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Abstract

The multilingual neural machine translation
(MNMT) aims for arbitrary translations across
multiple languages. Although MNMT-specific
models trained on parallel data offer low costs
in training and deployment, their performance
consistently lags behind that of large language
models (LLMs). In this work, we introduce reg-
istering, a novel method that enables a small
MNMT-specific model to compete with LLMs.
Specifically, we insert a set of artificial tokens
specifying the target language, called registers,
into the input sequence between the source
and target tokens. By modifying the attention
mask, the target token generation only pays
attention to the activation of registers, repre-
senting the source tokens in the target language
space. Experiments on EC-40, a large-scale
benchmark, show that our method advances
the state-of-the-art of MNMT. We further pre-
train two models, namely MITRE (multilingual
translation with registers), by 9.3 billion sen-
tence pairs across 24 languages collected from
public corpora. One of them, MITRE-913M,
outperforms NLLB-3.3B, achieves compara-
ble performance with commercial LLMs, and
shows strong adaptability in fine-tuning. Fi-
nally, we open-source our models to facilitate
further research and development in MNMT:
https://github.com/zhiqu22/mitre.

1 Introduction

Multilingual neural machine translation (MNMT)
aims to enable arbitrary translations across multiple
languages. Traditionally, training models specific
to MNMT using parallel data was highly appeal-
ing, not only because such MNMT-specific models
maintain a minimal number of parameters (Firat
et al., 2016; Fan et al., 2021; NLLB Team, 2022),

“This work was done during the first author’s internship
at Advanced Speech Translation Research and Development
Promotion Center, National Institute of Information and Com-
munications Technology, Kyoto, Japan.
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Figure 1: [llustration of the attention view among differ-
ent architectures. "Token" refers to the representation
corresponding to the token.

but also due to their potential for zero-shot transla-
tion, i.e., translating language pairs unseen during
training, which helps address data scarcity in cer-
tain translation directions (Johnson et al., 2017,
Fan et al., 2021; Zhang et al., 2020). However, the
current mainstream solution for MNMT relies on
large language models (LLMs), as the performance
of MNMT-specific models has lagged behind that
of LLMs (Zhu et al., 2024; Xu et al., 2024). Recent
analyses (Chen et al., 2023; Tan and Monz, 2023)
identify the off-target problem, i.e., translations
fail to reach the intended target language, as a key
factor causing the under-performance of MNMT-
specific models. Moreover, Rios et al. (2020); Chen
et al. (2023) show that constraining the target to-
ken generation to the target language space can
alleviate the off-target problem.

In this work, we present registering, a simple
yet effective method designed for MNMT-specific
models based on the decoder-only architecture
(Dec-only) without introducing additional parame-
ters. Specifically, we insert a set of artificial tokens
between the source and target tokens, called regis-
ters, which indicate only the target language with-
out any semantics. The registers are designed to
have the same length as the source tokens, because
each register is expected to capture the semantics
of its positionally-aligned source token and then
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represent it in the target language space. As illus-
trated in Figure 1, by modifying the attention mask,
the generation of target tokens no longer follows
the attention mechanism of encoder-decoder (Enc-
dec) or Dec-only architectures. Instead, it relies
solely on the registers located in the representa-
tional space of the intended target language.

We conduct two sets of experiments, evaluated
with four automatic metrics: spBLEU (NLLB
Team, 2022), chrF++ (Popovié, 2015, 2017),
COMET (Rei et al., 2020), and off-target ratio
(Zhang et al., 2020). First, we experiment with EC-
40 (Tan and Monz, 2023), a large-scale benchmark
designed to assess zero-shot translation capability.
Experimental results show that, compared to strong
baselines, our method improves spBLEU scores by
up to 71% on average across 1,640 directions with
fewer parameters and drastically reduces the off-
target ratio from 26.69% to 3.65%. Second, we col-
lect 9.3 billion sentence pairs across 24 languages
by sampling from the NLLB open dataset (NLLB
Team, 2022) with the bridge language strategy
(Fan et al., 2021). We then pre-train two models,
MITRE-466M and MITRE-913M (multilingual
translation with registers). One of them, MITRE-
913M, not only outperforms NLLB-3.3B (NLLB
Team, 2022) and GPT-3.5 Turbo (Brown et al.,
2020) but also achieves competitive performance
with GPT-40 mini (OpenAl, 2024). Also, we fine-
tune the pre-trained models with full parameters
and LoRA (Hu et al., 2022) in three distinct sce-
narios, demonstrating the superior adaptability of
MITRE in fine-tuning. Finally, by analyzing the
attention mechanisms and the representation distri-
bution in translation instances at the token level, we
confirm that the register mirrors the corresponding
source token in the target language space.

2 Related Work

Johnson et al. (2017) proposed adding a language
tag as a translation instruction at the beginning
of the input sequence, marking the beginning of
MNMT-specific models. Recent analyses (Chen
et al., 2023; Tan and Monz, 2023) show that
addressing the off-target problem is key to im-
proving zero-shot translation. Early works (Rios
et al., 2020; Qu and Watanabe, 2022) tried to use
language-specific dictionaries or components to
isolate generation across languages, but this was
costly and hindered knowledge sharing (Zhang
et al., 2021). As a compromise, Chen et al. (2023)

proposed adding language-specific subsets to a
shared dictionary to mitigate the off-target problem.
Beyond the explicit addition of language-specific
parameters, optimizing internal representations im-
plicitly improves zero-shot translation. Specifically,
aligning semantic information across languages
(Pan et al., 2021; Bu et al., 2024) and strength-
ening the translation instruction toward the target
language (Stap et al., 2023; Qu et al., 2024a; Sun
et al., 2024) help mitigate the off-target problem.
Our proposed method is a combination of explicit
and implicit strategies, as it separates generation-
related representations by language.

In methodology, the translation instruction used
in MNMT-specific models (Johnson et al., 2017) is
similar to the artificial tokens in prefix-tuning (Li
and Liang, 2021). In fact, we are methodologically
inspired by gisting, a variation of prefix-tuning pro-
posed by Mu et al. (2023). Specifically, they mod-
ified the attention mask to compress information
into a set of artificial tokens, used in generation to
eliminate the need for the original sequence. How-
ever, the difference in concept is that our proposed
method, registering, aims to transfer each source
token’s semantics into the positionally-aligned reg-
ister, which can be regarded as a representation-
level container pointing to the target language. In
other words, registering is conceptually similar to
chain-of-thought (Wei et al., 2022), where the pro-
cess represents "rethinking" the source tokens from
the perspective of the target language.

Additionally, given that LL.Ms already exhibit
strong MNMT capabilities (Zhu et al., 2024), fine-
tuning LLMs into MNMT-specific models has be-
come a popular direction of exploration. However,
the results in this direction are still limited, such as
performance still falling behind commercial LLMs
(Yang et al., 2023) and fewer supported languages,
e.g., 5 in Xu et al. (2024) and 10 in Alves et al.
(2024). In this work, we demonstrate the potential
of directly training an MNMT-specific model with
parallel data only, aiming to drive further discus-
sion on MNMT.

