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Abstract

There has been increasing interest in unifying
streaming and non-streaming automatic speech
recognition (ASR) models to reduce develop-
ment, training, and deployment costs. We
present a unified framework that trains a single
end-to-end ASR model for both streaming and
non-streaming applications, leveraging future
context information. We propose to use dy-
namic right-context through the chunked atten-
tion masking in the training of zipformer-based
ASR models. We demonstrate that using right-
context is more effective in zipformer models
compared to other conformer models due to
its multi-scale nature. We analyze the effect
of varying the number of right-context frames
on accuracy and latency of the streaming ASR
models. We use Librispeech and large in-house
conversational datasets to train different ver-
sions of streaming and non-streaming models
and evaluate them in a production grade server-
client setup across diverse testsets of different
domains. The proposed strategy reduces word
error by relative 7.9% with a small degrada-
tion in user-perceived latency. By adding more
right-context frames, we are able to achieve
streaming performance close to that of non-
streaming models. Our approach also allows
flexible control of the latency-accuracy tradeoff
according to customers requirements.

1 Introduction

In recent times, end-to-end (E2E) ASR models
have started taking the main stage in industrial use-
cases (Povey et al., 2016). Recurrent neural net-
works (RNNs) are crucial as they can model the
temporal dependencies in audio sequences effec-
tively (Chiu et al., 2018; Rao et al., 2017; Sainath
et al., 2020). The transformer architecture with
self-attention has gained substantial attention in
ASR to capture long distance global context and
show high training efficiency (Zhang et al., 2020b;
Vaswani et al., 2017; Hsu et al., 2021; Chen et al.,

2022). Alternatively, ASR based on convolutional
neural networks (CNNs) has also been successful
due to its ability to exploit local information (Li
et al., 2019; Han et al., 2020a; Abdel-Hamid et al.,
2014). Recently, the conformer ASR model (Gulati
et al., 2020) was proposed for combining the advan-
tages of CNN and transformer models, to extract
both local and global information from a speech
sequence (Han et al., 2020b; Shi et al., 2021; Kim
et al., 2022; Yao et al., 2023). Zipformer (Yao et al.,
2023) is an extension of the previous conformer
models, providing a transformer that is faster, more
memory-efficient, and better-performing.

Latency-accuracy is a critical trade-off for an
ASR model, especially for streaming ASR models.
In systems with concurrent call processing, it be-
comes critical to find the optimal operating point in
the latency-concurrency-accuracy trio. Streaming
decoders work on chunk-based processing, where,
for each frame the encoder has access to, the entire
left-context and a variable right-context depending
on the frame’s position in a chunk are used.

Right context has a significant role in the context
of a unified model in streaming and in offline pro-
duction environment. Typically, the WER of the of-
fline model is significantly lower compared to that
of a streaming model. Therefore, separate models
are generally trained for offline and streaming use-
cases. This requires twice the compute resource to
train the models and additional resource to main-
tain and update the models. Adding right-context
helps bridge the gap in WER between offline and
streaming models with a small degradation in la-
tency in the streaming case.

In Swietojanski et al. (2023), authors use vari-
able attention masking in a transformer transducer
setting, however the influence of different num-
bers of right-context frames is not explored and the
work instead focuses on using right-context rang-
ing from multiple chunks to full context, which
may not be possible for a streaming setup. Li et al.
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(2023) propose a dynamic chunk-based convolu-
tion, where the core idea is to restrict the convolu-
tion at chunk boundaries so that it does not have
access to any future context and resembles the infer-
ence scenario. Our approach, by contrast, uses lim-
ited additional right-context frames beyond chunk
boundaries. Our proposed method is also different
from that of Tripathi et al. (2020), where initial
layers are trained with zero right context and the
final few layers are trained with variable context.
If we wanted a streaming model with different la-
tency during inference, the model would need to
be retrained. Zhang et al. (2020a) use dynamic
chunk sizes for different batches in training and
the attention scope varies from left-context only
to full context. The authors in Wu et al. (2021)
further enhance their strategy by employing bidi-
rectional decoders in both forward and backward
direction of the labeling sequence. In both passes,
they use either full right-context or full left-context
attention masking, which may adversely impact the
real-time streaming use-case.

