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Abstract

This paper addresses the critical need for de-
mocratizing large language models (LLM) in
the Arab world, a region that has seen slower
progress in developing models comparable to
state-of-the-art offerings like GPT-4 or GPT-
3.5, due to a predominant focus on main-
stream languages (e.g., English and Chinese).
One practical objective for Arabic LLMs is
to utilize Arabic-specific vocabulary in the
tokenizer to accelerate decoding. However,
using a different vocabulary often leads to
degradation of the model’s learned knowledge,
since many words become out-of-vocabulary
(OOV) at the beginning of training. Inspired
by the vocabulary learning during Second Lan-
guage (Arabic) Acquisition for humans, the
released AraLLaMA employs progressive vo-
cabulary expansion, which is implemented by
a modified BPE algorithm that progressively
extends the Arabic subwords in its dynamic
vocabulary during training, thereby balancing
the OOV ratio at every stage. The ablation
study demonstrated the effectiveness of Pro-
gressive Vocabulary Expansion. Moreover, Ar-
aL.LaMA achieves decent performance compa-
rable to the best Arabic LLMs across a vari-
ety of Arabic benchmarks. Our model weights
are available at: https://github.com/
FreedomIntelligence/AraLLaMa.

1 Introduction

In the evolving landscape of large language models
(LLMs), the predominant focus has been on
English and Chinese. This focus has left other
linguistic communities, notably the Arab world,
with slower progress in developing comparable
models. Within the Arab world !, the development
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"The Arab World comprises a large group of countries,
mainly located in Western Asia and Northern Africa.

of models such as Jais (Sengupta et al., 2023) and
AceGPT (Huang et al., 2024) marks a significant
step forward, yet these models do not rival the
capabilities of state-of-the-art models like GPT-
4 (Achiam et al., 2023) or even GPT-3.5. In line
with democratization (Touvron et al., 2023a,b), our
development of Arabic LLMs focuses on language
adaptation settings that utilize existing standard
LLM architectures (like LLaMA (Touvron et al.,
2023b)) and well-trained weights, thus saving
computing resources and ensuring compatibility.

A primary challenge in adapting English-centric
LLMs to other languages lies in vocabulary ex-
pansion (Touvron et al., 2023b; Cui et al., 2023;
Huang et al., 2024; Zhao et al., 2024). For instance,
AceGPT exhibits slower decoding speeds when
processing Arabic, which may be attributed to limi-
tations in its vocabulary adaptation mechanisms. It
decodes Arabic words into sequences of alphabeti-
cal letters rather than at a more efficient granularity,
such as Arabic subwords. This inefficiency signif-
icantly limits its broader applicability, despite its
performance being nearly on par with GPT-3.5 in
some benchmarks. A key concern related to vo-
cabulary expansion is the risk that abrupt increases
may result in a high incidence of out-of-vocabulary
(OOV) tokens—units absent from the model’s es-
tablished vocabulary. Such a surge in OOV words
can compromise the linguistic knowledge embed-
ded within the core models. Addressing this issue
requires a considerable volume of pre-training data
to restore and maintain the model’s linguistic capa-
bilities effectively.

The core philosophy behind AralLLaMA is in-
spired by the process of vocabulary learning in hu-
man Second Language Acquisition, emphasizing
that individuals typically expand their vocabulary
gradually through incremental learning, rather than
through instantaneous acquisition. AralL.LaMA pro-
gressively extends the Arabic subwords in its vo-
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cabulary during pre-training, effectively reducing
the ratio of OOV words at every stage. Aral.LLaMA,
based on the initialization of LLaMA2 (Touvron
et al., 2023b), not only retains the foundational
knowledge of LLaMA?2, but also enables effective
cross-lingual transfer from English to Arabic. Ab-
lation on TinyLLaMA (Zhang et al., 2024) demon-
strated the effectiveness of the proposed progres-
sive vocabulary expansion, see Section 6.1.

Followed by extensive instruction tuning, Aral_-
LaMA achieves decent performance comparable
to the best Arabic LLMs across various Arabic
benchmarks. The contributions of this work are
three-fold: 1) We introduce progressive vocabulary
expansion, utilizing a modified byte pair encod-
ing (BPE) algorithm inspired by human Second
Language Acquisition, and demonstrate its effec-
tiveness. 2) We present AralLLaMA, a pioneer-
ing open-source Arabic Large Language Model
that decodes Arabic texts three times faster than its
predecessor (Huang et al., 2024) while delivering
superior performance. 3) We provide the commu-
nity with access to the complete data processing
pipeline, pre-training/fine-tuning data, and model
weights. AraLLaMA is compatible with the most
popular LLM architecture (i.e., LLaMA) and can
be seamlessly integrated into most LLM applica-
tions.

2 Motivation: Second Language
Acquisition for Humans and LLMs

2.1 Cognitively-inspired Motivation: Second
Language Acquisition for Humans

Definition 1. Second Language Acquisi-
tion (SLA) refers to the process by which
people learn a language other than their native
language (Krashen, 1981). SLA can occur through
formal instruction in an educational setting or
informally through social interaction and exposure
to the language in natural settings.

In learning a second language (L.2), learners pass
through several developmental stages as they gain
proficiency in L2, including the acquisition of pho-
netics, vocabulary, grammar, and pragmatics. Of
these language skills, vocabulary acquisition is cru-
cial for language learning. Several studies have
posited that L2 learners mostly learn new words in-
cidentally (Ramos and Dario, 2015; Nation, 2001).
This suggests that an individual might gradually
master a word or a set of words in an unconscious
manner. This leads to a phenomenon:

Phenomenon 1. In Second Language Acquisition,
human individuals typically expand their vocabu-
lary gradually, in a fashion of incremental learning
rather than an instantaneous acquisition.

A formal description of levels of language devel-
opment is laid out in the Common European Frame-
work of Reference for Languages (CEFR) 2. Ta-
ble 8 (show in Appendix B) showcases the required
number of vocabulary size for different CEFR lev-
els. The CEFR provides detailed descriptions of
the skills language learners must achieve to effec-
tively communicate. This can be taken as evidence
of the progressive nature of vocabulary acquisition.

2.2 Problem Definition: Second Language
Acquisition for LL.Ms

Language adaptation The focus on develop-
ing large-scale open-source language models for
high-resource languages like English and Chinese
has unintentionally marginalized low-resource lan-
guages, despite there being about 7,000 languages
in use globally. The lack of data and computational
resources makes it challenging to develop effective
models for these languages. A common practice
is to enhance existing models by adding special-
ized data for these underrepresented languages (Cui
et al., 2023; Huang et al., 2024; Zhao et al., 2024),
a.k.a, language adaptation.