3 Multilingual Translation With Registers

3.1 Multilingual Neural Machine Translation

Given a multilingual corpus C spanning multiple
translation directions, each instance in C is defined
as (x,y), where x consists of a set of source to-
kens * = zi,...,2zs and a set of target tokens
Yy = y1,...,Ys. Also, we introduce a set of lan-
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Figure 2: Illustration of registering. The example depicts a translation from English to German. The illustrated
model stacks N layers, each following the Transformer decoder layer structure (Vaswani et al., 2017) with pre-
normalization (Xiong et al., 2020). Notably, each circle represents a token and its representation in the generation.

guage tags L = {ly,...,lx}, which are artificial
tokens, each corresponding to one of the K lan-
guages in C. Following Johnson et al. (2017); Wu
et al. (2021), we add a tag indicating the language
of y at the beginning of x as the translation instruc-
tion for multilingual neural machine translation
(MNMT), denoted by I,. Consequently, the in-
put fed into the MNMT-specific model becomes
' =ly,x1,...,z;. Formally, we train the model
over all instances of C by optimizing the following
cross entropy loss:

J
L=~ Y > logply; @'y, (1)

x’' yeC j=1

where p(y; | @',y_;) represents the probability
for generating y; by MNMT-specific model. The
current state-of-the-art models (Fan et al., 2021;
NLLB Team, 2022) utilize the encoder-decoder
architecture (Enc-dec), where the generation of y;
can be expressed as:

y; = decoder(encoder(x'),y ;). ()

Also, Gao et al. (2022); Zhang et al. (2022) show
that the MNMT-specific model can be implemented
with a decoder-only architecture (Dec-only). In this
setup!, the generation can be described as:

y] = decoder(iB/, y<]) (3)

"We follow Gao et al. (2022) to train a Dec-only MNMT-
specific model with Equation 1 rather than using a language
modeling loss (Radford et al., 2018).

3.2 Registering

Gu et al. (2019); Qu et al. (2024b) suggest that
ly is a key factor causing the off-target problem.
Specifically, although [, is a translation instruction
distinctly representing the target language, genera-
tion cannot strictly depend on [y, due to the dilution
of other source tokens in the attention mechanism.
Therefore, registering is proposed to address this
problem by constraining the generation within the
target language space, where all registers used in
generation have the same function as /.

Given a Dec-only model?, we begin by initializ-
ing a set of artificial tokens corresponding to the tar-
get language, denoted by » = ry, ..., 7741, match-
ing the length of =’. Notably, since l,, has the
same function as we design for 7, = is initialized
by duplicating l,,. We then insert 7 into the input
sequence between &’ and y, thus reformulating the
generation process of Equation 3 as:

yj — decoder(az/, r, y<j) (4)

The key step of registering is modifying the
Transformer attention mask (Vaswani et al., 2017)
to remove source tokens from the view of target
tokens. As shown in Figure 2, we initialize the at-
tention mask based on the prefix Dec-only scheme
(Dong et al., 2019), where the source tokens com-
pute attention for each other bidirectionally, while
the target tokens only compute attention for the

ntuitively, Dec-only is more parameter-efficient than Enc-
dec, as separate components in the latter process source and
target tokens. Therefore, given that registering can address
the off-target problem, Dec-only is the preferable choice. Sup-
porting experiments are provided in Appendix J.
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High Med Low Extra Low

#params Method — — — — — — — — sup.  zero avg. off.(%

vanilla 946 11.05 749 980 503 395 541 259 2906 586 699 4840

Enc-dec 242M +CL 1421 14.19 12.19 14.18 789 755 7.66 6.04 29.03 9.74 10.68 19.08

+LCS 1044 13.67 934 13.17 873 6.07 849 4.10 29.18 835 937 2243

259M +LAVS 9.71 1222 7.74 11.19 571 398 637 299 29.07 640 754 4298
D vanilla.  11.57 1151 948 11.03 6.01 6.06 574 420 2861 730 834 2221

Dec-only  217M +TDO 1333 13.50 1053 1275 7.13 6.88 6.74 4.60 28.84 8.62 9.61 27.18

+Ours 1543 1546 13.88 14.62 8.94 8.99 876 7.94 2890 11.05 11.92 4.65

vanilla 12.66 15.02 10.86 1450 7.40 5.04 7.12 347 3028 8.64 9.69 26.69

Enc-dec 418M +CL 1589 1597 13.67 16.15 836 8.16 832 596 30.54 10.79 11.76 19.99

+LCS 10.79 16.19 10.00 1531 9.99 539 941 3.70 3033 925 1028 2347

430M +LAVS 14.03 16.39 1250 1631 8.61 631 845 3.57 3020 10.03 11.01 21.73
S vanilla 1437 15.07 1225 1502 827 740 7.71 511 2997 984 1082 19.01

Dec-only  368M +TDO 1527 15.79 1283 1556 844 796 8.15 540 3023 1040 1137 23.14

+Ours  16.81 16.98 1525 16.57 10.10 9.88 9.64 8.37 29.88 12.26 13.12 3.65

Table 1: Averaged spBLEU scores of results on EC-40, the last column (off.) lists the off-target ratio averaged from
all directions, the scores of chrF++ and COMET are reported in Tables 10 and 11, as discussed in Appendix H. We
report scores by grouping languages that have the same resource tier. Then, — includes directions translating from
the corresponding group to languages out of this group, and < includes directions translating to the corresponding
group. sup., zero, and avg. abbreviate the average of supervised translations, the average of zero-shot translations,
and the average of all translations, respectively. The best score in each column of a block is in bold.

previous ones. We then adjust the mask to control
token-level representation according to the follow-
ing rules: (1) 7 pays attention to ’; (2) 7 computes
attention bidirectionally within 7; (3) y; pays atten-
tion to r and y ;. With this design, the generation
of y can solely rely on the activation of r, where
the activation of 7; not only functions as a represen-
tational container of the target language but also
carries the semantics of z;. As a result, the gener-
ation is strictly constrained to the target language
space to effectively address the off-target problem.

4 Experiment: On Benchmark

4.1 Dataset and Evaluation

We conduct the first set of experiments on a large
zero-shot translation benchmark, EC-40 (Tan and
Monz, 2023), consisting of 120 million translation
instances spanning 41 languages across five lan-
guage families in the training data®. Except for
English, each family includes eight languages, cat-
egorized into four resource tiers, namely, High,
Medium, Low, and Extra Low, corresponding to
5M, 1M, 100K, and 50K sentence pairs, respec-
tively. For testing the zero-shot translation ca-
pability, all training directions in EC-40 involve
English, either as the source or target language,
resulting in 80 supervised directions. Then, we
evaluate the trained models on all supervised and
zero-shot directions, i.e., 1,640 directions. Unlike

3Details of EC-40 are described in Appendix A.

the original setup in Tan and Monz (2023), we
follow NLLB Team (2022); Cao et al. (2024) to
standardize the validation and testing processes us-
ing Flores*, which is a high-quality parallel dataset
available for over 200 languages. Specifically, we
use the dev and devtest sets of Flores for validation
and testing, containing 997 and 1,012 sentences per
language, respectively.

In the evaluation, we set the beam size to 5 in
inference. We employ four automatic metrics to
evaluate inference results on the test set: (1) sp-
BLEU (NLLB Team, 2022), a variant of BLEU
(Papineni et al., 2002; Post, 2018) used for Flo-
res, unifies tokenization across languages through
an open-source tokenizer’; (2) chrF++ (Popovié,
2015, 2017) assesses character-level overlap and
balances precision with recall; (3) COMET® (Rei
et al., 2020) evaluates quality by comparing gener-
ated translations, reference translations, and source
sentences at a representation level; (4) we report
the off-target ratio (Zhang et al., 2020) as a sup-
plementary metric, because the testing tool’ is not
fully accurate as it relies on recognizing language-
specific tokens. Since COMET and off-target ratio
evaluations lack support for certain languages, we
compute these scores only for supported languages,
as listed in Appendix G.

4https: //github.com/openlanguagedata/flores.

5https ://tinyurl.com/flores20@@sacrebleuspm.

®All COMET scores are computed using Unbabel/wmt22-
comet-da (Rei et al., 2022).

"https://github.com/LlmKira/fast-langdetect.
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4.2 Configuration and Baseline

The modeling follows the manner of Transformer
(Vaswani et al., 2017) with an embedding size of
1,024, an inner size of 4,096, and 16 attention heads.
We divide the models into two configurations based
on model depth. We first stack 12 layers and bal-
ance the number of layers between the encoder and
decoder in Enc-dec, resulting in 242M parameters
for Enc-dec and 217M for Dec-only. Then, mod-
els include 24 layers in the second configuration,
yielding 418M parameters for Enc-dec and 368M
for Dec-only.

