
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 813–825
July 28-30, 2025 ©2025 Association for Computational Linguistics

Advanced Messaging Platform (AMP): Pipeline for Automated Enterprise
Email Processing

Simerjot Kaur* Charese Smiley* Keshav Ramani* Elena Kochkina
Mathieu Sibue Samuel Mensah Pietro Totis Cecilia Tilli Toyin Aguda

Daniel Borrajo Manuela Veloso
JPMorgan AI Research

{name}.{surname}@jpmchase.com

Abstract

Understanding and effectively responding to
email communication remains a critical yet
complex challenge for current AI techniques,
especially in corporate environments. These
tasks are further complicated by the need
for domain-specific knowledge, accurate en-
tity recognition, and high precision to prevent
costly errors. While recent advances in AI,
specifically Large Language Models (LLMs),
have made strides in natural language un-
derstanding, they often lack business-specific
expertise required in such settings. In this
work, we present Advanced Messaging Plat-
form (AMP), a production-grade AI pipeline
that automates email response generation at
scale in real-world enterprise settings. AMP
has been in production for more than a year,
processing thousands of emails daily while
maintaining high accuracy and adaptability to
evolving business needs.

1 Introduction

Email continues to be a key channel for commu-
nication between clients and firms (as shown in
Figure 1), particularly in industries like financial
services, where rapid, precise, and context-aware
responses are critical. However, automating email
processing in such environments presents unique
challenges due to the proprietary nature of com-
munications, especially in financial services where
such data is extremely sensitive.

While LLMs have demonstrated remarkable
progress in natural language processing, their gen-
eralist nature often limits their effectiveness in
industry-specific applications. Financial services,
for example, require nuanced handling of jargon
and entity recognition, where off-the-shelf LLMs
frequently fall short. This gap highlights the ne-
cessity of domain-tailored solutions, such as AMP,
which meet the precise needs of such tasks.

*These authors contributed equally to this work.

Figure 1: Example email received by a financial firm.

A major challenge in developing AI-driven email
automation is the lack of publicly available datasets
for training and benchmarking. Since corporate
emails are proprietary and highly sensitive, stan-
dard NLP datasets fail to capture the complexi-
ties of real-world business communications. This
makes it difficult to train models that generalize ef-
fectively to industry needs and further underscores
the need for custom-built solutions.

In this paper, we introduce Advanced Messag-
ing Platform (AMP), an email automation pipeline
tailored for financial services. AMP automates the
email handling process from categorization to re-
sponse generation. AMP is designed to process sen-
sitive financial communications by combining auto-
mated workflows with industry-specific customiza-
tions. Though designed for financial services, our
approach generalizes to other industries facing sim-
ilar challenges. We discuss AMP’s architecture,
real-world deployment insights, and broader impli-
cations of domain-specific AI solutions in automat-

813



ing corporate communications at scale.

2 Background

Emails are a distinctive form of communica-
tion (Dürscheid et al., 2013), that is semi-structured,
due to their metadata (e.g. sender, recipient) and
internal structure (e.g. signatures) (Lampert et al.,
2009). They can be multi-modal, contain attach-
ments, and can evolve into multi-threaded conver-
sations involving numerous stakeholders.

Despite the widespread reliance on email, study-
ing corporate email interactions remains difficult
due to the lack of publicly available datasets. Most
released corpora stem from legal disclosures, such
as the Enron dataset (Klimt and Yang, 2004),
Hillary Clinton email dataset (De Felice and Gar-
retson, 2018), and Avocado dataset (Oard et al.,
2015). Although, these datasets provide valuable
resources for research, they are not representative
of financial communications, which are heavily
regulated, jargon-intensive, and inherently sensi-
tive. The absence of high-quality financial email
datasets makes benchmarking solutions a persistent
challenge. Banking77 (Casanueva et al., 2020), a
rare exception, focuses on intent recognition in con-
versational settings rather than email workflows.

Previous studies have largely tackled individual
aspects of email automation, including subject line
generation (Zhang and Tetreault, 2019), email pars-
ing (Lampert et al., 2009), categorization (Lampert
et al., 2010; Alkhereyf and Rambow, 2017), ac-
tion items extraction (Corston-Oliver et al., 2004;
Bennett and Carbonell, 2005; Scerri et al., 2010;
Lin et al., 2018; Zhang et al., 2022), intent un-
derstanding (Wang et al., 2019; Shu et al., 2020),
information extraction (Lahiri et al., 2017) and
reply generation (Scheffer, 2004; Kannan et al.,
2016). Although prior work such as UiPath (Khare
et al., 2022) has developed automation tools for
email workflows, these solutions do not address the
domain-specific constraints of financial communi-
cations. In contrast, we introduce AMP, a fully
integrated pipeline that combines all of these com-
ponents into a cohesive system which meets the
unique needs of enterprise email processing.

3 Pipeline Architecture

Figure 2 shows the AMP pipeline, which processes
emails through multiple stages, including parsing,
intent recognition, entity extraction, action imple-
mentation, and human validation. To enhance

domain-specific understanding, AMP incorporates
AMP-LM, a fine-tuned RoBERTa model special-
ized for financial emails.