Vocabulary expansion in language adaptation
As a preliminary study, we identified Arabic tokens
from LLaMA?2 vocabulary using regular expres-
sions. It was observed that LLaMA?2 vocabulary
only includes the basic characters of the Arabic
language, resulting in relatively slow encoding and
decoding speeds compared to English. During do-
main adaptation, it is crucial for vocabulary ex-
pansion for the second language, since it could
significantly speed up decoding speeds as the num-
ber of decoded tokens is reduced due to the adapted
vocabulary. Furthermore, although augmenting the
existing vocabulary with tokens from additional
languages, followed by training on corresponding
language corpora, appears to be a logical strategy,
empirical evidence suggests that the gains from this

>The Common European Framework of Reference for Lan-
guages (CEFR) is a standard developed by the European Com-
mission and officially published in 2001, with a revised edition
in 2003. The framework serves as a guideline for language
teaching and assessment across European Union countries,
aiming to provide a common foundation and reference for
curriculum design, syllabus development, language testing,
and textbook compilation in Europe.
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Figure 1: Second Language Acquisition for human, an English-speaking child’s journey to Arabic fluency, from

basic vocabulary to cultural roficiency

method are modest. This insight underscores the
complexity of enhancing support for low-resource
languages within the framework of current large-
scale language models.

Research question Therefore, inspired by the
humans’ Second Language Acquisition, we argue
for

Is it beneficial to adopt progressive vo-
cabulary learning in language adapta-
tion of LLMs?

3 Methodology: Progressive Vocabulary
Expansion for Language Adaptation

Conventional Byte Pair Encoding (BPE) algorithms
first create a complete vocabulary by iteratively
merging the most frequent character pairs from a
corpus, and then commence model training with
this static vocabulary. This approach, while effec-
tive for monolingual models, presents challenges
when adapting to new languages as it offers no
mechanism for vocabulary evolution during train-
ing. To address this limitation, we propose Progres-
sive Vocabulary Expansion.

3.1 Incremental Byte Pair Encoding
Algorithm

In contrast to standard BPE algorithms (Sennrich
et al., 2015) that use a static vocabulary, we intro-
duce Incremental Byte Pair Encoding (I-BPE)
that dynamically augments the vocabulary during
training. This approach mirrors human language
acquisition, where vocabulary growth occurs simul-
taneously with deepening language comprehension.
Algorithm 1 outlines our method.

The key innovation of I-BPE is its staged ap-
proach to vocabulary expansion. At each stage,
we expand the vocabulary to a predetermined size,
then train the model while gradually increasing the
proportion of data corresponding to newly added

Algorithm 1 Incremental Byte Pair Encoding (I-
BPE) Algorithm

1: Input: (1) Initial vocabulary V; (2) Vocabu-
lary size at each stage: sg, S1, ..., Sp; (3) Pro-
portion of training corpus for newly added to-
kens at each stage: rg,71,...,7n;

2: Output: Final vocabulary V' for model train-
ing and application

3: fort =0tondo

while |V| < s; do

5: Compute frequency of all adjacent to-
ken pairs in V'

6: Identify the most frequent token pair

Pfreq
: Merge Pfreq into a new token Ty,
Add T}, to vocabulary V/
: end while
10 Adjust corpus proportion for newly added
tokens to r;
11: Train model with the updated vocabulary
V until convergence
12: end for
13: Return Finalized vocabulary V/

tokens. This approach significantly reduces out-of-
vocabulary (OOV) tokens at each training phase,
enabling the model to incorporate new linguis-
tic elements while preserving previously acquired
knowledge.

3.2 Expansion Strategies Comparison

For implementing vocabulary expansion, we in-
vestigated two principled strategies (illustrated in
Figure 2):

Uniform Expansion: Adds a fixed number K
of tokens at each stage, resulting in (7' — 1) x K
total additions over T stages.

Exponential Expansion: Doubles the number
of new tokens at each stage following the sequence
{0,1,2,---,27=2}, mimicking human language
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Figure 2: Compression ratio comparison between uni-
form and exponential vocabulary expansion strategies.

Our comparative analysis using an identical Ara-
bic corpus through 16 progressive stages revealed
crucial differences between the two approaches.
As shown in Figure 2 and detailed in Table 11,
uniform expansion causes abrupt improvements in
compression ratio during early stages followed by
diminishing returns. This sudden introduction of
many tokens creates training instabilities and risks
catastrophic forgetting as the model’s representa-
tion space must rapidly accommodate numerous
new tokens simultaneously.

Exponential expansion, however, offers criti-
cal advantages through its graduated approach: it
provides superior training stability as the grad-
ual introduction of tokens allows smooth adapta-
tion of the model’s representation space; it main-
tains consistent OOV ratios throughout training,
preventing sudden vocabulary distribution shifts;
and it achieves significant computational efficiency
with a 3 times reduction in sequence length com-
pared to the original LLaMA tokenizer. Based on
these findings, we implemented exponential ex-
pansion with 12,800 Arabic subwords across 16
stages (log%QSOO), representing the optimal satura-
tion point for compression ratio improvement.

3.3 Compression Ratios and Tokenizer
Evaluation

To rigorously assess the effectiveness of our vocab-
ulary expansion approach, we conducted a com-
prehensive comparative evaluation of tokenization
performance across multiple leading models. Us-
ing an identical Arabic corpus of 39 million words,
we analyzed how different tokenizers processed
Arabic text, with particular attention to efficiency
metrics that impact both performance and compu-
tational requirements.

The results in Table 1 reveal notable differences
in how these models handle Arabic text. Our model
achieved a token compression ratio of 0.3174 (ratio
of tokens to original text size), representing a 68%
improvement over LLaMA?2’s baseline, which di-
rectly enhances inference speed and reduces mem-
ory requirements. We evaluated several key metrics
established in recent tokenizer evaluation literature:

1. Subword Fertility (Rust et al., 2021; Moosa
et al., 2023): This metric measures the av-
erage number of tokens per word. Our
model achieves the most optimal fertility
(1.7063), approximately 3 times more efficient
than LLaMA?2 (5.3844) and Mistral (5.2833),
while also outperforming multilingual mod-
els like Bloomz (Muennighoff et al., 2022)
(2.0668) and Jais (1.9260) that were specifi-
cally designed with Arabic support.

2. Word Integrity (Moosa et al., 2023): For
Arabic’s rich morphology, preserving words
as single tokens is vital.  Our model
achieves 63.23% word integrity, far exceeding
LLaMA?2 (1.8%) and outperforming Arabic-
optimized models like Jais (38.95%) and
Bloomz (31.76%).

3. Total Tokens: For the identical test corpus,
our model requires only 66.55 million tokens,
compared to LLaMA2’s 210.03 million,a re-
duction of approximately 68% that translates
directly to memory savings and computa-
tional efficiency in both training and inference
phases.