Apart from the vanilla Enc-dec and Dec-only, we
also reproduce four related methods mentioned in
Section 2 as baselines: (1) LAVS (Chen et al., 2023)
adds language-specific tokens to the shared dictio-
nary; (2) CL (Pan et al., 2021) aligns sentence-
level semantic representations across languages us-
ing the encoder output; (3) LCS (Sun et al., 2024)
strengthens translation instructions for Enc-dec by
biasing token representations in the encoder with
a target language embedding. This mechanism re-
sembles 7 but uses a different operation; (4) TDO
(Qu et al., 2024b) strengthens translation instruc-
tions for Dec-only by dividing the process of Dec-
only into two phases, specifically, encoding source
tokens with stronger target language features in the
first phase, and then, concatenating the encoded
source tokens and target tokens to feed into Dec-
only models. We list all implementation and train-
ing details of these baselines in Appendix C.

4.3 Result

Experimental results shown in Table 1 exhibit con-
sistent trends across both configurations, where
our method consistently performs the best. The
most notable improvement is in the off-target ratio,
where the metric reduces from 48.40% to 4.65%
in 12-layer models and from 26.69% to 3.65% in
24-layer models. These results indicate that regis-
tering nearly resolves the off-target problem. More-
over, although our method does not achieve the
highest performance in supervised translation, this
is not a drawback, because the higher supervised
performance of vanilla models is attributed to the
overfitting (Gu et al., 2019; Liu et al., 2021). Ad-
ditionally, we observe that registering significantly
outperforms LAVS. Based on our discussion of
LAVS and its underlying methods in Section 2, we
argue that simply adding language-specific param-
eters is not a cost-efficient solution.

Family (Group) Languages Bridge
English* en en

Germanic de, nl, sv, da, af de,nl
Romance fr,es,it,pt,ro fr,es
Slavic ru, cs, pl, bg,uk ru,cs
Malayo-Polynesian  id, ms, jv, tl id, ms
Asian* ja, zh, ko, vi ja, zh

Table 2: Languages in data collection. Languages are
shown by their ISO 639-1 codes. Decoration with *
indicates a language group instead of a language family.

We also observe that the gains of spBLEU scores
from related methods tend to diminish as the num-
ber of model parameters increases. In the 12-layer
models, the highest gain among four related meth-
ods over vanilla models in zero-shot translation
is 3.88. In 24-layer models, the improvement de-
creases to 2.15. However, our method achieves
more consistent improvements with gains of 5.19
and 3.62 in 12-layer and 24-layer models, respec-
tively. From this comparison, we can conclude that
registering demonstrates superior scalability.

S Experiment: Pre-trained Models

5.1 Data Collection with Bridge Languages

A robust and practical MNMT-specific model re-
quires training across multiple directions rather
than English-involved directions only (Zhang et al.,
2020; Eriguchi et al., 2022). However, collecting
data for every possible translation direction is infea-
sible, as the number of directions grows exponen-
tially with the number of supported languages. In
this work, limited by our computational resources,
we adopt the Bridge Language strategy (Fan et al.,
2021) to collect data across 24 languages spanning
more than five language families.

As shown in Table 2, we group languages by fam-
ily except for English. The Germanic, Romance,
and Slavic groups belong to European language
families, and the Malayo-Polynesian differs signifi-
cantly from these European languages. In addition,
we define a special group, Asian, which includes
four languages predominantly spoken in the Asian
continent: ja, zh, ko, and vi. While these lan-
guages belong to different families, they share cer-
tain similarities due to their geographic proximity.
We designate the two most resource-rich languages
in each group as bridge languages and follow these
rules for data collection: (1) en connects with all
languages; (2) bridge languages connect with each
other; (3) bridge languages connect with the re-
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English Germanic Romance Slavic Mal.-Polyn. Asian
Model — — — — — — — — — — — avg.
483M 3036 31.92 2440 2258 2401 2581 2259 2340 1794 1650 1830 1837  22.10
M2M  615M 30.69 3198 2635 2556 2547 2752 2402 2477 20.11 17.49 1931 19.09  23.65
1.2B 3592 3514 2951 2682 2840 2838 2658 2619 18.09 17.57 1548  20.07  24.69
615M 3585 41.04 2813 2741 2746 29.09 2540 2533 2539 2435 2072 1942  26.05
NLLB 1.3B 38.08 4342 3052 30.17 29.63 3142 2784 2825 28.08 26.87 2350 21.06 2851
3.3B 39.80 45.08 3193 3177 30.88 32.62 2929 30.13 2981 28.08 2518 2256  30.01
GPT 35turbo 3827 4237 31.01 31.02 30.09 3273 2856 27.85 2675 2281 23.61 2408 28.66
40 mini 4149 4397 33.09 3192 3140 34.03 30.54 3069 31.01 2720 2634 2753 31.09
MITRE 466M 4020 42,60 3214 3151 3132 3326 2936 2980 2846 26.16 2405 2356  29.77
913M 41.16  44.17 3334 3295 32,53 3423 3074 3126 2990 2722 2593 2558 3115

Table 3: Averaged spBLEU scores comparing MITRE with baselines. The off-target ratio is not reported due to
the near-zero values in these large-scale models. chrF++ and COMET scores are provided in Tables 12 and 13,
as discussed in Appendix I. Mal.-Polyn. abbreviates Malayo-Polynesian, and other abbreviations follow Table 1.
Prompts used for GPT are reported in Appendix F. Additionally, we use green boxes to highlight scores exceeding
NLLB-3.3B and blue boxes for those surpassing GPT-40 mini, where blue box has the priority.

maining languages within their respective groups.
Given that ms cannot meet (2) and (3) due to its low
resource, we collect additional data for ms. Based
on the above strategy, out of 552 possible transla-
tion directions, we collect data from the reproduced
version of the NLLB dataset® (NLLB Team, 2022)
for a total of 194 directions, resulting in 9.3 billion
sentence pairs for our pre-training.’

5.2 Configuration and Baseline

We begin by training a vocabulary of 160,000 to-
kens using SentencePiece (Kudo and Richardson,
2018) on 150 million sentences randomly sampled
from the training set. We then pre-train two mod-
els, named MITRE (multilingual translation with
registers), on 80 V100 GPUs with 466 million and
913 million parameters, respectively. We report
complete details of modeling and training in Ap-
pendix D. The validation and testing process aligns
with Section 4.1.

We compare our model against not only state-
of-the-art MNMT-specific models, but also com-
mercial LLMs, because commercial LLMs present
the upper limit of fine-tuning open-sourced LLMs
into MNMT-specific models (Section 2). First, the
MNMT models include three versions of M2M
(483M1°, 615M, and 1.2B) (Fan et al., 2021) and
three versions of NLLB (615M-distilled, 1.3B, and
3.3B) (NLLB Team, 2022). Also, we include com-
mercial LLMs, GPT-3.5 Turbo!! (Brown et al.,

8https ://opus.nlpl.eu/NLLB/corpus/version/NLLB

° Appendix B reports the data distribution at the language-
family and language level.

"The official name is M2M-418M, however, this model
actually has 483M parameters.

"Version is gpt-3.5-turbo-0125.

2020) and GPT-40 mini'? (OpenAl, 2024). Mean-
while, we include these NLLB models as base-
lines'? in our fine-tuning experiments. Specifically,
we create three scenarios randomly selecting 5, 25,
and 100 translation directions from the possible
directions. Then, we perform fine-tuning with full
parameters and with LoRA (Hu et al., 2022) on
the Flores dev, which contains 997 sentence pairs
per direction. Fine-tuning settings are provided in
Appendix E.