AMP-LM: Email Language Model Automat-
ing email responses in financial firms require under-
standing complex, domain-specific jargon, where
phrasing and entities vary across teams. Traditional
methods struggle with this linguistic diversity, as
financial terminology is rarely found in public
datasets. Models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and FinBERT (Liu
et al., 2021) are general-purpose and are not fine-
tuned for email automation. While LLMs like GPT-
4o (OpenAI et al., 2024), Qwen-2.5-72B(Qwen
et al., 2025), Deepseek-R1(DeepSeek-AI et al.,
2025) and PaLM2 (Anil et al., 2023) offer strong
language capabilities, their computational costs and
production environment constraints currently make
them challenging for real-time email automation
at scale. Given the volume of daily email traf-
fic, a more efficient, domain-adapted solution is
required.

To address these challenges, we further pre-train
a Language Model (LM) using the Masked Lan-
guage Modeling (MLM) objective (Devlin et al.,
2019) on proprietary financial email data. MLM en-
hances contextualized word representations by pre-
dicting masked tokens in sentences, allowing the
model to learn domain-specific linguistic patterns.
Our pre-training dataset consists of a 250MB pri-
vate corpus containing 92,764 email conversations
with over 41M tokens and 2.2M sentences, col-
lected from mailboxes of various operations teams.
After exploring several LMs, we choose RoBERTa
for its strong performance on downstream tasks.
Further details are provided in Appendix A.1.

3.1 Message Parser

The pipeline begins by converting raw HTML into
a structured format and splitting email chains into
individual messages. A pre-existing legacy model
then decomposes each email into key elements:
header (sender, recipients, subject, date), greetings
(salutations, introductory phrases), body (main con-
tent), tables (HTML tabular data), attachments, sig-
nature (name, title, contact details), and disclaimer.

3.2 Use Case Mapper

In the financial industry, various operations teams
handle distinct tasks, follow unique practices, pro-
cess specific information, and are entitled to access,

814



Figure 2: AMP Pipeline Architecture.

or update internal databases. Thus, a use case map-
per tags emails based on predefined mappings be-
tween mailboxes and use cases. These tags define
the scope of subsequent modules, such as intent
recognition, entity extraction and actions.

3.3 Entity Extraction

Financial institutions often receive vast volume of
emails that are either new inquiries or part of ex-
isting email chains. Extracting relevant entities
is crucial for determining next steps. However, in
multi-threaded email chains, crucial details may ap-
pear in earlier messages rather than the latest email.
AMP intelligently searches prior emails to ensure
no key entity is missed (see Appendix A.3). Enti-
ties extracted by AMP include unique identifiers
(for teams, firms, clients), security IDs (CUSIP,
SEDOL, ISIN1), trade economics (volume, amount,
currency, dates), portfolio IDs, and account num-
bers. These may appear in the subject line, email
body, tables, or attachments. In real-world scenar-
ios, capturing all relevant entities is crucial. To
address this, AMP prioritizes high recall, ensuring
comprehensive entity extraction, with precision re-
fined during database queries. AMP employs an
ensemble approach, combining deep learning, rule-
based techniques, and domain expertise to extract
entities from text, tables, and attachments.

Extraction from Text AMP first parses the email
body and subject, tokenizing the text, and gener-
ating deep learning-based vector representations.
Tokens with predefined vectors, likely to be com-
mon English words, are filtered out, leaving po-
tential candidates for entities. Financial domain
knowledge is then leveraged to identify firm and
client unique identifiers, account and portfolio in-
formation. Publicly available guidelines are used
to detect security IDs. For general trade eco-

1https://www.isin.com/

nomics, AMP utilizes spaCy(Honnibal et al., 2020),
while AMP-LM enhances the extraction of context-
sensitive financial details, such as trade and settle-
ment dates (see AppendixA.4).

Extraction from Tables When processing tables,
AMP leverages both column headers and cell val-
ues. Headers (e.g., Trade Date, Volume) provide
strong semantic signals for entity types. Cell val-
ues are extracted and processed using text-based
extraction techniques. The entity types predicted
from column headers and cell values are compared,
and a confidence score is assigned based on the
consistency of the predicted entity types across the
column and the reliability of the column header
as an indicator. In cases where the entity type is
ambiguous, contextual information from surround-
ing cells and the overall table structure is used to
validate the predictions.

Extraction from Attachments The extraction
process for attachments varies by file type. For text
and PDF, the module extracts text content from the
original binary format. Then, it processes it using
the text extraction methodology. For CSV files
and Excel spreadsheets, the module relies on the
table extraction methodology. For details on how
compressed files are processed, see Appendix A.5.

3.4 Intent Recognition
AMP is designed to handle varying levels of labeled
emails for intent recognition.

Semi-supervised Learning Most operation
teams share a taxonomy of intents, making models
transferable across different use cases. However, in
low-label availability scenarios, a semi-supervised
clustering-based solution that works at the
sentence or email level is used, depending on the
problem setting. The process involves obtaining
a standardized email representation, extracting
key features like verbs and specific nouns, and

815

https://www.isin.com/


using a TF-IDF vectorizer (Salton and Buckley,
1988) to generate embeddings. The K-Means
algorithm (MacQueen et al., 1967) clusters the
emails, and a subject matter expert labels the
clusters. Hyperparameters are tuned if users find
clusters too heterogeneous.

Supervised Learning In cases where a large la-
beled corpus is available, we fine-tune the AMP-
LM model to classify intents. Specifically, we stack
a linear layer with softmax activation on top of the
first token representation <s> of the AMP-LM pre-
trained backbone (as usually done with RoBERTa-
based sentence classifiers) to map the model to
predefined intent categories. Then, we fine-tune
the full model on text elements extracted from each
email and accompanying labels.