4. Rényi Efficiency (Zouhar et al., 2023): This
information-theoretic measure (higher values
indicate better vocabulary utilization) shows
our model (0.7491) achieves comparable effi-
ciency to LLaMA?2 (0.7731) despite its much
lower token count, indicating efficient use
of vocabulary space while maintaining high
word integrity.

The comparative analysis indicates that our
model achieves an optimal equilibrium between
morphological preservation and computational effi-
ciency. Although models such as LLaMA?2 and
Mistral exhibit marginally superior Rényi Effi-
ciency coefficients, this advantage is offset by sub-
stantial deficiencies in word integrity preservation
and significantly elevated token densities. When
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Tokenizer Total Words Total Tokens Subword Fertility Ratio of Words Unbroken Rényi Efficiency
LLaMA2(AceGPT) 39,006,442 210,027,671 5.3844 0.0183 0.7731
Bloomz 39,006,442 80,617,499 2.0668 0.3176 0.7709
Mistral 39,006,442 206,082,344 5.2833 0.0185 0.7928
Jais 39,006,442 75,126,494 1.9260 0.3895 0.7343
Our model 39,006,442 66,554,771 1.7063 0.6323 0.7491

Table 1: Comprehensive tokenizer evaluation using standard metrics across different models.

compared with models specifically optimized for
Arabic processing, such as Jais and Bloomz, our
model consistently demonstrates superior perfor-
mance across the majority of evaluation metrics,
validating the efficacy of the progressive vocabu-
lary expansion methodology for non-Latin script
languages.

4 Training Methodology

Based on the Progressive Vocabulary Expansion
methodology described above, we develop Aral-
LaMA, an Arabic Large Language Model that im-
plements our proposed I-BPE algorithm. In this
section, we detail the AralLLaMA training process,
including data engineering and training specifics.

4.1 Data Engineering

Pre-training Corpora Our pre-training dataset
comprises both Arabic and English corpora. We
employ an array of Arabic corpora encompass-
ing multiple categories as delineated in Table 9
(shown in Appendix D). These include filtered ver-
sions of Common Crawl, WebText, and Wikipedial
sourced from Joud and BAAI, all of which were
subjected to additional cleaning processes. More-
over, we gather and purify additional corpora,
namely Wikipedia2, Books, and Newspapers. The
English corpus is sourced from SlimPajama (Sobol-
eva et al., 2023) and Proof-Pile-2 (Azerbayev et al.,
2023).

Data for Instruction Tuning After pre-training,
we aim to elicit the knowledge out of AraLLaMA
via instruction tuning. Inspired by GLAN (Li et al.,
2024), we introduce ALAN (Arabic Instruction
Tuning for Language Models). This method uti-
lizes specific topics targeting Arabic knowledge
to generate a vast amount of synthetic instruction
data.

Specifically, we identified 127 critical topics
within Arabic culture, science, and engineering
as our focus. ALAN decomposes these topics into
a structured hierarchy of fields, sub-fields, and in-

dividual disciplines. For each discipline, ALAN
compiles a comprehensive list of subjects and de-
signs a syllabus with specific knowledge points for
each one. Using GPT-4-0613, ALAN has gener-
ated 11,430 subjects and 244,812 detailed knowl-
edge points. We provide more concrete examples
in Appendix H.

Armed with this extensive collection of subjects
and knowledge points, we direct the LLM to create
questions and answers related to these knowledge
concepts. The syllabus consists of several lectures,
each with 2 to 5 knowledge points. To diversify
the knowledge base, we combine knowledge points
from both the same and different lectures to pro-
duce diverse instructions and answers. Addition-
ally, to vary the instruction types, the LLM gener-
ates three kinds of questions at random: multiple-
choice, open-ended, and coding questions. In total,
we’ve generated 733,419 instruction tuning data
pieces.

We also incorporated instruction tuning data
from previous AceGPT projects. These include
Quora-Arabic, Alpaca-Arabic (Taori et al., 2023),
Code-Alpaca-Arabic (Chaudhary, 2023), Evol-
Instruct-Arabic (Xu et al., 2023), and ShareGPT
data.

4.2 Training details

The refined methodology for LLaMA2 model’s
vocabulary expansion incorporated 12,800 Arabic
subwords derived through the I-BPE algorithm.
The initialization procedure for each new token em-
ployed decomposition into constituent subwords
from the original LLaMA?2 vocabulary, with em-
bedding initialization achieved via averaging the
embeddings of these component tokens. This ini-
tialization strategy preserves semantic relationships
between new and existing tokens, thereby enhanc-
ing training stability and facilitating vocabulary
integration.

The training procedure was structured into 16
distinct stages °, each processing 30B tokens, cul-

3 Although incremental token addition is theoretically feasi-

2029



minating in a total corpus of 480B tokens. A cosine
annealing schedule governed the proportion of Ara-
bic to English content, with Arabic representation
increasing systematically from 30% to 90% across
stages. This progressive exposure enables grad-
ual adaptation to Arabic linguistic structures while
preserving cross-lingual transfer capabilities via
continued English exposure. Mathematical and pro-
gramming content was maintained at a consistent
5% throughout all stages to ensure robust inference
capabilities in these domains (see Appendix E).
The final training distribution comprised approxi-
mately 251.4B Arabic tokens and 204.6B English
tokens.

The pre-training framework consisted of two
principal epochs: an initial epoch employing vocab-
ulary annealing for data distribution optimization,
followed by a secondary epoch utilizing the fully
refined vocabulary. An additional 20B tokens of
training data were processed subsequent to vocab-
ulary expansion to further enhance model perfor-
mance. Each training phase implemented a discrete
cosine learning rate schedule with warm-up period,
producing a vocabulary-specific model at its con-
clusion, thereby rendering each phase functionally
independent.

This stage-wise approach facilitates systematic
integration of new tokens, enabling the model to
adapt to evolving data representations while de-
veloping comprehensive understanding of linguis-
tic patterns. The graduated modulation of lan-
guage distribution—progressively increasing Ara-
bic content while decreasing English representa-
tion—optimizes the model’s capacity to process
Arabic while maintaining cross-lingual capabili-
ties.

The implementation utilized LLaMA2 archi-
tecture in 7B and 13B parameter configurations,
trained on 2,368 Ascend 910A processors. Train-
ing durations were 7 and 11 days for the 7B and
13B models, respectively. The computational con-
figuration employed model parallelism of degree 2
and pipeline parallelism of degree 4. Optimization
was conducted using AdamW with 4,096-token
context length. Each training stage utilized a co-
sine learning rate scheduler initialized at 1e-5 and
decaying to 2e-6, with a 15% warm-up interval.
Gradient accumulation factor 8 yielded an effec-
tive batch size of 4,736, enabling processing of
approximately 0.019B tokens per batch.

ble, a staged implementation (/N = 16) was chosen to simplify
data preparation.