5.3 Main Results

The experimental results comparing MITRE with
baselines are shown in Table 3. We observe that
although NLLB-3.3B surpasses MITRE-913M by
0.91 spBLEU points for translations into English
and by 0.86 points for Malayo-Polynesian lan-
guages, MITRE-913M consistently achieves higher
scores in other translation directions, with an over-
all average gain of 1.14 points. Given that NLLB
even surpasses GPT-4o0 mini by 1.11 points in En-
glish translation, we infer that MITRE, a Dec-only
model with registering, demonstrates better gener-
alization than NLLB, based on Enc-dec. Notably,
scaling parameters of NLLB from 1.3B to 3.3B
yields only a gain of 1.50 points, while MITRE
attains a comparable gain of 1.38 points with an ad-
ditional 450M parameters. Furthermore, the align-
ment of training and validation loss for two MITRE
models (Appendix D) reinforces our conclusion in
Section 4.3 that registering provides superior scal-
ability. Finally, based on all experimental results,

2Version is gpt-40-mini-2024-07-18.
3Due to the limitation of computational resources, NLLB-
3.3B is not included in fine-tuning with full parameters.
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S-direction 25-direction 100-direction

model spB. com. spB. com. spB. com.

pre. 2400 8291 2588 8371 2537 8335
N.-615M  lora 24.68 8323 26.84 8410 2641 84.00

M.-913M  lora 28.14 8559 31.68 86.90 3233 87.15
f.t.  30.09

Table 4: Averaged spBLEU and COMET scores of re-
sults on three fine-tuning scenarios, where the specific
translation directions are listed in Appendix E. N., M.,
pre., and f.t. abbreviate NLLB, MITRE, pre-trained
models, and fine-tuning with full parameters, respec-
tively. The best score is in bold, blue boxes highlights
the largest gain in f.t. relative to pre., and green boxes
highlights the largest gain in lora.

we conclude that MITRE-466M performs competi-
tively with NLLB-3.3B, while MITRE-913M not
only outperforms NLLB-3.3B but also competes
with GPT-40 mini'4, showing the practical poten-
tial of our models.

5.4 Fine-tuning Results

Table 4 shows the fine-tuning results. By compar-
ing NLLB and MITRE, we observe that MITRE
outperforms NLLB in both scenarios: fine-tuning
on a few translation directions and fine-tuning
on multiple translation directions simultaneously.
Specifically, we find that performance gains from
fine-tuning increase with model size, and our
MITRE-913M shows the highest improvement in
both full parameter fine-tuning and LoRA-based
fine-tuning. Additionally, since pre-trained mod-
els of both NLLB and MITRE achieve near-zero
off-target ratios, these gains can be attributed to
increased quality rather than addressing the off-
target problem. This suggests that MITRE has a
higher performance ceiling, likely due to our cost-
effective data collection strategy, which may have
constrained MITRE from reaching its theoretical
maximum. Therefore, due to MITRE’s superior
fine-tuning capability, we reaffirm that its practical
potential is remarkable.

"“Table 13 shows that the COMET scores of MITRE-913M
are lower than GPT-40 mini. Therefore, although spBLEU
and chrF++ scores of MITRE-913M are higher, we only claim
that MITRE-913M performs competitively with GPT-40 mini.
We provide an additional discussion in Appendix .

#layer register mask spB.t chrff com.? off.|
X X 834 2234 5571 2221

12 X 8.19 2296 5572 32.11
11.92 29.02 61.19 4.65

X X 10.82 26.04 59.95 19.01

24 X 891 24.06 57.60 34.22
13.12  30.51 63.54 3.65

Table 5: Averaged scores of ablation study on EC-40.
Here, register means adding registers, and mask means
modifying the attention mask.

0.0 1

-0.2

-0.4 1

spBLEU Scores

0.6
—e— Supervised Translations

Zero-Shot Translations

-0.8

T T T T T T T
0.50 0.75 100 125 150 175 2.00
Length Ratio

Figure 3: The spBLEU score variations on EC-40 where
the x-axis is len(x’) /len(r), where only the length of
is changed and o’ is fixed.

6 Discussion

6.1 Ablation Study

We conduct two ablation studies to measure the
impact of registering. First, we decompose regis-
tering into two steps: (1) adding registers and (2)
modifying the attention mask. As shown in Table 5,
merely adding registers reduces the performance of
vanilla Dec-only models; registering only becomes
effective after modifying the attention mask. This
result aligns with expectations, i.e., the model with-
out constraints on generation defaults to relying
directly on source tokens instead of registers.

In Section 3.2, we state that the lengths of r
and x are matched to ensure a one-to-one corre-
spondence between registers and source tokens.
To validate this design, we vary the length of r
while keep x’ fixed to observe performance trends.
Specifically, a ratio less than 1.0 means that 7 is an
augmenting of x’, a ratio greater than 1.0 means
r is a compressing of x’, and a ratio of 1.0 means
the registering. The trend illustrated in Figure 3
empirically supports that registering is the optimal
mechanism.

To analyze the mechanism differences among
augmenting, registering, and compressing, we ana-
lyze the attention alignment between registers and
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Ratio Mechanism T.1S. T.2S. Dist. Entropy?

0.75 augmenting 1.68 0.72 2.67 5.15
1 registering 1.80 0.78 2.09 5.25
1.25 compressing 2.13 094 153 4.91
1.5 compressing 2.15 094 1.62 4.73

Table 6: Attention mechanism across different ratios,
i.e., len(x)/len(r). T.1 S. and T.2 S. denote average
top-1 and top-2 attention scores; Dist. is the average
positional distance between the top-2 source tokens;
Entropy measures the diversity of source token selection.
Higher entropy indicates more diverse attention; lower
values suggest focus on a narrower set of tokens.

source tokens based on models trained on EC-40.
For each register, we extract the source tokens with
the highest and the second-highest attention scores.
We then measure the entropy of the source token
selection distribution for each sentence, i.e., how
frequently each source token is selected as the top-
1 attention. Results based on 100 random instances
are summarized in Table 6. Among the three mech-
anisms, registering yields the highest entropy, in-
dicating a more diverse use of source tokens, i.e.,
each token is likely to be selected as a top attention
target at least once. Augmenting, by contrast, re-
sults in lower scores and longer distances, suggest-
ing redundancy and diffused attention. Compress-
ing, while producing high scores, focuses on short
contiguous spans and exhibits reduced entropy, im-
plying potential neglect of broader contextual infor-
mation. These findings supplement the empirical
results in Figure 3 and reinforce registering as the
optimal mechanism.

6.2 Mechanism: registering source tokens to
target language spaces

We first reveal the registering mechanism at the
token level from two perspectives: (1) representa-
tions of registers are located in the intended target
language space, and (2) registers carry the seman-
tics of the positionally-aligned source token.

We analyze token representations by randomly
selecting 100 translation instances from three trans-
lation directions and applying t-SNE (van der
Maaten and Hinton, 2008) to reduce them to two
dimensions. Figure 4 shows the representation dis-
tribution in the final layer. First, source tokens, reg-
isters, and target tokens are clearly separated into
distinct spaces, indicating that the model can distin-
guish their different functions. Additionally, source
token representations from different languages clus-
ter, suggesting that the model processes them in a

® Src Toke:p! ﬁ&s

i Registers of css
Tgt Tokens of cs->es

3 Src Tokens of ro->bg A Src Tokens/of nl->bn
Registers of ro->bg Registers of nl->bn
Tgt Tokens of ro->bg Tgt Tokens of nl->bn

-84 -40 2 45 89

-51

Figure 4: 2D distribution of token-level representations
extracted from the output of the 24th layer of a model
trained on EC-40. Each class listed in the legend con-
tains 300 randomly sampled tokens. Appendix L shows
the representational distributions from other layers.

language-agnostic manner. Most importantly, for
registers and target tokens, token representations
for the three translation directions cluster in sepa-
rate spaces. This supports our design, where the
register representation is located in the intended
target language space.