Our work is significantly different from the afore-
mentioned approaches in terms of training with
variable right-context while decoding with extra
right-context frames in addition to the chunk be-
ing decoded in the inference phase. We propose
to unify streaming and non-streaming zipformer-
based ASR models by leveraging future context.
The conventional zipformer model uses chunked at-
tention masking and utilizes only left-context while
we use a variable number of right-context frames
for different mini-batches during training, provid-
ing the flexibility to select a desired number of
right-context frames during inference, according
to the desired accuracy-latency tradeoff. We study
the effect of choosing different amounts of right
context on latency and accuracy, finding that as
the number of decoding right-context frames in-
creases, the streaming zipformer ASR model can
approach the performance of the corresponding
non-streaming model without significantly degrad-
ing latency. We evaluate our method on both open-
source read speech and industry-scale production-
specific conversational speech data.

2 Right-context in Zipformer

Here we review the zipformer model and the atten-
tion masking employed to incorporate right-context
information (Gulati et al., 2020; Yao et al., 2023).
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Figure 1: Zipformer encoder architecture showing each
layer at different frame rates (left) and different modules
in each encoder layer (right).

2.1 Zipformer model

The zipformer model is a significant advancement
in transformer-based ASR encoding, offering su-
perior speed, memory efficiency, and performance
compared to conventional conformer models. A
conformer model adds a convolution module to a
transformer to add both local and global dependen-
cies. In contrast to the fixed frame rate of 25Hz
used by conformers, the zipformer employs a U-
Net-like structure, enabling it to learn temporal
representations at multiple resolutions in a more
streamlined manner.

In the zipformer encoder architecture, we have
six encoder blocks, each at different sampling rates
learning temporal representation at different reso-
lutions in a more efficient way. Specifically, given
the acoustic features with frame rate of 100 Hz, a
convolution based module reduces it first to 50 Hz,
followed by the six cascaded stacks to learn tem-
poral representation at frame rates of 50Hz, 25Hz,
12.5Hz, 6.25Hz, 12.5Hz, and 25Hz, respectively
as shown on the left side of Figure 1. The mid-
dle block operates at 6.25 Hz undergoing stronger
downsampling, thus facilitating more efficient train-
ing by reducing the number of frames to process.
The frame rate between each block is consistently
50 Hz. Different stacks have different embedding
dimensions, and the middle stacks have larger di-
mensions. The output of each stack is truncated or
padded with zeros to match the dimension of the
next stack. The final encoder output dimension is
set to the maximum of all stacks’ dimensions.

The inner structure of each encoder block is
shown in the right side of Figure 1. The primary
motivation is to reuse attention weights to improve
efficiency in both time and memory. The block
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input is first processed by a multi-head attention
module, which computes the attention weights.
These weights are then shared across a non-linear
attention module and two self-attention modules.
Meanwhile, the block input is also fed into a feed-
forward module followed by the non-linear atten-
tion module.

2.2 Attention masking
The multi-head self-attention facilitates fine-
grained control over neighboring information at
each time step. At each time t, Zipformer(x, t)
may be derived from an arbitrary subset of fea-
tures in x, as defined by the masking strategy im-
plemented in the self-attention layers (Vaswani
et al., 2017). Given the attention input Y =
(y1, . . . , yLy), yt ∈ R self-attention computes

Q = Fq(Y ),K = Fv(Y ), V = Fv(Y ), (1)

Att(Q,K, V ) = softmax

(M(QKT )√
d

)
V T ,

(2)
where, d is the attention dimension, M is the at-
tention mask with values 0 and 1 of dimension
Ly × Lk. The attention mask in the Equation 2
regulates the allowance of number of left and right-
context frames corresponding to each frame of Y .