5 Experiments

5.1 Experimental settings

Benchmarking Datasets To assess world knowl-
edge, we employ four widely used benchmarks.
MMLU (Measuring Massive Multitask Language
Understanding) (Hendrycks et al., 2021a) evaluates
knowledge acquired during pretraining across a
broad range of subjects; we utilize both the original
English version and the Arabic version introduced
in (Huang et al., 2024) to ensure multilingual cov-
erage. RACE (Reading Comprehension from Ex-
aminations) serves as a large-scale English reading
comprehension benchmark that focuses on educa-
tional knowledge. EXAMS (Multi-subject High
School Examinations Dataset for Cross-lingual and
Multilingual Question Answering) further expands
coverage by including subject-diverse exam ques-
tions drawn from multiple languages and curricula.
ArabicMMLU complements these by providing an
Arabic-specific variant of MMLU, tailored to re-
flect regional knowledge across various Arab coun-
tries and subjects. Beyond general knowledge eval-
uation, we also examine cultural and value align-
ment using ACVA-all and ACVA-clean, which fo-
cus on Arabic cultural relevance and localization.
To comprehensively evaluate inference and reason-
ing abilities, we translate two commonsense reason-
ing benchmarks of varying difficulty—BoolQ and
ARC-Challenge (ARC-C)—into Arabic, allowing
for consistent cross-lingual assessment.

To ensure a fair comparison of candidate
models, we adhere to the settings established
for each benchmark separately. Furthermore,
for translated benchmarks, we utilize the gen-
eration approach evaluation method as outlined
in (Huang et al., 2024). Specifically, we employed
GPT-3.5-Turbo-1106 to translate datasets
from English to Arabic for benchmarks that were
not originally in Arabic.

Baselines To compare LLMs trained or avail-
able in Arabic, we have selected several promi-
nent Arabic LLMs or multilingual LLMs as base-
lines for comparison: (1) AceGPT-[7B,13B]: This
set includes fully fine-tuned generative text mod-
els based on LLaMA?2, specifically customized
for the Arabic domain. (2) Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023): The fine-tuned model
achieves a balance between performance and effi-
ciency. (3) Jais-[13B,30B] (Sengupta et al., 2023):
A pre-trained bilingual large language model de-
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signed for both Arabic and English. (4) Bloom-
[7B]: A multilingual language model extensively
trained on diverse textual data, allowing it to pro-
duce fluent text in 46 languages and 13 program-
ming languages. (5) LLaMA2-[7B,13B]: A popu-
lar and competitive baseline model in the general
domain. (6) OpenAl GPT: This includes GPT4
and ChatGPT, closed-source LLMs also strong at
multilingual tasks.

5.2 Evaluation Results

Evaluation on Base Models In our study, the
performance of base models was assessed on two
Arabic-specific MMLU datasets: Arabic MMLU
translate (Huang et al., 2024) and ArabicMMLU
(Koto et al., 2024). The left side of Table 2 de-
tails the models’ accuracies on the Arabic MMLU
translate dataset within a few-shot setting. It is ev-
ident from the data that the AralLLaMA-7B-base
and AralL.L.aMA-13B-base models exhibit superior
accuracy rates compared to models of similar scale.
Notably, the AraLLaMA-13B-base model outper-
forms the Jais-30B model, which has a significantly
larger parameter count.

Additionally, the right side of Table 2 presents
the accuracy results of models in a zero-shot learn-
ing scenario. Here again, the AraLLaMA models
stand out for their exceptional performance, even
when compared to models with similar parame-
ter sizes. In particular, the AraLLaMA-13B-base
model demonstrates a marked advantage over the
Jais-30B-base model, notwithstanding the latter’s
larger size in terms of parameters.

These findings affirm the effectiveness of the Ar-
aLLLaMA models, developed through an annealing
algorithm to expand the vocabulary, highlighting
our methodology as a productive strategy for en-
hancing large models’ adaptability to less prevalent
languages. This contribution significantly advances
the field of language model adaptation, offering a
novel avenue for enriching language technology’s
inclusivity and depth.

Evaluation on Chat Models Table 3 presents
the comprehensive evaluation results across vari-
ous benchmarks for the candidate models, span-
ning from Arabic to English. Overall, Aral-
LaMA outperforms all baseline models in the Ara-
bic tasks. Particularly noteworthy is its profi-
ciency in knowledge-related evaluations such as
Arabic-translated MMLU and EXAMS, surpass-
ing other models by at least 1.3%. This high-

lights the model’s expertise in addressing Arabic
knowledge-related questions. Additionally, Aral -
LaMA demonstrates strong performance in tasks
related to Arabic culture and value alignment. In
terms of commonsense reasoning, AralLLaMA ex-
hibits notable skills in tasks such as the trans-
lated versions of BoolQ and ARC-Challenge, show-
casing its reasoning capabilities in Arabic. Be-
yond Arabic benchmarks, we also investigated the
English proficiency of the models to determine
whether specialization in one language affects per-
formance in the other. The results indicate that
the model maintains its English proficiency and
displays robustness in multilingual assessments. It
is noteworthy that the lower accuracy of the Jais
is attributed to its refusal to answer for unknown
reasons.

In a comprehensive evaluation of the ACVA
dataset aimed at gauging the understanding of Ara-
bic cultural nuances under a zero-shot setting, our
AralLLaMA models showcased unparalleled perfor-
mance. The AralLLaMA-13B-chat, in particular,
stood out with exceptional Average F1 scores of
76.37% and 76.90% in “all set" and "clean Set"
categories, respectively, even outperforming the
renowned GPT-3.5 Turbo in the "All set" category.
This performance not only highlights the Aral-
LaMA models’ superior grasp of Arabic culture
but also establishes them as leading figures among
open-source models in this nuanced domain. Com-
pared to other top-tier open-source contenders, in-
cluding the Jais-30B-chat variants, the AralLLaMA-
13B-chat model’s superior results. The instruction-
following tests can be found in Appendix I.

6 More Analysis

6.1 Ablation Study on Progressive Vocabulary
Expansion

To further demonstrate the effectiveness of pro-
gressive vocabulary expansion in downstream task
adaptation, we conduct continuous pre-training on
a 1B-parameter TinyLLaMA model (Zhang et al.,
2024), followed by supervised fine-tuning. More
details on the experimental setup can be found in
Appendix J.