The relationship between source tokens and reg-
isters can be exhibited by analyzing the attention
weights in generation based on a simple and inter-
esting grammar of de. Figure 5 shows two trans-
lation instances translated from de to en, which
have the same semantics. We observe that the tar-
get tokens in both examples are identical, while
their source tokens differ only in the verb form
(highlighted with a purple border). Specifically,
in Figure 5a, the verb is a single token, “6ffne”,
whereas in Figure 5b, it consists of two distant
tokens, “mache ... auf”. Despite this difference,
“0ffne” and “mache ... auf” share the same seman-
tics and can be replaced by each other. Figure 5
presents the attention weights for each token repre-
sentation. In Figure 5a, the highest attention weight
of the verb in the target tokens, i.e., “open”, comes
from r1; in Figure 5b, “open" pays the highest
attention weight to r; and rg. Meanwhile, r; in
Figure 5a aligns positionally with “6ffne”, and in
Figure 5b, r; and r¢ align positionally with “mache
... auf”’. Additionally, we observe that the highest
attention weight of a register always comes from
its positionally-aligned source token'>.

15 Appendix K shows more examples in Russian, Chinese,
and Japanese, where all instances follow this statement.
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Source Tokens: | Ich

Registers: ro ‘ rl ’ r2 r3 r4

AR \ 3
Tar'ge’r Tokens: I open the door every
(a) Inseparable Verb

morning I open the door every

Ich |[machej | jeden die auf

morning

(b) Separable Verb

Figure 5: Token-level attention weights illustration, where the weight of each token is averaged across all heads of a
model trained on EC-40. 5a and 5b illustrate two instances translated from de to en. The top-3 attention directions
for each token are labeled, with darker colors indicating higher attention weights. Note that while the target tokens
for these two instances are identical, their source tokens are not, because the verbs in 5a and 5b are semantically
equivalent but have different forms. To aid understanding, we highlight the verbs with purple borders: “6ffne” in 5a
and “mache ... auf” in 5b both correspond to the target verb “open”. Then, the registers with the highest attention
weights associated with these verbs are also marked with purple borders.

Cosine Similarity

0.6 sim(source tokens, registers)
sim(registers, target tokens)
051 —— sim(source tokens, target tokens)

T T T T T

13 6 9 12 15
Layer Index

18 192021222324

Figure 6: Layer-wise cosine similarity among sentence-
level representations of source tokens, registers, and
target tokens. Results are averaged over 10 random
instances processed by a model trained on EC-40.

Beyond theorizing the mechanism through token-
level analyses, we also conduct a sentence-level
representation analysis'® to validate the mechanism.
As shown in Figure 6, sentence-level cosine simi-
larity between source and target is the highest in the
lower layers, reflecting strong semantic alignment
due to the use of gold translations and indicating
that lower layers primarily encode shared semantic
content. As depth increases, source-target similar-
ity drops noticeably, suggesting that upper layers
capture more language-specific features. Mean-

1We follow Liu et al. (2021) to apply mean-pooling over
the token representations to obtain sentence representations,
and then compute cosine similarity between them. For each
translation instance, we extract representations for source to-
kens, registers, and target tokens.

while, source-register similarity remains relatively
stable until the top layers, where it drops sharply.
In contrast, register-target similarity gradually de-
creases in the middle layers but rises sharply in
the top layers. In the final layer, registers are
most similar to the target, followed by those to
the source, while source-target similarity is low-
est. These trends indicate that registers transition
toward the target space while maintaining seman-
tic ties to the source, supporting our token-level
analyses. Based on the above, we conclude that
the register’s activation represents the target lan-
guage and carries the semantics of the positionally-
aligned token, namely, registers act as “rethinking”
the source from the perspective of the target lan-

guage.
7 Conclusion

In this work, we present registering to address the
off-target problem in MNMT-specific models. By
introducing registers and modifying the attention
mask, our method ensures that the generation of
target tokens depends solely on the activation of
registers. Analytical experiments demonstrate that
the activation of registers carries the semantics of
source tokens within the target language spaces.
Using this method, we develop and open-source
two MNMT-specific models, MITRE-466M and
MITRE-913M, supporting translation across 24
languages. Experimental results show that MITRE
performs competitively with commercial LLMs,
setting a new state-of-the-art in MNMT.
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Limitations

A key concern is our limited computational re-
sources. Given that the training of MITRE-913M
has already required 80 Tesla V100 GPUs for one
month, MITRE supports 24 languages, and we can-
not further increase the supported languages. Al-
though this number is far greater than the latest
research in the community, e.g., 10 languages of
Alves et al. (2024) and 5 languages of Xu et al.
(2024), this number is fewer than the number of
supported languages of M2M, NLLB, and commer-
cial LLMs. However, the comparison in Section
5 is relatively fair. Specifically (using NLLB as
an example), first, our training data is collected
from the reproduced version of the NLLB dataset,
which includes fewer samples per translation di-
rection than those used for training NLLB models.
Second, as described in Section 5.1, our Bridge
Language strategy results in fewer supervised trans-
lation directions, whereas NLLB is trained on as
many directions as possible. Moreover, NLLB in-
corporates additional engineering strategies, e.g.,
back-translation (Edunov et al., 2018) and distil-
lation (Hinton et al., 2015), whereas MITRE only
iterates over the training set. Also, we directly com-
pare MITRE-466M and MITRE-913M to NLLB-
3.3B, where the parameter size difference helps
offset the disparity in supported languages. Finally,
we conduct fine-tuning experiments to compare
MITRE and NLLB with the same settings.

Another limitation of our approach is the ad-
ditional computational cost introduced by regis-
ters, as they double the number of source tokens.
Based on our measurements on EC-40 using a
Tesla V100 GPU, the training time for models with
registers is 1.34 times that of the vanilla decoder-
only model, 1.63 times that of the vanilla encoder-
decoder model, and approximately equivalent (1.01
times) to the previous state-of-the-art method, CL
(Pan et al., 2021). At inference time, thanks to
the KV cache, the model with registers incurs only
a linear and affordable increase in inference cost,
comparable to other MNMT-specific models. To
validate this, we randomly translate 100 sentences
using publicly available implementations of M2M,
NLLB, and MITRE from HuggingFace (with batch
size 1 and beam size 5), and repeat each exper-
iment 10 times. Results in Table 7 confirm our
claim. Additionally, in practical usage of MITRE,
the inference cost is substantially lower than that
of LL.Ms due to the smaller number of parameters.

Model #Tokens Times (s) Times per Token (s)
MITRE-466M 3667 64.95 0.0177
MITRE-913M 3626 85.65 0.0236
M2M-483M 4226 52.22 0.0124
M2M-1.2B 4234 89.75 0.0212
NLLB-600M 3990 41.29 0.0103
NLLB-1.3B 4104 74.37 0.0181
NLLB-3.3B 3837 82.15 0.0214

Table 7: Generation cost measurement. Tokens refer to
the total tokens generated during inference, and Times
refer to the time cost of inference, which is counted by
seconds.

Ethical Considerations

Although our training data is collected from public
datasets, MITRE has not been evaluated for toxi-
city or has undergone detoxification. Thus, while
we open-source MITRE, we recommend its use
primarily for research purposes or in applications
only after thorough appropriate processing.
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A Description of EC-40

EC-40 is an English-centric dataset introduced by
Tan and Monz (2023). In addition to English,
it includes 40 languages spanning five language
families, with each family containing eight lan-
guages. These languages are categorized into four
tiers based on data availability: High, Medium,
Low, and Extra Low. Each non-English language
is paired with English, resulting in 80 supervised
translation directions used for training and 1,560
zero-shot translation directions. Details of this
dataset are summarized in Table 14.

B Description of Pre-training Dataset

Our pre-training dataset comprises 24 languages, as
detailed in Table 8. As described in Section 5.1, our
data collection strategy results in 9.3 billion trans-
lation instances across 194 translation directions.
The data distribution is visualized at the family
level in Figure 9a and at the language level in Fig-
ure 9b. Additionally, Figure 9b highlights which
translation directions are supervised and which are
zero-shot. Notably, translation directions involving
ms are also indicated in Figure 9b.