3.5 Actions

Once the intent has been recognized and the entities
extracted, each email requires specific actions to be
executed to fulfill the intent, including generating
a custom reply, moving the email to a given folder
(e.g., monthly reports), forwarding the email to
internal teams, or initiating a certain workflow (e.g.,
accessing database to fetch or update information).

Reply Generation Among other actions, reply
generation is the most elemental for a messaging
system. To ensure consistent, controlled responses,
and to avoid the reduced predictability and high
costs of LLM-based generation (Kaddour et al.,
2023), we opt for a template-based approach. More
precisely, the response generation module receives
intermediate outputs from upstream elements of
the AMP pipeline, and applies use case-specific
rules to generate the output HTML code. The rules
for processing inputs are based on the business
requirements linked to each use case and intent.
For instance, if required, a draft requesting addi-
tional client information can be generated when no
database records are returned in a previous action.
Example emails shared by business stakeholders
are also leveraged to manually tailor the language
and format of the response.

3.6 Human-in-the-Loop

Once an action has been performed, validation by
a human is crucial due to the pipeline’s production
nature involving client-facing teams. It ensures that
all client queries are addressed, and information
is accurately recorded. With the current pipeline

implementation, it is possible to record and evalu-
ate the human interaction with the reply generation
action, by comparing the provided draft reply with
the actual human reply. We identify three poten-
tial scenarios on human interaction with the drafts:
(a) Total use: humans retain the full draft in their
sent reply; (b) Partial use: humans use some in-
formation in the draft; and (c) No use: humans
discard the draft entirely. Identifying total use and
no use is straightforward, but detecting partial use
is challenging due to the need for natural language
understanding of response and insights in the ac-
tions performed to generate the response.

These challenges correspond to: (1) replies that
reword at least part of draft, for example summa-
rizing a draft table in text; and (2) replies that de-
note some action taken on the information of draft,
for example conducting additional research to pro-
vide a more comprehensive answer to the client’s
inquiry. To address the former, we first extract
and compare such transaction-related statements
from the reply by means of POS tagging. Second,
we check the overlap of the sent text with content
words from the draft’s additional information on
the transactions. To address the latter, we perform
clustering on the type (2) replies, based on similar-
ity embeddings (Wang et al., 2020), then manually
label each cluster with a reply type. This allowed us
to identify 30 reply types, and discuss draft usage
with users based on these types.

4 Evaluation

We evaluated the performance of AMP both at
each module and pipeline levels. No evaluation
is needed for the use case mapper and actions mod-
ule, as both rely on rules predefined with the help of
users. For the pipeline evaluation, we use a sample
of 200 emails manually annotated.

4.1 Message Parser

We note that the message parser used in our
pipeline employs a legacy code base that predates
LLM adoption, therefore its implementation is not
a contribution of this paper. However, as it is an
important component of the AMP pipeline, we per-
form a thorough evaluation of it on our use-case
specific examples. We evaluate it on two dimen-
sions: (1) the accuracy of the segmentation into
individual elements; and (2) the accuracy of the
classification of each element. The parser produces
a correct output for 59% of the examples. The

816



Entity Type Client Id. Firm Id. ISIN CUSIP SEDOL Other Eco.
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

AMP-EE 97.6 93.5 95.5 96.7 100 98.3 100 100 100 100 100 100 100 100 100 67.3 90.5 77.2
Llama-3.1-8B 58.4 15.8 24.9 51.2 8.6 14.7 84.7 48.1 61.3 29.5 27.6 28.6 36.4 73.3 35.0 72.3 13.1 22.1

w/3-Shot 54.2 39.4 45.6 92.3 8.4 15.4 97.7 78.1 86.8 94.6 74.5 83.3 92.5 74.7 82.6 90.0 18.5 30.7
w/5-Shot 53.9 35.3 42.7 95.3 8.2 15.1 95.6 57.4 71.7 95.7 71.3 81.7 93.1 80.7 86.5 50.4 23.6 32.2

Qwen-2.5-7B 58.1 48.9 53.1 28.7 26.3 27.5 90.4 76.1 82.6 40.3 88.3 55.3 41.9 84.3 56.0 82.3 48.9 61.4
w/3-Shot 74.9 44.9 56.1 48.2 17.2 25.4 92.9 95.6 94.3 45.9 95.7 62.1 58.8 92.8 71.9 89.8 57.2 69.9
w/5-Shot 73.1 56.5 63.6 49.1 10.3 17.1 93.9 90.6 92.3 69.5 94.7 80.2 82.9 93.9 88.1 86.7 58.5 69.9

Table 1: Entity Extractor: Performance (in %) of the entity extractor on emails from operations teams.

most frequent segmentation error is classifying dis-
claimers as signatures. Similarly, the most frequent
classification errors relate to signatures, which are
often divided over multiple segments, and some of
them are classified either as Body or Disclaimer.
However, only errors on the segmentation and clas-
sification of the email body affect the performance
of the downstream components, since the rest of
the components is not used within the pipeline. We
also test Llama-3.1-8B (Touvron et al., 2023) and
Qwen-2.5-7B-Instruct (Yang et al., 2024) as an al-
ternative solution for parsing HTML. However, we
obtain a fully correct output only for 10% of the
tests, with a much higher computational resources
usage. More details can be found in Appendix A.2.