A comprehensive analysis is conducted by ap-
plying the same Supervised Fine-Tuning (SFT) pro-
tocol across three pre-training configurations: the
baseline TinyLLaMA model, TinyLLaMA with
Progressive Vocabulary Expansion (PVE), and
TinyLLaMA with Vocabulary Expansion all at once
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Models Arabic-trans MMLU (Huang et al., 2024) ArabicMMLU (Koto et al., 2024) Total
sTM Human- Social “qp | Avg. [sTEM JSocial Human- Arabic o |y, | Ave
ities  Sciences Sciences ities Language
Bloomz-7B-base 3335 2929 37.58 34.5333.69 - - - - - - -
LLaMA2-7B-base 30.30 29.33 2746 30.78 | 29.47 | 33.7 32.8 33.5 28.4 36.7 [33.4|31.43
AceGPT-7B-base 29.73 3095 3345 34423214 | 354 359 36.2 31.1 41.7 |36.3|34.22
AraLLaMA-7B-base |33.03 32.08 35.39 35.59 | 34.03 | 36.7 36.5 34.1 30.0 41.2 |37.0|35.52
LLaMA2-13B-base 3294 3230 3342 37273376 329 35.0 37.8 35.8 39.3 136.1(34.93
Jais-13B-base 30.51 3125 3374 33.43(33.76 | 30.3 314 33.6 28.1 36.3 [32.2(32.98
AceGPT-13B-base 36.60 38.74 43.76 42.72| 4045 | 42.7 455 48.3 42.4 50.7 [46.1|43.28
AralL.LaMA-13B-base| 36.13 40.07 4543 42.17 | 4095 | 42.4 45.7 48.4 46.3 52.5 |47.6 |44.28
Jais-30B-v1-base 32.67 30.67 42.13 39.60 | 36.27 | 39.5 45.6 50.5 34.6 49.1 |44.8 |40.54
GPT-3.5 Turbo 4338 44.12 5557 53.21|49.07 | 53.8 57.0 57.5 57.6 63.8 [57.7|53.39

Table 2: Evaluation of base models. We adopt a few-shot setting on Arabic-translated MMLU (Huang et al., 2024)
and a zero-shot setting with option logit probability in ArabicMMLU (Koto et al., 2024). Numbers with the best

performance are in bold in 7B and 13B groups.

Models Arabic English Total

MMLU MMLU ACVA ACVA BoolQ ARC-C

(trans) (Koo et al., 2024) EXAMS clean all (trans) (trans) Avg. |BoolQ RACE| Avg. | Avg.
LLaMA?2-7B-chat 13.78 33.40 13.05 20.99 21.80 34.92 23.72 |21.09| 71.31 50.49 [60.90(31.49
Phoenix-7b 29.72 44.74 31.93 43.80 41.86 66.70 33.53 |41.75]|62.23 60.97 |{61.60(46.16
AceGPT-7B-chat 30.69 36.31 33.73 53.87 53.07 60.70 38.05 |43.77|54.74 53.97 |54.36(46.12
Mistral-7B-Instruct-v0.2| 27.93 41.44 21.56 64.56 63.47 60.18 35.67 |44.97|84.53 73.17 |78.85(52.50
AraLLaMA-7B-chat 45.77 56.62 43.69 69.46 70.86 72.45 60.49 (59.90|75.78 72.13 |73.96|63.02
Jais-13B-chat 19.52 54.83 19.71 66.75 61.41 41.25 11.95 [39.34]28.13 20.08 [24.10]35.96
LLaMAZ2-13B-chat 8.92 36.12 16.11 35.12 35.71 54.13 27.47 |30.51| 62.87 48.28 |55.58(36.08
AceGPT-13B-chat 35.59 52.61 38.72 70.82 70.21 66.85 44.20 |54.14| 60.55 45.22 |52.88(53.86
AraLLLaMA-13B-chat | 47.33 61.70 48.37 7690 76.37 69.33 63.99 |63.42| 83.67 80.82 |82.24|67.61
Jais-30B-chat-v1 38.12 59.33 4045 7446 72.41 73.76 50.94 |58.49| 65.05 75.26 |70.16]61.09
Jais-30B-chat-v3 35.68 62.36 32.24  73.63 73.66 76.30 51.02 |57.84|79.54 85.23 |82.43(63.29
GPT-3.5 Turbo 46.07 57.72 45.63 7445 76.88 76.12 60.24 |62.44| 85.32 84.65|84.99|67.45

Table 3: Chat Models Evaluation in zero-shot setting. Numbers with best performance are in bold in 7B and 13B

groups.

(VE). The performance of these models is evalu-
ated on the Arabic MMLU (see Table 4) and Arabic
Vicuna-80 (see Table 5) benchmarks. Experiment
results demonstrate that vocabulary expansion sig-
nificantly enhances model performance, with the
PVE approach yielding superior results across var-
ious categories in the Arabic MMLU benchmark,
achieving an average score of 40.7 compared to
38.5 for VE and 36.5 for the baseline model. Simi-
larly, in the Arabic Vicuna-80 comparison, the PVE
method led to the highest accuracy of 29.18%, out-
performing VE (22.61%) and the baseline model
(21.3%). These results underscore the effectiveness
of progressive vocabulary expansion in enhancing
language model performance, particularly in com-
plex language tasks.

6.2 Benchmarking in English dataset

We evaluated the accuracy of both base and chat
models on the English MMLU dataset. As illus-
trated in Table 2 (shown in Appendix G), in the base
model category, AraLLaMA’s accuracy is slightly
lower than that of the original LLaMA model but

notably higher than the AceGPT model, which
is also trained on the LLaMA architecture. This
indicates that expanding Arabic capabilities via
an annealing algorithm does not compromise the
model’s inherent English proficiency. This offers a
viable solution for language transfer in large mod-
els. After undergoing SFT, AraLLaMA achieves
the highest accuracy among models of similar size
and surpasses the Jais-30B model, which has a
greater number of parameters.

6.3 Decoding Efficiency Analysis

We conducted a systematic evaluation of generation
efficiency between LLaMA?2 and AraLLaMA 7B
chat models on Arabic text generation tasks. Each
model was tested on standardized Arabic prompts
with a maximum output length of 100 tokens. To
ensure statistical reliability, we performed five inde-
pendent trials and analyzed only Arabic language
outputs, excluding any non-Arabic tokens from the
performance calculations.

Table 6 shows that while both models achieve
similar token processing speeds ( 30 tokens/second,
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Model STEM Spc1al Humanities Arabic Other | Avg.
Sciences Language

TinyLLaMA chat 35.1 36.9 38.5 28.6 39.8 | 36.5

TinyLLaMA (VE) chat 353 39.7 40.1 33.8 41.6 | 385

TinyLLaMA (PVE) chat 36.3 40.7 44.2 335 45.7 40.7

Table 4: Performance comparison on ArabicMMLU (Koto et al., 2024) across different domains.