C Training Details of EC-40

Training configurations We employ Fairseq
(Ott et al., 2019), an open-source toolkit, to im-
plement our models with methods mentioned in
Section 4.2. First, we directly reuse the vocab-
ulary and binary training data provided by Chen
et al. (2023)!7. Note that we include only super-
vised translation directions in validation. We train
on 8 Tesla V100 GPUs, setting memory-efficient-
fp16 in Fairseq, with a maximum input of 2048
source tokens per GPU and a gradient accumu-
lation of 16 steps. Both input and output token
lengths are limited to 256, and we share the embed-
ding layer between the encoder and decoder. We
use a seed of 1234, a learning rate of 0.0005 with
the inverse square root schedule and a warmup of
4000 steps, the Adam optimizer (Kingma and Ba,
2017), dropout of 0.1, attention dropout of 0.1, a la-
bel smoothing rate of 0.1, no weight decay, and the
temperature sampling with 7" = 5 (Arivazhagan
et al., 2019). Finally, we train for 200,000 steps,
averaging the last 5 checkpoints, saving by epoch.

Configurations of Related Methods Generally,
both our method and these related methods share

"https://github.com/Smu-Tan/ZS-NMT-Variations

—— Train Loss of MITRE-466M
84 Valid Loss of MITRE-466M
—— Train Loss of MITRE-913M
—— Valid Loss of MITRE-913M

T

; : ; ; : T
0 20 40 60 80 100
Epoch

Figure 7: The training and validation loss in pre-training
MITRE. We report the first 100 epochs, each with ap-
proximately 2262 steps.

the same hyper-parameters as the vanilla models.
However, there are some method-specific config-
urations we have to notice. (1) For LAVS (Chen
et al., 2023), we directly reuse their code'® and
add around 12k language-specific tokens into the
shared vocabulary, resulting in 12.8M additional
parameters in modeling; (2) For CL (Pan et al.,
2021), we directly reuse their code'® and set the
contrastive learning temperature to 0.1, which is
the optimal setting according to their reports; (3)
For LCS (Sun et al., 2024), the model follows an-
other translation instruction strategy of Fan et al.
(2021) by adding a source language tag at the be-
ginning of the source tokens and a target language
tag at the beginning of the target tokens. we re-
implement their code and, in the case of 12-layer
models where the encoder has 6 layers, apply LCS
biasing at the 5th encoder layer; For models with
12 encoder layers, we apply it at the 8th encoder
layer; (4) For TDO (Qu et al., 2024b), we also reuse
their code?® and, based on their ablation study, set
the number of layers for the first stage to 3 in 12-
layer models and to 6 in 24-layer models to allow
stronger zero-shot translation ability.

D Training Details of MITRE

We employ Fairseq to implement MITRE men-
tioned in Section 5.2, and two versions of MITRE
have the different configurations in modeling and
have the same configuration in training. Specif-
ically, MITRE-466M is configured with an em-
bedding size of 1,024, an inner size of 4,096, 16
attention heads, and 24 layers. MITRE-913M,

Bhttps://github.com/PKUnlp-icler/
Off-Target-MNMT

Yhttps://github.com/PANXiao1994/mRASP2

Phttps://github.com/zhiqu22/PhasedDecoder
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Family ISO code Flores code  Language script
en eng_Latn English Latin
de deu_Latn German Latin

Germanic nl nld_Latn Dutch Latin
5% swe_Latn Swedish Latin
da dan_Latn Danish Latin
af afr_Latn Afrikaans Latin
fr fra_Latn French Latin
es spa_Latn Spanish Latin

Romance it ita_Latn Italian Latin
pt por_Latn  Portuguese Latin
ro ron_Latn Romanian Latin
ru rus_Cyrl Russian Cyrillic
cs ces_Latn Czech Latin

Slavic pl pol_Latn Polish Latin
bg bul_Cyrl Bulgarian Cyrillic
uk ukr_Cyrl Ukrainian Cyrillic
id ind_Latn Indonesian Latin

Malayo- ms zsm_Latn Malay Latin

Polynesian jv jav_Latn Javanese Latin
tl fil_Latn Filipino Latin
ko kor_Hang Korean Hangul

. vi vie_Latn Vietnamese Latin

Asian* . . .
ja jpn_Jpan Japanese  Kanji; Kana
zh cmn_Hans Chinese Chinese

Table 8: Details of the dataset in our pre-training. The
decoration * on Asian means a group instead of a lan-
guage family. We not only list the ISO 630-1 code for
each language but also list the Flores code to help search
corresponding resources from Flores+.

a larger model with expanded width and depth,
has an embedding size of 1,280, an inner size of
5,120, 20 heads, and 36 layers. In training, we
first train a shared SentencePiece vocabulary (Kudo
and Richardson, 2018) with a size of 160,000 by
150 million sentences randomly sampled from the
training set. We include only supervised transla-
tion directions in validation. Then, we train on 80
Tesla V100 GPUs, setting memory-efficient-fp16
in Fairseq, with a maximum input of 1408 source
tokens per GPU and a gradient accumulation of 10
steps. In practice, this setup results in each batch
containing approximately 0.91 million source to-
kens. Given the large batch size, we set the learning
rate of 0.002 with the inverse square root sched-
ule and the warmup of 8000 steps. We also use a
seed of 42, the Adam optimizer (Kingma and Ba,
2017), dropout of 0.1, attention dropout of 0.1, a
label smoothing rate of 0.1, no weight decay, and
the temperature sampling with 7" = 1 (Arivazha-
gan et al., 2019). We train for 300,000 steps and
save a checkpoint per 10,000 steps. Finally, we
average the last 5 checkpoints. Figure 7 shows
the variations of training and validation loss. We
can observe that the trends of MITRE-466M and
MITRE-913M are highly consistent.

E Training Details of Fine-tuning

Selecting Directions We use random.sample in
Python to randomly select translation directions for
fine-tuning, setting the seed to 0. We define three
scenarios, including 5, 25, and 100 translation di-
rections. It is important to note that random.sample
causes the 5 and 25 directions to be subsets of the
100 directions. Specifically, the first 5 and first 25
directions in the 100-direction set correspond to
the other two scenarios. The 100 directions are:
jv—sv, ms—id, de—tl, ru—pl, ko—jv, zh—bg,
ms—en, pl—ru, zh—af, uk—ko, pt—jv, ko—ro,
fr—da, cs—pl, fr—af, da—=fr, ru—=sv, fr—pl,
pl—tl, da—ro, sv—es, bg—jv, zh—en, da—cs,
uk—ms, tl—es, bg—de, pt—nl, vi—bg, tl—id,
ru—bg, nl—ms, en—uk, da—sv, jv—ms, en—nl,
zh—vi, bg—ja, ro—ja, bg—ru, n1—tl, vi—es,
ja—pt, cs—uk, da—ko, af—it, jv—zh, zh—cs,
sv—da, ko—pt, cs—nl, pt—vi, nl—en, vi—ja,
es—nl, tl—ru, ru—es, ja—jv, ro—zh, nl—ro,
fr—jv, cs—fr, fr—cs, uk—jv, ko—bg, cs—da,
es—ro, ms—sv, ja—cs, cs—en, da—pl, jv—tl,
pl—pt, zh—sv, pl—de, fr—ro, pt—zh, zh—id,
pl—fr, ko—ru, it—bg, es—de, cs—tl, af—pt,
fr—ru, da—nl, da—af, ms—fr, ko—cs, en—jv,
pl—uk, bg—uk, af—tl, ro—bg, de—pl, de—vi,
uk—nl, id—ja, nl—zh, zh—pl

Fine-tuning Configurations All fine-tuning ex-
periments use the same settings. We conduct exper-
iments on 8 Tesla V100 GPUs, with a maximum of
1024 tokens per GPU and a gradient accumulation
of 2 steps. Based on the pre-trained model, we set
the learning rate to 0.0001 with a warmup step of
1 (for launching the inverse square root schedule),
and train for 10 epochs. Finally, we use the last
epoch for testing.