4.2 Entity Extraction

We test the entity extraction on manually annotated
proprietary business emails. The entity types eval-
uated include client and firm identifiers, security
IDs, and trade economics (dataset statistics in Ap-
pendix A.7). We also test the extraction properties
of LLMs, specifically Llama-3.1-8B and Qwen-2.5-
7B-Instruct in zero-shot and few-shot settings.

Table 1 demonstrates that AMP-EE significantly
outperforms LLM-based approaches, achieving the
precision and recall of ∼90% for firm and client
unique identifiers. The results for security IDs
were perfect, reflecting the robust rules and guide-
lines these identifiers follow within the financial
industry. Finally, for trade economics, our recall-
heavy entity extractor maintained a high recall rate
of ∼90%, ensuring that almost all relevant enti-
ties were identified. In contrast, Llama and Qwen
struggle in zero-shot settings, failing to generalize
domain-specific financial entities. While their per-
formance improves with few-shot prompting, they
remain computationally intensive and less reliable
than AMP-EE, which is optimized for efficiency,
robustness, and real-world deployment. These re-
sults highlight the importance of using an ensemble
of techniques for different entity types.

4.3 Intent Recognition

We evaluate the performance of our intent
recognition methods using proprietary datasets
from three operations teams (Ops-X, Ops-Y, and
Ops-Z) and the publicly available Banking77
dataset (Casanueva et al., 2020) to assess gener-
alization. Banking77 is chosen as it closely mirrors
the structure and complexity of financial emails,
which are typically confidential. Detailed dataset
statistics are provided in Appendix A.8. We also
benchmark the effectiveness of LLMs, specifically
Llama-3.1-8B and Qwen-2.5-7B, in zero-shot and
few-shot settings to explore their capability in han-
dling domain-specific intent classification.

Performance The experimental results demon-
strate that AMP-LM exhibits a significant advan-
tage over RoBERTa in Ops-Z, primarily due to its
pretraining on data that closely matches the distri-
bution of Ops-Z. This allows AMP-LM to achieve
an impressive F1 score of 97.1%. In contrast, clus-
tering methods show relatively lower performance
across the datasets, highlighting their limitations in
handling complex intent recognition tasks.

LLMs like LlaMA and Qwen initially show low
zero-shot performance, perhaps due to a limited
exposure to the domain-specific language and jar-
gon prevalent in the financial sector. However, they
show considerable improvement in few-shot set-
tings. However, this improvement still comes at the
expense of utilizing larger models, which demand
more computational resources. Overall, AMP-LM,
a lightweight model, achieves state-of-the-art per-
formance across the compared models, making it
particularly suitable for processing the massive vol-
ume of emails encountered daily.

4.4 Human-in-the-loop

To assess the effectiveness of AMP-generated draft
replies, we compute usage rate metrics using two
complementary approaches. The first employs au-
tomatic recognition to classify drafts into total,

817



Model Ops-X (7 classes) Ops-Y (11 classes) Ops-Z (3 classes) Banking 77 (77 classes)
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

AMP-LM 71.2 71.2 71.0 69.2 69.4 69.0 97.1 97.1 97.1 93.4 93.2 93.2
RoBERTa 71.2 70.8 70.8 68.3 68.0 67.9 94.3 94.2 94.2 93.7 93.5 93.5
Clustering 52.1 60.7 54.5 25.0 36.9 27.9 50.7 67.6 53.2 48.9 41.7 43.5

Llama-3.1-8B 28.4 29.7 26.3 42.8 38.5 38.4 52.6 57.5 53.3 66.0 59.2 56.7
w/3-Shot 67.0 64.0 63.9 65.7 63.6 64.1 82.6 81.5 81.9 87.1 81.6 82.8
w/5-Shot 68.1 65.8 65.7 68.2 66.8 67.2 86.3 86.0 86.1 89.0 86.4 86.5

Qwen-2.5-7B 28.5 34.8 28.8 41.9 36.3 35.2 76.8 71.2 72.0 70.5 62.0 61.5
w/3-Shot 65.0 64.2 63.6 62.8 60.0 60.1 84.8 83.4 83.7 92.0 91.2 91.2
w/5-Shot 65.9 66.0 65.3 64.6 63.1 63.0 87.9 87.3 87.5 92.9 92.4 92.4

Table 2: Intent Recognition: Performance of models (in %) across Ops-X, Ops-Y, Ops-Z, and Banking77. AMP-
LM and RoBERTa results are mean values across three runs using different random seeds.

partial, or no use scenarios (Section 3.6), while
the second relies on human evaluators assigning
labels to these categories. Interestingly, we ob-
served discrepancies between automated and hu-
man evaluations. The automated evaluation fo-
cuses on whether all relevant information was re-
trieved, whereas human annotators assess how well
the draft aligns with the user’s intent and inquiry.
Additionally, during the early stages of adoption,
users often reformulate, summarize, or tailor the
draft to better match client-specific requirements.
Due to proprietary constraints, we cannot disclose
aggregate results. However, moving forward, we
aim to incorporate user modifications into a feed-
back loop, enabling AMP to continuously refine its
outputs. By analyzing added or removed entities
and structural adjustments, we can enhance AMP’s
adaptability and response accuracy over time.

