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Abstract

Effectively selecting data from population sub-
groups where a model performs poorly is cru-
cial for improving its performance. Traditional
methods for identifying these subgroups often
rely on sensitive information, raising privacy
issues. Additionally, gathering such informa-
tion at runtime might be impractical. This pa-
per introduces a cost-effective strategy that ad-
dresses these concerns. We identify underper-
forming subgroups and train a model to predict
if an utterance belongs to these subgroups with-
out needing sensitive information. This model
helps mitigate bias by selecting and adding
new data, which is labeled as challenging, for
re-training the speech model. Experimental
results on intent classification and automatic
speech recognition tasks show the effective-
ness of our approach in reducing biases and
enhancing performance, with improvements in
reducing error rates of up to 39% for FSC, 16%
for ITALIC, and 22% for LibriSpeech.

1 Introduction

Speech models, such as those deployed in Auto-
matic Speech Recognition (ASR) and Intent Classi-
fication (IC), often face challenges leading to sub-
par performance within specific population sub-
groups, as shown by recent studies (Dheram et al.,
2022; Koudounas et al., 2023b; Liu et al., 2022).
Identifying and addressing these subgroups is cru-
cial for improving model robustness and ensuring
fairness across diverse populations (Zhang et al.,
2022; Shen et al., 2022; Koudounas et al., 2024a,
2025).

However, traditional methods for subgroup iden-
tification, which rely on demographic attributes
like age, gender, and accent, raise privacy con-
cerns since collecting such sensitive information
during testing or deployment is often impractical
or undesirable (Zhang et al., 2022; Padmanabhan
et al., 1996). Recently, significant efforts have fo-
cused on enhancing the protection of user data,

especially in relation to voice (Tran and Soleymani,
2023; Chen et al., 2024; Hashimoto et al., 2016; Pa-
nariello et al., 2024). While newer approaches have
introduced speaker embeddings to tackle this is-
sue (Dheram et al., 2022; Veliche and Fung, 2023),
they continue to struggle, especially regarding their
interpretability.

To address these challenges and reduce the de-
pendence on sensitive demographic data, we pro-
pose the use of a Challenging Subgroup Identifi-
cation (CSI) model, as introduced in Koudounas
et al. (2024d), which is built on top of a Confi-
dence Model (CM). Confidence scores, derived
either from model-specific uncertainty estimates
or through auxiliary CMs trained to predict error
rates (Abdar et al., 2021; Swarup et al., 2019),
are crucial in evaluating model reliability. Inte-
grating CMs has been proven to help close perfor-
mance gaps among demographic cohorts (Dheram
et al., 2022). The CSI model identifies difficult
subgroups without relying on demographic infor-
mation, thus improving interpretability and trans-
parency. We first apply automatic identification
methods (Koudounas et al., 2024c) to detect chal-
lenging human-understandable subgroups and then
fine-tune the CSI to predict these subgroups based
on the confidence model outputs. This allows the
CSI to identify performance challenges without
compromising user privacy, enabling fair and re-
sponsible deployment of speech models.

We propose utilizing the CSI to mitigate model
disparities in data subgroups by selecting additional
labeled data tailored to these cohorts. Subset selec-
tion of data in speech processing serves various
purposes, including (i) budget-constrained sam-
pling (Lin and Bilmes, 2009; Wei et al., 2014a,b;
Park et al., 2022), (ii) human annotation, especially
relevant for new languages or dialects where audio
has not been transcribed yet (Hakkani-Tür et al.,
2002; Lamel et al., 2002; Kemp and Waibel, 1998),
and (iii) bias mitigation in speech models (Dheram
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Figure 1: Schema of the proposed pipeline. We train
the CSI model by fine-tuning a CM to predict the chal-
lenging subgroup an utterance belongs to (Koudounas
et al., 2024d). We augment the original train set with
the utterances of the held-out set labeled as challenging
by the CSI to incrementally train the speech model.

et al., 2022; Koudounas et al., 2024b).
We focus on using the CSI to address subgroup

disparities by selecting data specific to challeng-
ing subgroups. Few recent works have explored the
data selection and acquisition of automatically iden-
tified challenging groups. The authors of Dheram
et al. (2022) first derive challenging clusters of
embedding representations and acquire data ac-
cordingly, while Koudounas et al. (2024b) consid-
ers interpretable subgroups defined over metadata
(e.g., gender, age, speaking rate of the utterances).
Their work shows the benefit of interpretable sub-
groups over not interpretable clusters in mitigating
subgroup disparities and improving performance.
However, the approach requires knowing sensitive
information for the data to be acquired. In con-
trast, our approach offers interpretability without
the need for sensitive data. This privacy-preserving
methodology ensures fairness while maintaining
transparency and improving model performance.