Model Accuracy (%)
TinyLLaMA chat 21.30 (baseline)
TinyLLaMA (VE) chat 22.61 (++1.31)
TinyLLaMA (PVE) chat ~ 29.18 (+47.88)

Table 5: Performance Comparison on Arabic Vicuna-80
Benchmark

Model Tokens/Second Words/Second
LLaMA2 29.68 4+ 0.04 4.55 +0.50
AralLLaMA 30.12 4+ 0.06 20.37 £ 0.04

Table 6: Comparative analysis of generation speed be-
tween LLaMA2 and AralLLaMA on Arabic text.

p > 0.05), AraLLaMA generates words 4.5x
faster. This efficiency gain (from 4.55 £ 0.50 to
20.37 £ 0.04 words/second) demonstrates the ef-
fectiveness of our vocabulary expansion approach.
The improved word-level performance while main-
taining similar token-level speeds indicates that
our language-specific tokenization strategy success-
fully optimizes text generation for Arabic’s mor-
phological complexity.

7 Conclusion

Adapting large-scale models to less commonly spo-
ken languages is fraught with challenges, notably
the hurdles of knowledge transfer and the preva-
lence of OOV terms. We developed a novel an-
nealing training algorithm to address these issues
specifically for Arabic. This strategy methodically
expands the vocabulary and employs a phased train-
ing process, leading to the development of the Ar-
aLLLaMA 7B and 13B models. Subsequent eval-
uations of both the base and chat configurations
across diverse datasets have unequivocally estab-
lished AralLLaMA’s superior accuracy compared
to peers within the same parameter range. Remark-
ably, the AralLLaMA also exhibits robust perfor-
mance advantages over models with significantly
more parameters. The proven efficacy of our al-
gorithm is supported by robust empirical evidence.
Moving forward, we aim to further democratize ac-

cess to advanced model technology by making our
models, along with their code and datasets, openly
available, thus making a meaningful contribution
to the progress of the field.

Limitation

This paper exhibits several limitations. Due to con-
straints in resources and budget, the models has
not undergone evaluation by native Arabic speak-
ers, which could affect its practicality and adoption.
Consequently, its use is currently confined to aca-
demic research rather than online deployment. Ad-
ditionally, the writing of this paper was supported
by Al tools for grammar correction and refinement.
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A Related Work

Our work primarily focuses on two key areas: low-
resource language models and vocabulary expan-
sion.

Low-resource language models Recent efforts
have centered on developing open-source LLMs
as alternatives to proprietary models like GPT-3.5
Turbo and GPT-4 (Taori et al., 2023; Chiang et al.,
2023; Conover et al., 2023; Chen et al., 2023; Sen-
gupta et al., 2023). These initiatives have expanded
beyond English, addressing languages with fewer
available resources and creating models specifically
tailored to diverse linguistic landscapes (Chen et al.,
2023; Ustiin et al., 2024). SeaLLMs (Nguyen et al.,
2023) are adapted from English-centric models
by extending vocabulary and fine-tuning to better
capture regional language complexities. Jais (Sen-
gupta et al., 2023) introduces a model trained from
scratch based on GPT architecture, while AceGPT
Huang et al., 2024 offers a model designed to adapt
to local Arabic culture, specifically tailored to re-
gional nuances. This trend highlights the grow-
ing need for multilingual LLMs that perform well
in low-resource environments while maintaining
competitive performance against more established
models.

Vocabulary expansion Vocabulary expansion
for large language models (LLMs) has become a
crucial area of research, particularly for improv-
ing performance in low-resource languages. Tra-
ditional methods like Byte Pair Encoding (BPE),
while effective at handling out-of-vocabulary
(OOV) words, are suboptimal for pretraining larger
models, as discussed by Tay et al. (Bostrom and
Durrett, 2020), who propose alternative tokeniza-
tion methods to better capture linguistic nuances.
Pham et al. (Xu et al., 2020) advance this by intro-
ducing optimal transport-based vocabulary learn-
ing, which optimizes the distribution of subword
units, enhancing translation tasks, particularly in
multilingual and low-resource settings.

Kudo et al. (Kudo, 2018) propose subword reg-
ularization and offer another avenue for improve-
ment by allowing models to learn from multiple
subword segmentation rather than a fixed one, in-
creasing robustness and flexibility. In contexts with
limited data, Liu et al. (Salesky et al., 2020) have
demonstrated that combining subword-based meth-
ods with additional pretraining steps significantly
improves model performance. These works show
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that moving beyond traditional vocabulary methods
allows for more dynamic and context-aware model-
ing, enhancing LLMs’ scalability and adaptability
across diverse linguistic landscapes.

B CEFR Language Proficiency Levels

Table 8 illustrates the vocabulary size that learners
are expected to acquire at various stages of second
language acquisition. The vocabulary size is grad-
ually expanding when humans acquire a second
language, as one cannot achieve proficiency in all
second-language words at once, as it takes time to
digest these words.

C Cognitive Mechanisms of Vocabulary
Acquisition

We reviewed relevant literature to confirm the phe-
nomenon of exponential vocabulary expansion in
second language acquisition and the cognitive the-
ories that support it. Studies indicate that learners
typically begin by mastering a small set of high-
frequency vocabulary in the early stages of lan-
guage learning. As they progress, their vocabulary
size grows rapidly. This process can be explained
through the following two aspects:

Cognitive Mechanisms of Incremental Learning
In the initial stages, learners build their understand-
ing by repeatedly encountering and using simple
foundational words. Research by (Krashen, 1982)
and (Nation and Nation, 2001) shows that master-
ing high-frequency vocabulary is crucial for under-
standing more complex linguistic structures. These
foundational words provide a stable cognitive base,
allowing learners to gradually expand their vocabu-
lary (Zhang et al., 2021; Nakata, 2015).

Exponential Vocabulary Growth Once learn-
ers acquire foundational vocabulary, the rate of
vocabulary expansion accelerates. Through exten-
sive reading and structured learning strategies such
as spaced retrieval practice (Leén Romero et al.,
2016), learners are able to acquire complex vocab-
ulary in a relatively short period. (Coady, 1996)
emphasize that extensive reading provides a large
amount of language input, enabling learners to in-
crementally encounter and absorb more advanced
vocabulary.

D Arabic data distribution

Table 9 show the Arabic dataset primarily draws
from several key sources, with the largest contri-

bution coming from the Common Crawl (filtered)
dataset, which accounts for 55.5% of the total data.
Other significant sources include WebText, which
contributes 26.7%, and Books+Newspapers, pro-
viding 8.9% with 2.5 billion tokens. Additionally,
Wikipedia is divided into two parts, contributing
3.76% and 5.14%. These diverse sources collec-
tively form the foundation for training the Arabic
model.