4.5 Pipeline Results

To evaluate performance at each stage, we assessed
each module sequentially using a consistent set
of 200 manually annotated emails. Among these,
our entity extraction and intent recognition models
identified 58 emails as either lacking entities or hav-
ing intents outside the pipeline’s scope. From the
remaining emails, drafts were successfully gener-
ated for 58.5% of the test set. The primary reasons
for the failure to generate drafts were as follows:
(a) False positives in the entity extraction or intent
recognition stages led to invalid database queries,
as no corresponding records were found. (b) Some
transactions were either outdated or canceled, re-
sulting in an inability to locate them in the database.
Finally, we observed that 67.5% of the generated
drafts were used by humans. The reasons for less
than full adoption are discussed in Section 4.4.

5 Conclusion

In this work, we introduced a pipeline for the au-
tomated processing of corporate email messages,
detailing its core components: message parser, in-
tent recognition, entity extraction, and the AMP-
LM model. Through comprehensive evaluation, we
demonstrated the strong accuracy and reliability of
each module, as well as the overall pipeline, when
tested against human-annotated datasets. These re-
sults establish the pipeline as an effective tool for
streamlining email workflows, significantly reduc-
ing the time employees spend on routine tasks and
enabling greater operational efficiency.

6 Limitations

A key limitation of this work is lack of publicly
available datasets for financial email automation,
making it difficult to benchmark across industries.
While we use proprietary datasets for evaluation,
data privacy constraints prevent public release.
Banking77 offers insights into financial text pro-
cessing but is not an email corpus and provides
only directional guidance for email-related tasks.

While we compare AMP’s performance against
Llama-3.1-8B and Qwen-2.5-7B, due to compute
and production environment constraints we have
not been able to compare with larger LLMs. Addi-
tionally, the pipeline-based architecture introduces
challenges such as cascading errors, where failures
in early stages impact later stages, and higher main-
tenance complexity due to interdependent modules
(see Appendix A.12 for production challenges).

Processing attachments adds another layer of
complexity, as irrelevant or excessively large files
can cause system timeouts. Lastly, AMP does not
currently support image processing within emails,
limiting its ability to extract insights from embed-
ded screenshots. Future work could explore multi-
modal approaches to address this gap.

818



Disclaimer This paper was prepared for informa-
tional purposes by the Artificial Intelligence Re-
search group of JPMorgan Chase & Co. and its
affiliates “JP Morgan”) and is not a product of the
Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, ac-
curacy or reliability of the information contained
herein. This document is not intended as invest-
ment research or investment advice, or a recom-
mendation, offer or solicitation for the purchase
or sale of any security, financial instrument, finan-
cial product or service, or to be used in any way
for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such so-
licitation under such jurisdiction or to such person
would be unlawful.

Acknowledgements We would like to thank Xi-
aomo Liu for insightful review and discussions.
We thank our business partners for their collabo-
ration and invaluable human feedback for various
evaluations.

References
Sakhar Alkhereyf and Owen Rambow. 2017. Work

hard, play hard: Email classification on the avocado
and enron corpora. In Proceedings of TextGraphs-11:
the Workshop on Graph-based Methods for Natural
Language Processing, pages 57–65.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,

Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. Palm 2 technical
report. Preprint, arXiv:2305.10403.

Paul N Bennett and Jaime Carbonell. 2005. Detect-
ing action-items in e-mail. In Proceedings of the
28th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 585–586.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45.

Simon Corston-Oliver, Eric Ringger, Michael Gamon,
and Richard Campbell. 2004. Task-focused summa-
rization of email. In Text Summarization Branches
Out, pages 43–50, Barcelona, Spain. Association for
Computational Linguistics.

Rachele De Felice and Gregory Garretson. 2018. Polite-
ness at work in the clinton email corpus: A first look
at the effects of status and gender. Corpus Pragmat-
ics, 2:221–242.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing

819

https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://aclanthology.org/W04-1008
https://aclanthology.org/W04-1008


Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Christa Dürscheid, Carmen Frehner, Susan C Herring,
Dieter Stein, and Tuija Virtanen. 2013. Email com-
munication. Handbooks of pragmatics [HOPS],
(9):35–54.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spacy: Industrial-
strength natural language processing in python.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. Preprint, arXiv:2307.10169.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kauf-
mann, Andrew Tomkins, Balint Miklos, Greg Cor-
rado, Laszlo Lukacs, Marina Ganea, Peter Young,
et al. 2016. Smart reply: Automated response sug-
gestion for email. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge dis-
covery and data mining, pages 955–964.

Arpit Khare, Sudhakar Singh, Richa Mishra, Shiv
Prakash, and Pratibha Dixit. 2022. E-mail assistant
– automation of e-mail handling and management
using robotic process automation. In 2022 Inter-
national Conference on Decision Aid Sciences and
Applications (DASA), pages 511–516.

Bryan Klimt and Yiming Yang. 2004. The enron corpus:
A new dataset for email classification research. In
Machine Learning: ECML 2004, pages 217–226,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Shibamouli Lahiri, Rada Mihalcea, and P-H Lai. 2017.
Keyword extraction from emails. Natural Language
Engineering, 23(2):295–317.

Andrew Lampert, Robert Dale, and Cécile Paris. 2009.
Segmenting email message text into zones. In Pro-
ceedings of the 2009 conference on empirical meth-
ods in natural language processing, pages 919–928.

Andrew Lampert, Robert Dale, and Cecile Paris. 2010.
Detecting emails containing requests for action. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 984–
992.