2.3 Right-context attention masking
The attention masks constrain the receptive field
in each layer without the need for physically seg-
menting the input sequence. In a streaming ASR
setup, to mitigate computational costs and latency,
the processing occurs at the chunk level rather than
at the frame level. A specific number of frames are
grouped into chunks, and each chunk is then en-
coded as a batch. Following Shi et al. (2021); Chen
et al. (2021), we use chunked attention masking
to confine the receptive field during self-attention
computation. In conventional chunked attention
masking, each frame within a chunk is exposed to
varying extents of left- and right-context frames.
The initial frames in a chunk have access to some
right-context frames, while the later frames have no
access to right-context frames, enforcing a causal
constraint at chunk boundaries.

The conformer and zipformer ASR recipes in
k2-fsa icefall1 (Gulati et al., 2020; Shi et al., 2021)
deploy chunked attention masking and use only
left-context as shown in Figure 2(a). For streaming

1https://github.com/k2-fsa/icefall

decoders, each frame in the encoder accesses left-
context and variable right-context depending on the
frame’s position in a chunk.

However, the right-context information is very
relevant to learn the acoustic-linguistic attributes of
a chunk. Utilizing a modest right and left context
may yield improved performance in terms of WER
and latency when compared to solely relying on an
extensive left-context. Incorporating right-context
will thus help to narrow the gap in WER between
streaming and non-streaming models. Furthermore,
due to the varying temporal resolutions of each
layer within the zipformer encoder block, the uti-
lization of right-context frames becomes more ef-
ficient. In this work, we deploy chunked masking
with right-context as shown in Figure 2(b), where
the extent of right-context and left-context can be
varied based on requirements. We note that the
right-context frames are the frames beyond the
chunk boundaries, not within the chunks.

Look ahead direction

Look back direction

Fram
es

(a) Chunked masking without right-context (b) Chunked masking with right-context

Current chunk Left-context Right-context

Figure 2: Attention masking in zipformer; (a) chunked
masking with left-context and no right-context, (b) chun-
ked masking with both left-context and right-context.

3 Experiments

Below we discuss the database used and exper-
iments conducted to demonstrate the effective-
ness of right-context in unified streaming and non-
streaming ASR models.

3.1 Dataset

We conduct experiments using two data setups, us-
ing Librispeech and large in-house conversational
data. In the Librispeech setup, we use the standard
960 hours of training data, as well as test-clean
(5.40 hrs) and test-other (5.10 hr) partitions for
testing. Using the Librispeech setup we train a con-
ventional conformer transducer streaming model
and a baseline zipformer streaming model without
any right-context during training. Using this setup,
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we also train a zipformer streaming model with pro-
posed right-context strategy and a non-streaming
model.

Using the large in-house conversational setup,
we train zipformer models without right-context,
with right-context and the non-streaming variant.
The in-house training data is derived by combin-
ing different open source databases along with in-
house conversational and simulated conversational
telephonic datasets as shown in Table 1. In total
we use 12,468 hours of training data. The training
data also includes a synthesized corpus generated
using a text-to-speech model. We employ diverse
in-house test datasets listed in Table 1 that comprise
different domains and accents. The DefinedAI en-
in, en-ph, en-au and en-gb subsets correspond to
Indian, Filipino, Australian and UK-accented En-
glish, respectively. To evaluate the latency and in-
ference time in the server-client setup, we use long
conversations as test data to mimic the production
use-cases.

Table 1: Duration and domain information for different
training and test sets used in the experiments.