E Data mixture

Table 10 shows the data distribution across the pre-
training stages is carefully adjusted, with the pro-
portions of Arabic and English data determined
using a cosine annealing schedule. Initially, the
Arabic data constitutes 30% of the total, while
English data makes up 65% and math & coding
data consistently accounts for 5%. As the training
progresses and new subwords are added, the pro-
portion of Arabic data increases steadily, reaching
90% by the final stage. Concurrently, the English
data proportion decreases to 5%, while the math &
coding data remains constant at 5% throughout all
stages. This dynamic adjustment ensures that the
model effectively balances the learning of Arabic
and English content, with a strong emphasis on
Arabic in the later stages.

F Comparison of compression ratio and
OOV changes at different stages
between exponential and uniform
expansion

Table 11 illustrates the trends in compression ra-
tio and OOV (Out-Of-Vocabulary) ratio as vocab-
ulary size is incrementally expanded using both
Exponential and Uniform methods. In the case of
**Exponential Vocabulary Expansion**, both the
compression ratio and OOV ratio change gradually,
ensuring a more balanced progression as new sub-
words are added. This gradual change is beneficial
for maintaining stability during model training, as
it allows the system to adjust incrementally to the
growing vocabulary.

G Evaluation of models in English
MMLU dataset

In the evaluation of English MMLU performance,
AralLLaMA models, both 7B and 13B, consis-
tently outperform their counterparts across most
categories in both few-shot and zero-shot settings
(shown in Table 2). Particularly, AraLLaMA-13B
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Language

Aspect Benchmark (+ translation) Size Evaluation Types Metrics
RACE (Lai et al., 2017) EN 49K Multiple-choice Questions  Accuracy
Knowledee Abilit MMLU (Hendrycks et al., 2021b) EN (+AR) 14K Multiple-choice Questions ~ Accuracy
& y ArabicMMLU (Koto et al., 2024) AR 14.5K  Multiple-choice Questions  Accuracy
EXAMS (Hardalov et al., 2020) AR 0.56K  Multiple-choice Questions  Accuracy
Arabic Cultural ACVA-all (Huang et al., 2024) AR 9K Yes/No binary Questions Fl1-score
and Value Alignment ACVA-clean AR 248K  Yes/No binary Questions F1-score
Commonsense BoolQ (Clark et al., 2019) EN (+AR) 3.27K  Yes/No binary Questions Accuracy
Reasoning ARC-Challenge (Clark et al., 2018)  (+AR) 1.17K  Multiple-choice Questions  Accuracy
Table 7: Overview of Evaluation benchmarks
CEFR Level Description Learning Hours Vocabulary Size
. Al | Beginner Level 110-130 2000 words
Basic User
A2 | Elementary Level 150-180 3000 words
B1 | Intermediate Level 200-230 5000 words
Independent User -
B2 | Upper Intermediate Level 200-230 8000 words
. C1 | Advanced Level 150-200 10000 words
Proficient User
C2 | Mastery Level 250-300 30000 words

Table 8: CEFR Language Proficiency Levels.

achieves the highest average score of 62.89 in zero-
shot tasks, demonstrating its superior capability in
generalization and task adaptability.

H ALAN examples

We provide concrete examples of ALAN below.
Note that we translate examples into English us-
ing GPT-3.5-Turbo. In practice, our data is in
Arabic.

H.1 Topics

A set of 30 topics, randomly chosen, is listed be-
low:

"Arabic Language and Literature" "Mathematics"
"Islamic Studies" "Middle Eastern History and
Politics" "Computer science" "Economics" "Healthcare
industry" "Social work" "Business" "Geography"
"Mining" "Chemical Engineering" "Languages and
Literature" "Materials Science and Engineering"
"Transport industry" "Chemistry" "Food industry"
"Systems science" "Astronomy" "Cultural industry"
"Energy industry" "Radiology" "Pediatrics"
"Dentistry" "Civil Engineering" "Aerospace industry"
"Public administration" "Infectious disease" "Public

policy" "Environmental studies and forestry"

H.2 Subjects

A set of 30 subjects, randomly chosen, is listed
below:

"Hypersonic and High-Speed Flows" "Mental
Health Nursing" "Mechanical Systems and Energy
Efficiency" "Obstetrics and Gynecological Nursing"
"Immunology" "Interdisciplinary Geriatric Care"
"Signal Processing" "Geography research methods
and techniques" "Public Administration and
Management" "An introduction to space exploration"
"Environmental and Safety Management" "Social and
Ethical Aspects of Agriculture" "Folk and Cultural
Dance" "Power System Protection and Control"
"Collage and Mixed Media" "Advanced Game Theory"
"Pediatric Critical Care" "Transport Modeling
and Forecasting" "Foundations of Mathematics"
"Carbon Capture, Storage, and Utilization" "Customer
Service and Relationship Management" "Introduction
to Probability" "Virtual Reality and Augmented
Reality" "Reservoir Management and Enhanced 0il
Recovery" "Safety and Standards in Industrial
Robotics" "Social Work with LGBTQ+ populations"
"Nutritional Science" "Advanced Gynaecology Courses"
"Bioinformatics and Computational Chemistry"

"Reusable Launch Vehicle Technology"

H.3 A syllabus with specific knowledge points

We provide an example syllabus with specific
knowledge points as below.

Subject title: Hypersonic and High-Speed Flows
Lecture title: Introduction to Hypersonic Flows
Knowledge points:

— Definition of hypersonic flows
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Dataset # tokens Weight in training mix
Common Crawl (filtered) 101.3 billion 55.5%
WebText 10.62 billion 26.7%
Books+Newspapers 2.5 billion 8.9%
Wikipedial 0.36 billion 3.76%
Wikipedia2 0.51 billion 5.14%
Table 9: Arabic data distribution and elapsed epochs
Stage New subwords added Arabic data  English data  math & coding data
1 0 30.00% 65.00% 5.00%
2 1 30.33% 64.47% 5.00%
3 2 31.31% 63.69% 5.00%
4 4 32.94% 62.06% 5.00%
5 8 35.19% 59.81% 5.00%
6 16 38.04% 56.96% 5.00%
7 32 41.46% 53.54% 5.00%
8 64 45.41% 49.59% 5.00%
9 128 49.85% 45.15% 5.00%
10 256 54.73% 40.27% 5.00%
11 512 60.00% 35.00% 5.00%
12 1024 65.60% 29.40% 5.00%
13 2048 71.46% 23.54% 5.00%
14 4196 77.53% 17.47% 5.00%
15 8192 83.73% 11.27% 5.00%
16 12800 90.00% 5.00% 5.00%

Table 10: Detailed distribution of Arabic, English and math & coding data across each pre-training stage.