Chu-Cheng Lin, Dongyeop Kang, Michael Gamon, and
Patrick Pantel. 2018. Actionable email intent mod-
eling with reparametrized rnns. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zhuang Liu, Degen Huang, Kaiyu Huang, Zhuang Li,
and Jun Zhao. 2021. Finbert: A pre-trained finan-
cial language representation model for financial text
mining. In Proceedings of the twenty-ninth interna-
tional conference on international joint conferences
on artificial intelligence, pages 4513–4519.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Douglas Oard, William Webber, David A. Kirsch, and
Sergey Golitsynskiy. 2015. Avocado research email
collection.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,

820

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2307.10169
https://doi.org/10.1109/DASA54658.2022.9765017
https://doi.org/10.1109/DASA54658.2022.9765017
https://doi.org/10.1109/DASA54658.2022.9765017
https://doi.org/10.35111/WQT6-JG60
https://doi.org/10.35111/WQT6-JG60


Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,

Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Lance A. Ramshaw and Mitch Marcus. 1995. Text
chunking using transformation-based learning. In
Third Workshop on Very Large Corpora, VLC@ACL
1995, Cambridge, Massachusetts, USA, June 30,
1995.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation Processing & Management, 24(5):513–
523.

Simon Scerri, Gerhard Gossen, Brian Davis, and
Siegfried Handschuh. 2010. Classifying action items
for semantic email. In Proceedings of the Seventh In-
ternational Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Tobias Scheffer. 2004. Email answering assistance by
semi-supervised text classification. Intelligent Data
Analysis, 8(5):481–493.

Kai Shu, Subhabrata Mukherjee, Guoqing Zheng,
Ahmed Hassan Awadallah, Milad Shokouhi, and Su-
san Dumais. 2020. Learning with weak supervision
for email intent detection. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
1051–1060.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Wei Wang, Saghar Hosseini, Ahmed Hassan Awadallah,
Paul N Bennett, and Chris Quirk. 2019. Context-
aware intent identification in email conversations. In
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 585–594.

821

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://aclanthology.org/W95-0107/
https://aclanthology.org/W95-0107/
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
http://www.lrec-conf.org/proceedings/lrec2010/pdf/39_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/39_Paper.pdf


Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Advances in Neural
Information Processing Systems, volume 33, pages
5776–5788. Curran Associates, Inc.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tingyu Xia, Xingzhang Ren, Xuancheng
Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan
Qiu. 2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Kexun Zhang, Jiaao Chen, and Diyi Yang. 2022. Focus
on the action: Learning to highlight and summarize
jointly for email to-do items summarization. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 4095–4106.

Rui Zhang and Joel Tetreault. 2019. This email could
save your life: Introducing the task of email subject
line generation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 446–456, Florence, Italy. Association
for Computational Linguistics.

A Appendix

A.1 AMP-LM
We experimented with RoBERTa using two ap-
proaches to further pre-train it on financial email
data. In the first approach, we treated entities in
the corpus as whole units, replacing them with spe-
cial tokens before performing MLM. These entities
were those extracted by the entity extractor (Sec-
tion 3.3). This was based on the assumption that the
model will be encouraged to learn the surrounding
context to infer what the masked entity could be,
rather than attempting to learn the patterns of enti-
ties themselves. The second approach allows MLM
to be performed on the data without replacing en-
tities with special tokens. As a result, the model
processes the entire data as it is originally repre-
sented in emails. Interestingly, the latter approach
leads to satisfactory performance on downstream
tasks, as shown later in experiments.

A.2 Message Parser
Experiments are run on a machine equipped with
a 16-core AMD EPYC 7R32 CPU, paired with
128GB of RAM and a 24GB Nvidia A10G GPU.
The expected output is a python list where elements

are the emails of the chain. Each email is a dictio-
nary with keys "Body" and "Header" to separate
content from metadata, and the body is a list of seg-
ments, where a segment is a dictionary containing
the content mapped to its type. Tables are dictio-
naries of columns mapping to rows and rows are
dictionaries mapping row numbers to cell data.

AMP parser The most frequent discrepancies be-
tween the parser results and human annotations re-
gard the classification of images and tables appear-
ing in the signatures or disclaimers. The human
annotators prioritize the semantic level, classifying
them as signature or disclaimer, while the parser
prioritizes the syntactic information assigning the
class Image or Table. We did not account for errors
on image classification because images are not yet
supported, and thus they have no influence on the
downstream components. Nevertheless, signatures
proved to be the hardest part for the parser, with
frequent errors on classifying parts of signatures
as Unknowns or Disclaimers. Signatures proved to
be difficult also for segmentation, where a typical
error is incorporating in a signature segment short
disclaimers like “Internal only”.

LLM parser We tested Llama-3.1-8B (Touvron
et al., 2023) and Qwen-2.5-7B-Instruct as an alter-
native solution for parsing HTML. This approach
is much more demanding in terms of hardware
resources (in particular memory) and time, and pro-
vides overall worse performances than the AMP
parser (Table 3). The LLMs struggle to produce
the format required by the downstream tasks and
shows poor segmentation performances, producing
a correct segmentation and classification only in
10% (Llama) and 6% (Qwen) of the tests.

