format should be a JSON
array of sub-questions. For example: {examples of sub-questions}.

Remember:
Each sub-question must be necessary and distinct. Do not create redundant questions. For comparison
questions, focus on gathering the specific information needed for the comparison in the most efficient way.

Figure 8: Prompt for instructing LLMs to decompose the input question into several sub-questions.

move the entire graph and implement the indexing
process according to NaiveRAG, we observe a no-
ticeable decline in performance, with the CxtInt
method being more significantly affected. This
indicates the effectiveness of our method, which
involves building an index using sentences and enti-
ties and performing retrieval on the sentence graph.

D Prompt Example

Figure 8 shows our prompt to guide LLMs in de-
composing complex multi-hop questions into a se-
ries of minimal and necessary sub-questions. The
goal of this decomposition is to ensure that each
sub-question targets a specific and essential piece
of information, thereby facilitating more accurate
and efficient retrieval and reasoning processes. The
ex. here refers to an example of a question decom-
position that follows this logical progression.

E Additional Experiment on Small LLMs

To test the effectiveness of our method on small
LLMs, we select two open-source small models,
Qwen2.5-14B and Qwen2.5-7B, and compare their

MuSiQue 2Wiki HotpotQA

14
B

LongRAG 36.59 54.95 58.90
Hipporag w/ IRCoT 37.09 58.50 54.51
Ours (AnsInt) 44.47 59.71 57.06
Ours (CxtInt) 43.16 63.14 59.43

7B

LongRAG 29.01 49.02 54.71
Hipporag w/ IRCoT 29.30 51.17 53.79
Ours (AnsInt) 30.90 48.25 48.50
Ours (CxtInt) 33.15 52.18 60.03

Table 9: Performance of our ChainRAG using Qwen2.5-
14B and 7B on MuSiQue, 2Wiki, and HotpotQA.

performance against the strongest two baselines
from the main results. The results in Table 9 show
that our method still outperforms the baselines,
showcasing its effectiveness and reliability. These
results also reflect the effectiveness of small LLMs
in decomposition, rewriting, and summarization.

F An Example of Sentence Graph

To help explain our sentence graph more clearly, we
build an example using 15 sentences and present
it in Table 10. SA edges connect directly adja-
cent sentences like (Node1, SA, Node2), (Node2,
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A. Examples of nodes

Node ID Corresponding sentence

Node1 Artificial intelligence has made tremendous progress in recent years.
Node2 Deep learning models can process vast amounts of data and identify patterns.
Node3 These models perform particularly well in image recognition tasks.
Node4 Natural language processing is an important branch of AI.
Node5 NLP enables machines to understand and generate human language.
Node6 This technology has been widely applied in virtual assistants.
Node7 Deep learning algorithms typically require large amounts of data.
Node8 Image recognition can help autonomous vehicles identify road signs.
Node9 Ethical considerations are an important factor in AI development.
Node10 Machine learning models learn from examples rather than explicit programming.
Node11 Neural networks are inspired by the structure of the human brain.
Node12 The development of AI may have significant impacts on the job market.
Node13 Reinforcement learning has enabled AI to master complex games.
Node14 AI systems are increasingly being used in healthcare for diagnosis.
Node15 Privacy concerns arise when AI systems collect and analyze personal data.

B. Examples of edges

Edge type Examples

SA edges (Node1, SA, Node2), (Node2, SA, Node3), (Node3, SA, Node4), (Node4, SA, Node5), . . .

SS edges (Node1, SS, Node13), (Node1, SS, Node12), (Node4, SS, Node1), (Node6, SS, Node1), (Node9, SS, Node15), . . .

EC edges (Node2, EC, Node3), (Node2, EC, Node10), (Node3, EC, Node10), (Node2, EC, Node7), . . .

Table 10: An example of our sentence graph.

Original question Sub-question 1 Rewriting Sub-question 2

Original question: What
record label is the per-
former who released All
Your Faded Things on?
ChainRAG answer:
Blue Note.
Golden answer: Kill
Rock Stars.

First sub-question: Who is the per-
former of the song All Your Faded
Things?
Retrieved context: Personnel:
Anna Oxygen - vocals, piano, com-
poser, art design . . .
LLM answer: Unable to answer
the question.
Correct answer: Anna Oxygen.

Rewriting: Can-
not rewrite, as
the previous sub-
question answer
is “unable to an-
swer”.

Second sub-question: What record
label is associated with this per-
former?
Retrieved context: Jack Wilson
featuring performances recorded
and released on the Blue Note la-
bel. . .
LLM answer: Blue Note.
Correct answer: Kill Rock Stars.

Table 11: A failure case study.

SA, Node3). For SS edges, such as (Node1, SS,
Node13) and (Node1, SS, Node12), these connec-
tions indicate that Node13 and Node12 are the
two sentences most semantically similar to Node1
within this graph. Other SS edges like (Node4, SS,
Node1) and (Node6, SS, Node1) further illustrate
these similarity-based connections. EC edges illus-
trate how sentences sharing key entities are linked.
For instance, Node2, Node3, and Node10 are inter-
connected, forming edges like (Node2, EC, Node3),
(Node2, EC, Node10), and (Node3, EC, Node10),
because they all share the key entity “models”. Sim-
ilarly, an EC edge exists between Node2 and Node7
since they both contain the key entity “data”.

G Failure Case Analysis

In this analysis, we provide a real error example
from our test results to gain deeper insights into po-

tential deficiencies that may constrain our method.
From this example detailed in Table 11, we can ob-
serve several key issues. For the first sub-question,
although the retrieved context contained the cor-
rect answer (“Anna Oxygen”), the LLM failed to
provide it and instead responded with “Unable to
answer”. We attribute this to potential limitations
in the LLM’s ability to process long contexts effec-
tively. This failure meant that the required entity for
the second sub-question was unavailable, leading to
a “lost-in-retrieval” problem. Consequently, the re-
trieval process for the second sub-question failed to
obtain relevant contextual information about “Anna
Oxygen”. This chain of errors ultimately led to the
incorrect answer (“Blue Note”).
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