Dataset Duration (hours) Domains

Train data

Defined AI 2876.99 Banking, Insurance, Retail, Telecom
WoW AI 5316.76 Airlines, Auto-insurance, Automotive, Medicare,

Customer Service, Home Service, Generic
Client-1-3 1457.34 Telecom
Client-4 52.55 Healthcare
Client-5 75.00 Airlines
Client-6 45.42 Banking
Client-7 13.75 Medicare

Client-8-16 956.95 Generic
Spgispeech 866.45 Generic
Switchboard 309.99 Generic

CommonVoice 179.15 Generic
GigaSpeech 124.14 Generic
Alphadigits 30.83 Alphadigits

Synthesised data 162.72 Generic, Banking

Test data

Defined AI en-in 85.34 Banking, Insurance, Retail, Telecom
Defined AI en-gb 52.08 Banking, Insurance, Retail, Telecom
Defined AI en-ph 31.90 Banking, Insurance, Retail, Telecom
Defined AI en-au 51.28 Banking, Insurance, Retail, Telecom

Client-1 12.36 Telecom
Client-2 3.60 Telecom
Client-3 7.64 Telecom
Client-17 35.96 Generic

Latency test data
Long calls testset 310.09 Generic

3.2 Experimental setup

To assess the effectiveness of the proposed ap-
proach to unify streaming and non-streaming ASR
models, we setup our experiments using Lib-
rispeech and large in-house conversational dataset.
For both the setups, we evaluate different baseline
and right-context models using Icefall’s simulated
streaming decoding approach. We further evalu-
ate the large in-house ASR models in server-client

production setup.

3.2.1 Librispeech models
Using the Librispeech setup, we initially train
a baseline conformer transducer streaming
model (Kuang et al., 2022) (ConformerBaseline)
without any right-context. Further, we train
two zipformer streaming models: the base-
line model (LibriBaseline), the right-context
model (LibriRC-0-64-128-256). Additionally, a
non-streaming model (LibriNS) is trained using
this setup.

3.2.2 Large-data conversational models
Utilizing the large in-house conversational English
data, we showcase the efficacy of the proposed ap-
proach in a more challenging conversational envi-
ronment with different test cases comprising differ-
ent domains and accents. Using this data, We train
two streaming zipformer models: LargeBaseline, and
LargeRC-0-64-128-256, and a non-streaming model
LargeNS.

3.2.3 Training setup
All experiments described above (except
ConformerBaseline model) adhere to the standard
zipformer recipe2 within the Icefall toolkit. The
conformer model (ConformerBaseline) is trained
using the pruned_transducer_stateless4 recipe in
Icefall toolkit. We use the zipformer-medium setup
for Librispeech model and zipformer-large for the
large in-house models (Yao et al., 2023). The base
learning rate is 0.045 for the Librispeech setup,
and 0.05 for the large in-house model training.
Additionally, the chunk-size varies among the
values [16, 32, 64] frames during training, where,
each frame corresponds to 10 ms in both training
and decoding. Based on our experiments on a
a small-data setup, we use varying numbers of
right-context frames by randomly choosing from
the set {0, 64, 128, 256} for each batch during
training. All models undergo training for up to 30
epochs, using eight NVIDIA V100 GPUs.

Evaluation is conducted using 128 left-context
frames, a chunk size of 32 frames, 30 epochs with
an averaging over 6. We evaluate different baseline
and right-context models using Icefall’s simulated
streaming decoding approach for both Librispeech
and Large in-house setups. We also demonstrate
performance in server-client setup for the in-house
models.

2https://tinyurl.com/2whxxub2
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3.2.4 Server-client-based evaluation
To demonstrate the performance of the proposed
unified ASR training approach, we evaluate the
in-house models (LargeBaseline, LargeRC-0-64-128-256,
LargeNS) in server-client setup. We use Sherpa
websocket server for real-time streaming3. The
ASR model is loaded on a cpp-based websocket
server, which listens to a specific port on a server
machine. A Python client is used to create multiple
and simultaneous websocket connections to the
server to support concurrent processing. The client
streams audio chunks of 500 ms in real time. When
an endpoint is reached in the audio, the transcripts
are sent back to the client. “Final-chunk latency”
is the metric used to measure the latency of the
ASR output: latency is measured in the client as
the time from when the last chunk is streamed to
the server to the time when the final transcript is
received back in the client. The server used in this
experiment is a g5.2xlarge AWS instance, which
has 1 Nvidia A10G GPU, 8 vPUs and 32GB RAM.