Large emails, typically carrying a long conver-
sation history, struggle to fit in memory: with
the model: 22.5% (45 emails) of the data can-
not fit with Llama in the available memory, while
for Qwen 18.5% of the data (37 emails). When
Llama produces an output 49.5% (99) of them are
in an incorrect format, that is, they cannot be con-
verted into a valid python object. Qwen produces a
valid python object for 32.5% (65) of the examples.
About half of the Llama formatting errors (46) are
due to the LLM adding extra text, e.g. “Here is the
parsed output:. . . ”. Manually removing such text
reveals that the majority (35) would have been a
valid python object. Qwen presents this type of be-
havior as well, but only on 9 examples. However, in
89 instances (44.5%) Qwen returns an invalid for-

822

https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-1043
https://doi.org/10.18653/v1/P19-1043
https://doi.org/10.18653/v1/P19-1043


mat because it fills the output string with the repeti-
tion of a short substring of the HTML input or sim-
ply an HTML tag like <div>. Llama valid outputs,
28% (56) of the emails, show good classification
performances, with 40 emails with all segments
classified correctly (71.4% of the valid outputs),
but low segmentation performances, with only 20
emails (35.7% of the valid outputs) correctly seg-
mented. Similarly, Qwen shows stronger classifica-
tion performances, with 41 correct class predictions
(63% of the valid outputs), than segmentation per-
formances, with only 12 emails (18.5% of the valid
outputs) correctly segmented. In both cases several
errors regard the isolation of the first email, a task
where the AMP parser did not make mistakes.

Segment Class Format Time
AMP parser 81.5% 63.5% 100% 0.11s
Llama-3.1-8B 10.0% 20.0% 28.0% 73.3s
Qwen-2.5-7B 6.0% 20.5% 11.0% 365.5s

Table 3: Parsing performance metrics Segment: first
email is isolated and segmented correctly. Class: all
segments are assigned the correct class. Format: output
is properly formatted. Time: average runtime per email.

A.3 Entity Extraction: Handling Multi-chain
Emails

In the case of a chain of emails, the last email might
not contain all the information needed to handle
the client intent. In this scenario, AMP has to
determine how far back to look into email threads
to extract the necessary information and identify
relevant queries. Additionally, the system must
ensure that it only captures entities that need to be
addressed, and does not act upon entities that have
already been dealt with.

Our proposed solution to this problem involves
implementing a “look-back” functionality that bal-
ances between not omitting important information,
and not overwhelming the user with already pro-
cessed entities. The system captures all the entities
if there have been only external conversations, and
the mailbox has received the query for the first time.
In the remaining cases, the system will perform a
look back into previous messages until an entity has
been identified. This functionality enables AMP
to capture relevant entities, which can be identified
from the previous messages, thus maximizing the
amount of emails in-scope for the system to handle.

A.4 Entity Extraction: Various Date Types
Extraction

For context-specific trade economics, such as iden-
tifying various date types (trade, settlement, and
payment dates), the AMP-LM model is employed
due to its ability to learn context-aware represen-
tations of entities. This is typically achieved by
treating the entity extraction task as a sequence
labeling problem, where BIO tags (Ramshaw and
Marcus, 1995) are assigned to tokens to identify
the Beginning, Inside and Outside of entities in
the text. This tagging system enables the model
to learn to capture contextual information around
each entity, allowing it to identify the specific type
of entity based on surrounding words and phrases.

A.5 Entity Extraction: Compressed Files
In the case of compressed files, like zip or tar
archives, the system decompresses the archive and
processes each file individually. Text and PDF files
within the archive are processed using the text ex-
traction methodology, while CSV and Excel files
are processed using the table extraction methodol-
ogy.

A.6 Intent Recognition: Email Features
In the context of intent recognition in emails, sev-
eral types of features accurately identify the un-
derlying intent. Features derived from the email’s
metadata were found to be very useful in the scenar-
ios discussed above. Examples include reports sent
from a specific email address, and emails gener-
ated by an automatic email failure detection system.
Some senders may consistently convey the same in-
tents based on business logic, and automated emails
may be part of a book-keeping process. Textual
features, found in the subject, body and attachment
of the email, are the most common and complex
modes of instruction. Attachments are common-
place in financial settings, and can provide instruc-
tions or supplement the information already present
in the email. Often, a mixture of all these features
is used, requiring intent recognition to work with
some or all of these features.

A.7 Entity Extraction: Evaluation Statistics
Statistics for the datasets used to evaluate each
entity type are presented in Table 4.

A.8 Intent Recognition: Evaluation Statistics
Statistics for the datasets used to evaluate intent
recognition are presented in Table 5.

823



EntityTypes # of Texts # of Entities
Client Id. 357 317
Firm Id. 357 81
CUSIP 357 34
SEDOL 357 24
ISIN 357 149
Other Econ. 540 237