LoRA Configurations We adopt the setting of
Hu et al. (2022) to implement LoRA components
for pre-trained models. Specifically, LoRA is only
implemented for Query and Value in the attention
mechanism with a rank of 8. As a result, the learn-
able parameters of NLLB series are 1.18M, 2.36M,
and 4.72M, respectively, and the learnable param-
eters of MITRE series are 0.78M and 1.47M, re-
spectively.

F Prompts for GPT

Our prompts for GPT series follow: Translating the
following sentence from [SRC] to [TGT]: [INPUT].
Here, [SRC] and [TGT] are the source and target
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language names following Table 8, and [INPUT] is
the source sentence. We find that GPT occasionally
repeats [INPUT] in the output. Once it happens, we
manually remove the [INPUT] before evaluation.

G Details of Evaluation Metrics

In evaluating the performance of models trained on
EC-40, some languages lack support from COMET
(Unbabel/wmt22-comet-da) and the off-target ratio
(fast-langdetect). Notably, fast-langdetect operates
by word recognition, so we also exclude certain
supported languages that exhibit low recognition
success rates. We list the supported languages in
this section.

Languages in COMET: en, bg, so, ca, da, be,
bs, es, uk, am, hi, ro, no, de, cs, pt, nl, mr, is,
ne, ur, ha, sv, gu, ar, fr, ru, it, pl, sr, sd, he,
af, kn, bn.

Languages in Off-target Ratio: en, bg, da, es,
uk, hi, ro, de, cs, pt, nl, mr, ur, sv, gu, ar, fr,
ru, it, pl, he, kn, bn, be, mt, am, is, sd.

H Supplementary Results of EC-40

In Section 4.3 and Table 1, we report spBLEU
scores and off-target ratio. In this appendix, we
report chrF++ and COMET scores in Tables 10
and 11, respectively. Overall, four metrics show
consistent trends across this benchmark.

I Supplementary Results of MITRE

In Section 5.3 and Table 3, we report spBLEU
scores and do not report the off-target ratio, because
the values are near zero across those large-scale
pre-trained models. In this appendix, we report
chrF++ and COMET scores in Tables 12 and 13,
respectively. However, when comparing MITRE
and commercial LLMs, COMET reveals a differ-
ent trend: MITRE-913M underperforms GPT-40
mini, despite similar trends in spBLEU and chrF++
scores, which show MITRE-913M as superior to
GPT-40 mini. This suggests that while MITRE gen-
erates more accurate sequences relative to the test
set, GPT-40 mini produces more fluent and natural
output. This is expected, as commercial models
are aligned with human-like styles (Wang et al.,
2023), whereas MITRE follows the training data’s
style. Further supporting this, GPT-40 mini shows
a significant improvement over GPT-3.5 turbo (Ta-
ble 13). Therefore, based on the results across all
three metrics, our claim is not that MITRE-913M

.-

D[N

ro ri r2 r3 r4 r5 ré r7

I drink  water with my friend

(a) ja—en

—
—
—_—s
—_—

rO ri r2 r3 r4 r5

I gave a book to my  friend

(b) zh—en

PP

student a book

The  teacher  gave the

(c) ru—en

Figure 8: Three cases of attention analysis on MITRE-
466M. Details of this illustration, e.g. colors, classes,
and arrows, follow that of Figure 5.

outperforms GPT-40 mini, but rather that MITRE-
913M outperforms NLLB 3.3B and can compete
with GPT-40 mini.

J Supporting Experiments for
Comparing Enc-dec and Dec-only

In Section 3.2, we explain our reason for imple-
menting registering in Dec-only. Specifically, Dec-
only offers better parameter efficiency than Enc-
dec, where the encoder learns the representation of
input tokens while the decoder learns the generated
tokens (as illustrated in Figure 1, where encoded
source tokens are shown in gray). In contrast, Dec-
only utilizes all parameters for both encoding and
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Methods #layer spBLEU chrF++ COMET Off-target(%)
Enc-dec 6.99 19.68 53.72 48.4
+registering 12 10.55 27.29 58.07 7.5
Dec-only 8.34 22.34 55.71 2221
+registering 11.92 29.02 61.19 4.65
Enc-dec 9.69 23.95 58.08 26.69
+registering 2 11.13 2791 58.67 3.91
Dec-only 10.82 26.04 59.95 19.01
+registering 13.12 30.51 63.54 3.65

Table 9: Results on EC-40. For convenience, the score
in this table is averaged from all 1,640 translation direc-
tions. Enc-dec and Dec-only indicate the vanilla models
without registering. The best score is in bold.

generation. Based on this, we employ Dec-only as
the backbone of our implementation.

To further support our statement, we provide
supporting experiments on EC40, following the
experimental setup described in Section 4.2. As
shown in Table 9, registering also significantly im-
proves the performance of Enc-dec. However, the
gains are more pronounced in Dec-only, suggesting
that registering is particularly well-suited for this
architecture.

Additionally, we propose an insight beyond the
scope of this work. In Section 3.2, we mention a po-
tential cause of the off-target problem: the dilution
of translation instruction attention by other tokens
(Gu et al., 2019; Qu et al., 2024b). This theory
may explain why Dec-only tends to underperform
Enc-dec in MNMT (Gao et al., 2022; Zhang et al.,
2022), as the effectiveness of [, is further diluted by
both source and target tokens in the attention mech-
anism. The results in Table 9 further support this
explanation, as registering achieves a much larger
performance gain in Dec-only than in Enc-dec.

K Supplementary Analysis of Attention

To further support our analysis in Section 6.2, we
examine additional cases in MITRE-466M where
the source and target sentences exhibit significant
structural differences. In all cases, the attention
relationship between registers and source tokens re-
mains consistent, i.e., one-to-one attention weights
being the most prominent. Next, we observe the
following patterns: (1) As shown in Figure 8a, in
Japanese, the attention for “drink” points to rg,
while “friend” points to r; and r2. (2) As shown in
Figure 8b, “friend” points to 75, and “book” points
to 5. (3) As shown in Figure 8c, “book” points
to g, and “student” points to r4. Given that the
attention weights between registers and target to-
kens highlight the structural differences between

source and target sentences, we can state again that
registers mirror the corresponding source tokens.

L Supplementary Analysis of
Representation

We present Figure 10 to supplement the analysis in
Section 6.2 on representation distributions, where
Figure 4 focuses specifically on the representation
state in the 24th layer. Our observations are as
follows: (1) In the embedding layer and the 1st
layer output (Figures 10a and 10b), source and tar-
get token representations are loosely distributed,
while registers form three compact clusters based
on language. This is because registers lack seman-
tic content and are distinguished only by positional
encoding. (2) Starting from the 6th layer (Figure
10c), source tokens begin to become distinguish-
able by language, and registers start to shift within
the representation space toward the source tokens.
By the 12th layer (Figure 10d), registers and source
tokens are entirely separated in the representation
space. (3) By the 18th layer (Figure 10e), target
tokens become clearly separated in the represen-
tation space, registers’ distribution becomes more
diffuse, and the distribution of source tokens be-
comes more concentrated. These trends culminate
in the state observed in the 24th layer (Figure 10f),
as described in Section 6.2. These findings suggest
two key phenomena: (1) registers progressively re-
inforce the semantic information they carry as they
propagate through the layers; and (2) the represen-
tations of target tokens reflect their predicted state
only in the higher layers.
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High Med Low Extra Low

#params  Method — — — — — — — — sup.  zero.  avg.