— Mach number

- Key characteristics of hypersonic flows
Lecture title: Fundamentals of Shock Waves
Knowledge points:

— Definition of shock waves

- Formation of shock waves

- Types of shock waves

Lecture title: High-Temperature Gas Dynamics
Knowledge points:

— Definition of high-temperature gas dynamics

- Behavior of high-temperature gases

- Effects of high-temperature gases on materials
Lecture title: Principles of Rarefied Gas Dynamics
Knowledge points:

— Definition of rarefied gas dynamics

— The continuum hypothesis

- Governing equations

Lecture title: High-Speed Flow Over Bodies
Knowledge points:

— High-speed flow characteristics

— Impact on the body

- Aerodynamic heating

Lecture title: Hypersonic Vehicle Configurations

Knowledge points:

- Types of hypersonic vehicles

— Vehicle configurations

— Advantages and limitations of each configuration
Lecture title: Aerothermodynamics of Hypersonic
Flows

Knowledge points:

— Definition of aerothermodynamics

— Aerothermodynamics in hypersonic flows

— Heat transfer in hypersonic flows

Lecture title: Hypersonic Flow Control
Knowledge points:

— Importance of flow control

— Methods of hypersonic flow control

— Challenges in hypersonic flow control
Lecture title: Hypersonic Propulsion Systems
Knowledge points:

- Types of hypersonic propulsion systems

- Working principles

- Advantages and disadvantages

Lecture title: Future Trends in Hypersonic and
High-Speed Flows

Knowledge points:

— Current research in the field

- Potential future trends

— Challenges and opportunities

2039



Add Subword Size Compress Ratio (Exponential) OOV Ratio (Exponential) Add Subword Size Compress Ratio (Uniform) OOV Ratio (Uniform)

0 0.90 0.000 0 0.90 0.000

1 0.88 0.017 853 0.45 0.669

2 0.87 0.018 1736 0.40 0.116

4 0.85 0.022 2559 0.37 0.068

8 0.82 0.038 3412 0.35 0.049
16 0.77 0.061 4265 0.34 0.039
32 0.72 0.076 5118 0.33 0.031
64 0.65 0.094 5971 0.32 0.026
128 0.60 0.093 6824 0.31 0.021
256 0.54 0.105 7677 0.31 0.019
512 0.48 0.116 8530 0.30 0.017
1024 0.43 0.110 9383 0.30 0.015
2048 0.39 0.118 10236 0.30 0.013
4096 0.34 0.120 11089 0.29 0.012
8192 0.31 0.116 11942 0.29 0.011
12800 0.28 0.070 12800 0.28 0.010

Table 11: Comparison of Exponential and Uniform Vocabulary Expansion Methods

H.4 Synthetic QA data

We provide a synthetic QA example using knowl-
edge points generated by GPT-3.5-Turbo.

Subject title:

Computer Vision for Industrial Robotics

Lecture title:

Stereo Vision and 3D Reconstruction

Knowledge points:

- Principles of stereo vision

- Stereo camera calibration

- Depth estimation and 3D reconstruction

— Point cloud processing

Synthetic question:

In stereo vision, the process of determining the
depth of objects in a scene is known as:

A. Image rectification

B. Disparity mapping

C. Camera calibration

D. Point cloud processing

Synthetic solution to the question:

B
Explanation:

The correct answer is B. Disparity mapping. In
stereo vision, the depth of objects in a scene is
determined by calculating the disparity between
corresponding points in the left and right images.
Disparity mapping involves finding the pixel-level
differences between the two images to estimate the

depth information.

I Instruction-following test

We evaluated the models’ instruction-following
capabilities using the Arabic versions of Vicuna-
80 (Chiang et al., 2023), translated by GPT-4 and
refined by native speakers. Following the method-
ology in (Chiang et al., 2023), GPT-4 was used
as the evaluator, assigning scores to each model’s
performance compared to GPT-3.5 Turbo, with a
temperature setting of 0.2. For each question, GPT-
4 independently scored the responses from both
the evaluated model and GPT-3.5 Turbo. The aver-
age performance ratio of the evaluated model was
calculated by dividing its overall score by that of
GPT-3.5 Turbo. Results in Table 13 indicate that
AralLLaMA models outperform their counterparts
in Arabic Vicuna-80. Notably, AralLLaMA-7B ex-
ceeds Jais-13B by approximately 17%, despite hav-
ing a smaller model size.

Model Ratio of GPT-3.5
Jais-13B 75.40%
Llama-7B 78.99%
AralL.LaMA-7B 92.71%

Table 13: Performance ratio of GPT-3.5 Turbo in Arabic
Vicuna-80.

J Details of Ablation Study

J.1 Experiment Settings:

We undertook continuous pre-training on a 1B-
parameter TinyLLaMA model (Zhang et al., 2024),
which is derived from the LLaMA architecture and
was initially trained on an English corpus compris-
ing 3 trillion tokens. The pre-training regimen was
segmented into five distinct stages, during which
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—— Gradually expand vocabulary
Expand the vocabulary at once

Training Loss
1
1
1
1
1
1
1

soco w500 10600 2é00 18600
Training Step

Figure 3: Loss curve of TinyLLaMa with sliding win-
dow average

0, 16, 64, 256, and 1024 Arabic subwords were
progressively added to the vocabulary. Each stage
allocated a different volume of data, totaling 80
billion tokens, with the proportion of Arabic to En-
glish data gradually shifting from 0:10 to 9:1. In a
parallel experiment, we introduced 1024 subwords
to the vocabulary in a single step, maintaining the
same total token count and data distribution as in
the phased approach. Both experiments adhered
to an identical learning rate strategy, reinstating a
cosine learning rate scheduler at the onset of each
stage, starting with an initial rate of le-5 and taper-
ing to 2e-6, with the initial 5 billion tokens of each
stage designated for warm-up. Utilizing 192 GPUs,
the experiments were conducted with a batch size
of 3072.

J.2  Progressive Vocabulary Expansion
Pre-training

The results shown in Figure 3 demonstrate that
the strategy of progressively expanding the vocabu-
lary, which applies a sliding window average tech-
nique, yields a reduced final loss. Furthermore, as
evidenced in Table 14, within the ArabicMMLU
dataset, the approach of incrementally introduc-
ing new vocabulary items consistently outperforms
the method of a one-time vocabulary expansion.
This pattern underscores the effectiveness of grad-
ual vocabulary enhancement in optimizing model
performance.
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Model STEM 0% Humanities . ™0 Other| Avg
Sciences Language

Expand vocab at once 28.6  26.7 28.1 24.4 30.1 [27.0
Gradually expand vocab (ours) |29.8 27.1 27.2 24.6 314 (273

Table 14: Zero-shot evaluation for TinyLLaMA in ArabicMMLU (Koto et al., 2024) with option logit probabiltiy
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