3.3 Evaluation metrics

We use word error rate (WER) as the performance
metric for recognition accuracy. Final-chunk la-
tency as described above is evaluated in the client-
server setting and simply referred to as latency here.
Another measure to analyze the inference time is
inverse real time factor (RTFX). RTFX is calcu-
lated as, RTFX = duration of testset

inference time . Higher RTFX
corresponds to less inference time. As in produc-
tion environment, we process multiple calls at the
same time, we analyse the latency and RTFX over
different concurrency values. Concurrency can be
defined as the number of concurrent calls being
sent from the client to the server at a given point in
time.

We measure latency only for streaming ASR
and RTFX for both streaming and non-streaming
ASR models. Non-streaming models do not sup-
port concurrency in our setup, as they process a
conversation by splitting it into smaller segments.

4 Results

4.1 Librispeech setup

In Figure 3, we compare the WER (%) of the
ConformerBaseline model with that of the zipformer-
based MediumBaseline model for Librispeech test-
clean and test-other testsets. We note that these

3https://github.com/k2-fsa/sherpa

0 30 60 90 120 150 180 210 240
No of right-context frames

3

4

5

6

7

8

9

W
ER

(%
) conformer test-clean

conformer test-other
zipformer test-clean
zipformer test-other

Figure 3: Comparison of conventional conformer
(ConformerBaseline) and zipformer (MediumBaseline)
models in terms of WER(%) with different number of
right-context frames during inference.

two models are not trained with right-context. Fig-
ure 3, illustrates that during inference, increas-
ing the number of right-context frames leads to
WER improvement for both models. However, the
zipformer-based model shows more pronounced
improvement in WER compared to the conformer
model. The enhanced performance is due to the
varying frame rates across different encoder blocks
in the zipformer architecture, making it a superior
choice for a unified ASR model.

In Table 2, we show the WER(%) for LibriBaseline
and LibriRC-0-64-128-256 models for different num-
bers of right-context frames during decoding. A
noteworthy observation is the improvement in
WER of the LibriBaseline model, which decreases
from 3.33% to 2.83% as the number of decod-
ing right-context frames increases from 0 to 256,
despite this model not being trained with right-
context. In the baseline model, although we do
not explicitly impose right-context frames, the
initial frames of a chunk see the entire chunk
length as right-context, whereas the later frames
do not have access to any right-context. The
LibriRC-0-64-128-256 model achieves WERs of 2.43%
in test-clean and 6.55% in test-other, compared to
the baseline model’s respective WERs of 3.33%
and 8.90%, bringing it closer to the non-streaming
model’s (LibriNS) performance, as shown in Ta-
ble 2. Across all models, increasing the number
of decoding right-context frames consistently con-
tributes to obtaining a viable unified model for both
streaming and non-streaming applications.

4.2 Large in-house conversational setup
In Table 3, we depict the WER values of the
LargeBaseline and LargeRC-0-64-128-256 models with
the number of right-context frames in decoding
varying from 0 to 256. We can observe that the
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Table 2: WER(%) of the models trained on 960
hours of Librispeech data, including LibriBaseline,
LibriRC-0-64-128-256 and non-streaming model.

models→ LibriBaseline LibriRC-0-64-128-256 LibriNS#Decoding RC frames↓ test-clean test-other test-clean test-other
0 3.33 8.90 4.43 9.50
32 2.97 7.90 2.80 7.10 test-clean: 2.38
64 2.90 7.66 2.74 6.89 test-other: 5.72
96 2.86 7.48 2.58 6.85
128 2.83 7.36 2.46 6.70
256 2.81 7.36 2.43 6.55