Table 4: Dataset Statistics

Type Dataset Train Test Intents

Proprietary
Ops-X 2,920 730 7
Ops-Y 3,465 612 11
Ops-Z 1,512 379 3

Public Banking77 10,003 3,080 77

Table 5: Intent Recognition: Dataset Statistics

A.9 LLM Prompts

Parser You are an email parser responsible for
the segmentation and classification of emails. You
will receive as input an HTML string and you are
tasked with parsing the HTML as follows: 1) iso-
late the current email from the history of previous
messages that may be present below the most re-
cent content. 2) Segment the email into the differ-
ent elements and paragraphs, each segment should
represent a piece of information in the email of the
same type. 3. Assign to each segment the corre-
sponding type among: GREETINGS (for text that
represents a greeting), SIGNATURE (for any text
representing contact details of the sender), TABLE
(for any information in table format), IMAGE (for
images), DISCLAIMER (for text that represents
any form of disclaimer), BODY (for text that does
not belong to any of the previous types). If the
content of a table semantically belongs to another
type (different than BODY) then the other type has
priority over TABLE. You should use only these
types for the annotation and you should output only
the annotation in the following format. The out-
put should be a python list with a single dictionary,
where the key ‘Header’ is always {‘From’: ‘ ’, ‘To’:
‘ ’, ‘Subject’: ‘ ’, ‘Sent’: ‘ ’}, and the key ‘Body’
contains the list of segments. Each segment is a dic-
tionary with the keys ‘Content’, which contains the
segment information stripped of ALL its HTML
tags, and ‘Type’ which maps the segment to one
of the valid types. Tables should be a dictionary
of columns, where each column is a dictionary of
cells where the row number in string format maps
to the content of the cell. Do not output for any
reason any message in plain text outside this for-
mat. I will now give you an example HTML and
the corresponding annotation as an example of the

desired output format. It is imperative that you
respect this format when providing the annotation
as output.
Email body: <placeholder>
Desired parsed output: <placeholder>
Remember not to add any text outside the python
list!

Intent recognition Please categorize the fol-
lowing email into three categories according to
the nature of the request. Return the answer that
is strictly only the name of one of the categories
as provided below. Even if unsure, do not return
unknown, select a most likely category. Categories:
<List of answer options>

Entity Extraction You are an entity extractor.
You need to extract the following entities from
an email given to you in parsed format. Do not
produce any other verbiage. If you are not able to
find an entity just write N/A infront of it. Split
the entity types using ‘;’ and the format should be
Entity Type: All Entity Values. You need to make
sure to print all entity types that have been defined
even if they are not present. Entities that you
need to extract: Client Identifier; Firm Identifier;
CUSIP; SEDOL; ISIN; Other Trade Economics.
Some clues about various entity types: <Domain
specific details about entities 2>

A.10 Sample Outputs

For an intuitive understanding of the intermediary
outputs generated by AMP, we will walkthrough
the pipeline with the example in Figure 1.

Section 3.1 already details the type of structured
values that will be provided by the legacy message
parser. The use case mapper will consume this
output and produce an appropriate use case, say
OPS TEAM 1.

The entity extractor determines the scope of en-
tities that need to be extracted using the generated
use case tag, OPS TEAM 1. It then applies the
corresponding text and table based extractors to
come up with the entities. In this case, the output
would look like {client_identifier: "CIDTA12",

firm_identifier: "F34GP5", isin: "US1234567892",

trade_date: "16-07-24", settlement_date: "17-07-24",

account_number: "A12345", portfolio_id: "P6763"}.

This output along with the email and use case tag is

2Not shown here due to proprietary reasons.

824



then consumed by the Intent Recognition module,
which determines the scope of applicable intents
using the use case tag, OPS TEAM 1. in Figure 1,
the text will be assigned to a cluster called INTENT

CATEGORY 1 based on a trained clustering model.
Alternatively, if the AMP-LM model is being used,
then the input email is fed to the model with a
classification head which would predict the class
called INTENT CATEGORY 1. Finally, depending
on the use case the appropriate action would
be selected and in this case it would be Reply
Generation. Once this action executes and data is
returned from the database, the template would be
composed and presented to the user. For instance,
the generated reply would be rendered as:
Hi Jane,

Please find the status of your transactions below:

<custom table>

Thanks,

AMP

A.11 Comparison of AMP-LM and RoBERTa
for Intent Recognition

Table 6 represents the F1 scores of AMP-LM and
RoBERTa on the intent recognition task. We report
the mean across three independent runs using dif-
ferent random seeds. It can be noticed here that
AMP-LM outperforms RoBERTa by 0.2% for Ops-
X, by 1.1% for Ops-Y and by 2.9% for Ops-Z.
The higher margins in Ops-Z could be attributed to
the fact that AMP-LM was further pretrained using
data drawn from this team. In Banking77 however,
we notice that RoBERTa outperforms AMP-LM by
0.3%.

Model Ops-X Ops-Y Ops-Z Banking 77
AMP-LM 71.0±0.3 69.0±0.3 97.1±0.2 93.2±0.1

RoBERTa 70.8±0.7 67.9±0.4 94.2±0.8 93.5±0.1

Table 6: AMP-LM vs RoBERTa: F1 scores (in %) of
AMP-LM and RoBERTa across three operational teams
(Ops-X, Ops-Y, Ops-Z) and public data Banking77.
Results represent the mean values obtained from three
independent runs using different random seeds.

A.12 Discussion
When transitioning our pipeline from development
to production, we encountered numerous chal-
lenges. These included managing dependencies
on critical tools and technologies, addressing in-
frastructure complexities, adapting to evolving user
needs, and upholding stringent security and qual-

ity standards to ensure a robust solution. A sig-
nificant hurdle was our reliance on other tools
and technologies. Effective UI design and seam-
less database management were essential for the
pipeline’s functionality. Meeting Service Level
Agreements (SLAs) and ensuring scalable infras-
tructure were crucial to maintain reliability under
varying workloads. Understanding user require-
ments posed another challenge, as initial automa-
tion needs were often unclear. Rigorous logging
practices were implemented to monitor through-
put, error rates, and latency, enabling timely ad-
justments and optimizations. Adherence to firm-
wide production release controls and rigorous code
quality standards was mandatory throughout the
deployment process. This included comprehensive
security and vulnerability scans to protect sensitive
data and uphold system integrity.

825