vanilla 2327 25.61 2043 24.61 1639 1425 17.73 1334 4927 18.16 19.68
242M +CL 31.64 30.87 28.65 31.27 2138 21.66 21.46 1933 49.20 24.86 26.04
+LCS 2534 31.05 24.13 3090 24.81 19.84 2477 1745 49.34 2370 24.95

Enc-dec

vanilla 2726 27.10 2442 27.16 1830 1801 1846 16.17 4844 2100 2234

Dec-only 217M  +TDO 3025 29.87 2587 29.61 20.61 1975 20.50 18.00 4892 2332 24.57
””””””” vanilla 2791 31.84 2540 3148 2057 16.02 20.79 1533 50.11 2260 23.95
418M  +CL  33.02 3252 29.85 32.84 2099 2205 21.84 1830 5041 2551 2673

+LCS  24.67 3381 2388 3299 2630 1810 2571 1687 50.16 2426 2557
””””””” vanilla ~ 31.01 31.96 28.04 3220 2205 20.13 22.02 1884 49.76 2482 26.04
Dec-only  368M  +TDO 3212 3222 2843 3224 21.84 2085 2225 1932 50.04 2523 2644
+Ours 3524 3500 3331 3456 2641 2601 2622 2561 49.69 29.53 30.51

Table 10: Averaged chrF++ scores of results on EC-40. All notations and abbreviations follow Table 1.

High Med Low Extra Low

#params  Method — — — — — — — — sup.  zero.  avg.

vanilla 50.21 49.61 42.07 4493 28.62 28.15 3294 31.17 7726 5229 53.72
242M +CL 5533 5242 4633 47.60 30.00 31.42 34.17 3440 7733 56.75 57.93
+LCS  50.27 5222 43.19 47.73 31.88 30.19 37.09 3250 77.52 5544 56.71

vanilla  52.66 50.88 43.80 45.88 29.19 30.13 33.88 3264 77.10 5441 5571

Dec-only  217M  +TDO 5439 5248 4522 4740 30.09 3076 3453 3359 77.13 56.16 57.36
””””””” vanilla ~ 54.06 5476 4571 4932 3111 29.68 3537 3249 7848 56.84 58.08
418M  +CL  58.06 5520 4840 49.96 30.79 32.53 3550 3506 78.90 59.26 60.38

+LCS 5152 5563 44.84 5074 3384 30.80 3891 3394 7862 57.61 5881
””””””” vanilla 5646 5529 4726 50.07 31.66 31.85 3627 3444 7837 5884 59.95
Dec-only  368M  +TDO 5749 5544 4834 5048 31.77 3257 36.61 3572 7848 59.77 60.84
+Ours 5898 5692 50.66 51.82 3391 3537 3860 38.04 78.12 62.66 63.54

Table 11: Averaged COMET scores of results on EC-40. All notations and abbreviations follow Table 1.

English Germanic Romance Slavic Mal.-Polyn. Asian

Model — — — — — — — — — — — — avg.

483M 5043 5436 4484 4624 4396 4826 4336 43.06 37.54 4177 3983 2785 42.53
M2M  615M 4997 5474 46777 4862 4534 4983 4470 4442 40.17 4359 41.04 2884 4412

1.2B 54.80 5444  49.02 47.06 4749 48.04 4587 4335 3278 40.68 3090 28.01 42.56
615M 5554 61.73 4848 5039 4738 51.54 4638 4534 4598 5096 4256 29.73  46.70
NLLB 1.3B 56.82 6335 50.07 5221 4880 53.19 4798 4746 4792 5249 4470 3098 4840
3.3B 57.88 6427 5095 53.16 49.63 5392 4891 4876 49.06 53.28 4571 3197 4935

35turbo 5530 61.60 49.39 52,16 4831 53.34 4754 4635 4564 4805 4346 3120 4741
40 mini 58.03  62.85 51.26 5290 4933 5433 49.12 48.62 4939 5225 4586 3411 4948

466M 58.11 6277 51.40 5341 50.06 5446 49.18 48.62 4783 52.04 4510 3241 49.29
913M 5884 6401 5240 5459 51.03 5536 50.32 49.84 4897 5288 46.65 3388 50.42

GPT

MITRE

Table 12: Averaged chrF++ scores of results for comparing MITRE and baselines. All notations and abbreviations
follow Table 3.

English Germanic Romance Slavic Mal.-Polyn. Asian

Model — — — — — — — — — — — — avg.

483M 81.63 8140 7890 77.03 80.48 7849 79.85 8031 6834 7275 78.67 1857 7774
M2M  615M 81.16 82.15 8142 7998 8200 80.50 81.29 8243 7256 74.62 80.02 7996 79.79

1.2B 8593 85.17 84.15 82.87 8446 83.12 8387 8541 7591 7783 8295 8258 82.66
615M 86.61 86.76 84.06 8277 8450 83.05 8341 8439 8126 8351 82.12 8202 8333
NLLB 1.3B 87.76 87.63 8572 8476 8593 8476 8507 86.82 83.57 8493 8436 8352 8513
3.3B 88.22 88.09 8649 8558 86.58 8545 8584 87.96 84.63 8545 8542 8456 8596

3.5trbo 87.67 88.02 8626 8580 86.62 8596 8591 87.50 83.09 8209 8545 8577 85.66
4omini  89.59 88.64 8750 86.38 87.58 86.57 87.08 88.90 8589 86.03 8699 8747 87.16

MITRE 466M 87.87 8729 8599 8498 8649 8514 8558 87.19 8224 8341 8438 8429 8519
913M 88.11 8781 8654 8561 8696 8570 86.16 88.03 83.15 8380 8552 8535 8588

GPT

Table 13: Averaged COMET scores of results for comparing MITRE and baselines. All notations and abbreviations
follow Table 3. Given the different trend compared to Tables 3 and 12, we not only mention it in Section 5.3, but
also provide an additional discussion in Appendix I.
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Figure 9: Data distribution of our pre-training dataset. Figure 9a shows data size distribution at the family level,
while Figure 9b displays data size at the language level. In 9a, non-zero values are scaled by log10 and adjusted by
subtracting 7 for clearer visualization. In 9b, non-zero values are also scaled by log10 and shifted by subtracting the
minimum value to enhance illustration clarity.

Germanic Romance Slavic Indo-Aryan Afro-Asiatic
code Language Script | code  Language Script | code Language  Script | code Language Script code Language  Script
High de German Latin fr French Latin | ru Russian  Cyrillic | hi Hindi Devanagari | ar Arabic Arabic
(5 million) nl Dutch Latin | es Spanish Latin | cs Czech Latin bn Bengali Bengali he Hebrew  Hebrew
Med sV Swedish Latin it Italian Latin pl Polish Latin kn  Kannada Devanagari | mt Maltese Latin
(1 million) da Danish Latin pt  Portuguese Latin | bg  Bulgarian Cyrillic | mr Marathi ~ Devanagari | ha Hausa* Latin
Low af Afrikaans Latin | ro  Romanian Latin | uk  Ukrainian Cyrillic | sd Sindhi Arabic t Tigrinya  Ethiopic
(100 thousand) | 1b  Luxembourgish Latin | oc Occitan Latin sr Serbian Latin gu Gujarati  Devanagari | am  Amharic  Ethiopic
Extra Low no Norwegian Latin | ast Asturian ~ Latin | be  Belarusian Cyrillic | ne Nepali ~ Devanagari | kab  Kabyle* Latin
(50 thousand) ic Icelandic Latin ca Catalan Latin bs Bosnian Latin ur Urdu Arabic S0 Somali Latin

Table 14: Details of non-English languages in EC-40. This table is duplicated from Tan and Monz (2023). Numbers
in the table represent the number of sentences paired to the English. Two exceptions are Hausa and Kabyle, where
their data sizes are 334,000 and 18,448, respectively.
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Figure 10: 2D distributions of token-level representations extracted from the different layers of a model trained on
EC-40. This illustration complements Figure 4.
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