WER of LargeBaseline improves as we increase the
number of right-context frames in decoding, al-
though the model is not trained with right-context.
However, the right-context training strategy pre-
sented in this paper helps to further improve the per-
formance of the LargeRC-0-64-128-256 model across
all testsets. Notably, with 64 right-context frames
during decoding, the average WER improves to
8.31% compared to 10.34% in the baseline with-
out right context during training and decoding.
Moreover, the results in Table 3 exhibit the con-
vergence of the streaming model’s performance to-
wards the non-streaming model with the proposed
right-context attention mask. This convergence sig-
nifies the potential for deploying a streaming ASR
model in place of its corresponding non-streaming
counterpart, facilitated by increasing the decoding
right context frames. Ultimately, these results af-
firm that a unified zipformer-based model can effec-
tively serve both streaming and non-streaming ap-
plications through the proposed right-context chun-
ked and hybrid attention masking training methods.
Apart from unifying streaming and non-streaming
models, the proposed approach adds flexibility to
choose a balance between accuracy and latency
by selecting an suitable number of right-context
frames in decoding according to requirement.

Table 3: WER(%) of the models trained on 12,460 hours
of in-house conversational data, including LargeBaseline,
LargeRC-0-64-128-256, and non-streaming model with in-
house testsets.

Model→ LargeBaseline LargeRC-0-64-128-256 LargeNS#Decoding RC frames→ 0 32 64 128 256 32 64

Defined AI en-au 6.95 6.75 6.72 6.72 6.72 6.41 6.39 6.2

Defined AI en-in 6.28 6.01 5.96 5.92 5.90 5.80 5.76 5.7

Defined AI en-ph 7.21 6.82 6.75 6.69 6.68 6.29 6.29 7.9

Defined AI en-gb 5.80 5.42 5.40 5.38 5.33 4.72 4.73 4.5

Client-1 13.81 12.85 12.69 12.74 12.8 10.9 10.74 10.5

Client-2 15.66 14.02 13.88 13.91 14.00 11.88 11.60 11.1

Client-3 13.64 12.83 12.63 12.53 12.48 11.05 10.91 10.4

Client-17 13.38 12.08 11.62 11.42 11.28 10.60 10.08 9.8

Average 10.34 9.50 9.45 9.41 9.30 8.45 8.31 8.26

4.2.1 Server-client setup
As discussed in Section 3.2, we deploy the large
in-house conversation model in server-client envi-

ronment. In Table 4, we show the WERs for the
LargeBaseline model with no right-context in decod-
ing and the LargeRC-0-64-128-256 model with 0, 32,
and 64 right-context frames in decoding along with
the non-streaming model (LargeNS). We note that
for the same model there is a difference in perfor-
mance between the simulated streaming and real
streaming (server-client) environments, because of
the padding involved in the real streaming case.
However, from Table 4 we can observe that the av-
erage WER of the in-house model improves from
9.0% to 8.2% with the streaming model, approach-
ing the non-streaming model.

Table 4: WER(%) of the LargeRC-0-64-128-256 and non-
streaming models trained on 12,460 hours of in-house
conversational data for different in-house testsets.

Model→ LargeRC-0-64-128-256 LargeNS#Decoding RC frames→ 0 32 64
Defined AI en-au 6.5 6.3 6.2 6.2
Defined AI en-in 6.0 5.7 5.3 5.7
Defined AI en-ph 9.9 9.5 8.5 7.9
Defined AI en-gb 5.0 4.7 4.2 4.5

Client-1 11.3 10.4 10.4 10.5
Client-2 12.1 11.2 11.0 11.1
Client-3 10.9 10.4 10.4 10.4
Client-17 10.7 10.9 9.8 9.8
Average 9.0 8.5 8.2 8.2

Table 5: Latency (sec) and RTFX values of the
LargeRC-0-64-128-256 and LargeNS models trained on
12,460 hours of in-house conversational data in server-
client setup for the long calls testset.