Experimental results on FSC (Lugosch et al.,
2019) and ITALIC (Koudounas et al., 2023a)
datasets for IC, and on LibriSpeech (Panayotov
et al., 2015) for ASR, validate our methodology.
Our approach obtains a reduction in Intent Error
Rate (IER) up to 39% for FSC and 16% for ITALIC
and a 22% decrease in Word Error Rate (WER) for
LibriSpeech. We observe lower error rates and
higher macro F1 scores compared to various base-
lines employing KNN, clustering (Dheram et al.,
2022), and model mistakes (Magar and Farimani,
2023) to guide the data selection process. By avoid-
ing demographic data collection, we offer a privacy-
aware alternative that enhances both fairness and
model performance, thus remaining competitive
with data selection strategies that traditionally rely
on sensitive information (Koudounas et al., 2024b).

This work addresses a critical challenge for com-

mercial speech recognition systems, which must
balance performance improvements with increas-
ing privacy concerns and regulations. Our approach
enables organizations to deploy fairer speech mod-
els in production environments without requiring
the collection of sensitive user data, thus align-
ing with real-world deployment constraints across
various industries. The main contributions of this
work are threefold: (i) we propose a novel privacy-
preserving approach to enhance overall model per-
formance and mitigate subgroup disparities without
the need to access or collect sensitive information;
(ii) we address both the drawbacks of current mit-
igation approaches that rely on the availability of
metadata, demographic included, at deployment
time or on acoustic embedding clustering, which
results in non-interpretable groups; and (iii) we
demonstrate the effectiveness of our solution on
two speech tasks, three datasets, two languages,
and a wide range of existing baseline approaches.

2 Methodology

We consider a speech model M designed for tasks
such as IC or ASR. We aim to improve its per-
formance by mitigating biases observed in popu-
lation subgroups. Our approach consists of two
main steps, as shown in Figure 1. We first train a
Challenging Subgroup Identification (CSI) model
that predicts if an utterance belongs to a challeng-
ing subgroup for model M. We then re-train the
speech model M by acquiring new data that the
CSI model predicted to be challenging. The pro-
posed framework is designed with practical deploy-
ment considerations in mind, requiring minimal
additional computational overhead while enabling
continuous improvement of production systems.
By focusing on challenging subgroups rather than
individual errors, our approach allows for more
efficient model updates in real-world applications.

Challenging Subgroup Identification model. The
CSI model was introduced in Koudounas et al.
(2024d); we summarize here its main characteris-
tics. It predicts whether an utterance is challenging
for a model and, if so, identifies the challenging
subgroup it belongs to. The model consists of two
components: a pre-trained confidence model (CM)
and ground-truth challenging subgroups.

Confidence model. Given an input dataset X ,
we define a transformed dataset Z for training the
CM. This dataset consists of input features and
error-based target labels. Such features include (i)
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uncertainty measures, e.g., n-best list length and
output probabilities, (ii) acoustic embeddings from
the model’s hidden states, and (iii) speech metadata
like word count, pauses, and speaking rate. Each
utterance is labeled 1 if M predicts it correctly and
0 otherwise. In ASR, the label 1 corresponds to
a perfect WER of 0.0. We train the CM on Z by
splitting it into standard training, validation, and
test subsets.

Challenging subgroup. We then identify chal-
lenging subgroups from the dataset using the Div-
Explorer (Pastor et al., 2021) method as described
in Koudounas et al. (2023b). DivExplorer ana-
lyzes interpretable metadata describing utterances
to extract all frequent subgroups and calculate their
divergence, i.e., difference, in performance from
the overall dataset. Subgroups are defined as “fre-
quent” based on a set support threshold. First,
we enrich the dataset with metadata, including de-
mographic, speaking or recording conditions, and
task-specific information, which is assumed to be
available during training. This metadata allows
us to develop a model that accounts for sensitive
attributes, which may be unavailable at runtime.
Each subgroup is defined by metadata-value pairs
(e.g., {gender=female, duration>10s}). We focus
on the top K challenging subgroups with below-
average performance compared to overall behavior.