Model→ LargeRC-0-64-128-256 LargeNS#Decoding RC frames→ 0 32 64
Concurrency↓ Latency RTFX Latency RTFX Latency RTFX

100 1.41 82.65 1.44 82.66 1.47 82.66
200 2.17 163.76 2.17 163.77 2.35 163.73 143.89
300 2.45 242.27 2.83 242.21 3.24 242.23

Apart from WER, latency or inference time plays
a crucial role in industrial streaming ASR models.
In Table 5, we show the latency and RTFX val-
ues of the LargeRC-0-64-128-256 model for different
numbers of decoding right-context frames for con-
currency of 100, 200 and 300. In this evaluation we
use the long conversations testset in Table 1. From
Table 5, we can observe that there is no signifi-
cant degradation of user-perceived latency as right-
context increases. The RTFX values of the stream-
ing LargeRC-0-64-128-256 model are higher than that
of the non-streaming model in all the cases. The
greater RTFX demonstrates less inference time for
the streaming model with right-context compared
to the non-streaming model. For the streaming ap-
plication, with the introduction of right-context we
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observe increase in accuracy and a small degra-
dation in latency; for the non-streaming use-case
the accuracy drops with the reduction in inference
time or latency. As we further increase the number
of decoding right-context frames, the accuracy of
streaming model eventually comes close to that of
the non-streaming model.

5 Conclusions

We propose to unify streaming and non-streaming
zipformer ASR models by incorporating right-
context frames. We employ a chunked attention
masking strategy with dynamic right-context to
improve the WER of a zipformer-based stream-
ing ASR model. We observe that baseline stream-
ing models trained without right-context eventually
shows improved performance with right-context
during inference. With the increase in decoding
right-context frames, the gap in WER% between
the streaming and non-streaming model decreases,
thereby validating the proposed unified training
of streaming and non-streaming zipformer models.
Our approach yields a flexible ASR model that can
achieve the desired accuracy-latency tradeoff dur-
ing inference, based on application requirements.
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A Experiments to find optimal
right-context training setup
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Decoding right-context frames

Figure 4: WER(%) of the models trained on 100 hours of
clean Librispeech training data, varying the number of right-
context frames, evaluated on (a) test-clean and (b) test-other
datasets.

To refine the number of right-context frames that
the model acquires during the training process, we
first train various zipformer models using the small-
scale Librispeech 100 hours training dataset.

First, we develop a baseline streaming model
without right-context. Subsequently, we train dif-
ferent models: with constant 128 frames of right-
context in training (RC-128), and another incor-
porating 64 frames of right-context, termed as the
RC-64 model. In successive models, we introduce
variability in the number of right-context frames
utilized during training. Specifically, within each
batch, the number of right-context frames is ran-
domly selected from the set {0, 64, 128, 256} for
the RC-0-64-128-256 model. In these models the
number of right-context frames is constant over the
training. We note that the duration of contexts of
RC-64 and RC-128 are 1.28sec and 2.56sec, re-
spectively.

To assess the impact of the number of right-
context frames used in decoding, we evaluate each
model for 0, 32, 64, and 128 right-context frames.

We found that all models trained with right-
context outperform the baseline model without
right-context. Notably, models trained with vary-
ing right-context frames during training demon-
strate superior performance compared to those
trained with fixed right-context frames. Among
these, the RC-0-64-128-256 model achieves the
lowest WER. In all cases, increasing the number
of right-context frames in decoding leads to im-
proved performance. Additionally, we note that
models trained with right-context experience de-
graded performance when decoded without right-
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context frames. Figure 4 (a) and Figure 4 (b) show
the WER values corresponding to the test-clean
and test-other testsets, respectively. In Figure 4(a),
we observe a diagonal improvement in WER from
9.61% to 5.83% with the introduction of right con-
text. A similar trend is evident in Figure 4(b) for
the test-other testset.
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