CSI model. We finally train the CSI model
to predict the challenging subgroup for each ut-
terance by fine-tuning the CM. The transformed
dataset Z is labeled with the IDs of challenging
subgroups. Specifically, each utterance in Z is
annotated with (i) the ID of its most divergent chal-
lenging subgroup or (ii) a non-challenging ID if
it does not belong to any challenging subgroup.
Unlike Koudounas et al. (2024d), which used a
multi-class setting to predict K distinct subgroups,
we collapse the K challenging subgroups into a
unique class, as our goal is to use CSI to acquire
new data that challenges the model.

Bias Mitigation. We aim to enhance the per-
formance of model M, both overall and within
specific data subgroups. Rather than indiscrimi-
nately acquiring and retraining on new data, a re-
cent study highlighted the effectiveness of a more
targeted approach to data acquisition (Koudounas
et al., 2024b). Building on this paradigm, we use
the CSI to guide the acquisition process, specif-
ically targeting utterances without the need for
sensitive information such as demographic data.

This privacy-preserving method enables subgroup-
based, focused data selection, allowing us to ac-
quire new data in a way that directly addresses
model disparities while safeguarding user privacy.

We start with a set of held-out utterances not
used in training models M, CM, and CSI. These
utterances are labeled with the CSI model to de-
termine if they likely belong to a challenging sub-
group. We enhance the training data by including
those identified as challenging and re-train model
M by fine-tuning it on the initial training dataset
combined with the selected data (referred to as
model Mf in Figure 1).

3 Experimental Setup

This section details datasets, models, metrics, train-
ing procedures, and baselines used for the experi-
ments1. Further details can be found in Appendix A
and in the project repository.

Datasets. We assess our approach on three datasets:
Fluent Speech Commands (FSC) (Lugosch et al.,
2019) for English and ITALIC (Koudounas et al.,
2023a) for Italian for the IC task, and Lib-
riSpeech (Panayotov et al., 2015) for ASR. More
details on the datasets and the available and ex-
tracted metadata are in Appendix A.1.

Confidence model. Following Koudounas et al.
(2024d), the CM architecture features two hidden
layers with GELU activation functions, dropout,
and normalization layers, initialized using the
Kaiming normal technique. The training details
can be found in Appendix A.2.

Models and training procedure. We consider two
transformer-based speech models for IC, wav2vec
2.0 (Baevski et al., 2020) base for FSC and XLS-
R (Babu and et al., 2022) for ITALIC, and Whis-
per (Radford et al., 2023) base for LibriSpeech.
Each IC model undergoes fine-tuning by adding a
final classification layer to the encoder architecture.
For ASR, the entire Whisper model is fine-tuned.
More details on models, training hyper-parameters,
and hardware used are given in Appendix A.3.

We partition our datasets into training, held-out,
validation, and test sets. The validation and test sets
remain consistent with the original dataset splits,
while the training set is divided into 80% for train-
ing and 20% held out. We use the training set for
model training and the validation set to identify
challenging subgroups. We also train and validate

1Code: github.com/koudounasalkis/CSI-MIT
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the CM and CSI models on these partitions. Subse-
quently, data samples are acquired using stratified
sampling from the held-out set to retrain the model.
We evaluate the overall and subgroup model perfor-
mance on the test set. While using additional exter-
nal data would be a practical and optimal choice for
improving the model, for experimental purposes,
the 20% held-out data is adequate to demonstrate
our approach’s effectiveness. It also serves as a
good proxy for the overall data distribution, allow-
ing us to assess the CSI’s performance.

To ensure a fair comparison, we consider each
approach separately and determine the number of
N possible samples to acquire from the held-out
set. Apart from the random baseline, all other base-
lines may limit the number of data identified as
challenging due to the limited size of the held-out
set. We then identify the minimum value of N
across all methods and select this consistent num-
ber of samples for all approaches. This approach
disentangles the impact of the number of added
instances from the method itself. As a result, any
improvement in the final performance can be at-
tributed to the specific selection method rather than
the number of added instances.

Metrics. We assess model performance using In-
tent Error Rate (IER) and F1 Macro scores for
IC and WER for ASR. We also evaluate perfor-
mance at the subgroup level, considering the IER
and WER for the top-K challenging subgroups,
with K in the range [2, 5].

Baselines. We benchmark our approach against six
baselines.

Random baseline. We randomly add instances
from the held-out dataset to the training data.

KNN baseline. We employ a K-Nearest Neigh-
bors classifier. We identify the K closest utterances,
via standard Euclidean distance, from the training
set for each instance in the held-out set, represented
in the same input space as in our methodology. The
selection of K is based on maximizing the perfor-
mance, i.e., identifying challenging subgroups on
the validation set. We determine if an utterance is
challenging or not through majority voting among
these neighbors. Predicted challenging instances
are included in the retraining process.

Cluster-based baseline. We adopt an unsuper-
vised clustering approach inspired by Dheram et al.
(2022) to identify challenging subgroups. First, we
extract acoustic embeddings from audio samples
using the last layer of the Whisper model, with a

fixed length for each utterance. We then apply K-
means clustering with standard settings to group
these embeddings into similar clusters. Consistent
with Dheram et al. (2022), we use 50 clusters, as
this number has been shown to adequately capture
speech characteristics pertinent to ASR. Finally,
we select the clusters with the poorest performance
for targeted data acquisition.

CM-based baseline. We use the CM to label
the utterances and include samples labeled as erro-
neous in the training data.

We further employ two baselines that work as
oracles, as they assume the knowledge of ground
truth labels or metadata, demographics included.

Supervised oracle (S-Oracle). Similarly to the
methodology proposed in Magar and Farimani
(2023), we use an erroneous-sample-driven ap-
proach that incorporates instances predicted erro-
neously by the model into the augmented training
data. This baseline assumes the prior knowledge of
the ground truth labels for the tasks, hence serving
as the oracle for the CM-based baseline.

Metadata-based oracle (M-Oracle). We adopt
the approach described in Koudounas et al. (2024b),
which assumes access to metadata, including sen-
sitive demographic information, for the samples
in the held-out set to be acquired. This approach
represents the oracle for our proposal since, in our
work, we use the CSI to predict the challenging
subgroups without accessing such metadata.

4 Results and Discussion

We evaluate the performance of our targeted data
selection approach on three datasets and two tasks:
FSC and ITALIC for the IC task and LibriSpeech
for ASR. Table 1 focuses on the results on FSC. Our
method effectively addresses performance dispar-
ities by reducing the IER of the top-K subgroups
of about 50% for K = 2 and more than 60% for
K = 5 w.r.t. the original fine-tuned model. This
mitigation, in turn, leads to overall performance
enhancement, with a 39% reduction in IER and al-
most 10% improvement in F1 macro scores. These
results outperform all the considered baselines for
every number K of subgroups considered.

We also test our approach against the two ora-
cles, which use demographic-sensitive metadata
and ground truth labels. Our methodology serves
as a reliable proxy when compared to the metadata-
based oracle (M-Oracle in Table 1). Even without
demographic information, our method consistently
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Table 1: FSC, wav2vec 2.0 base. Mean ±std of three runs. K indicates the number of challenging subgroups
considered, N is the number of samples selected. We compare the results of the Original fine-tuning procedure, the
baselines, our CSI, and the two oracles (M-Oracle considering metadata, S-Oracle leveraging supervised labels).
Best results for each number of subgroups K are highlighted with light-blue . Best results with oracles in bold.

K N Approach IER (%) ↓ F1 Macro (%) ↑ IER top-K (%) ↓
- 18506 Original 8.42±0.08 86.34±0.13 67.63±0.08 (K = 2)

2 +223

Random 9.19±0.03 88.48±0.05 65.90±0.22

KNN 7.93±0.07 89.92±0.10 59.90±0.23

Clustering (Dheram et al., 2022) 7.06±0.07 91.82±0.15 47.35±0.42

CM 6.87±0.04 93.93±0.05 52.24±0.35

CSI (ours) 5.17±0.03 94.87±0.03 34.04±0.21

S-Oracle (Magar and Farimani, 2023) 5.29±0.02 94.06±0.04 47.47±0.39

M-Oracle (Koudounas et al., 2024b) 4.46±0.08 94.81±0.09 32.95±0.36

- +4606 All data 6.58±0.17 93.11±0.17 55.11±0.24 (K = 2)

3 +361

Random 9.41±0.05 88.15±0.09 49.44±0.38

KNN 8.25±0.09 89.12±0.14 39.30±0.36

Clustering (Dheram et al., 2022) 7.19±0.06 91.06±0.09 37.15±0.39

CM 6.15±0.05 92.30±0.07 38.80±0.43

CSI (ours) 5.25±0.04 94.21±0.07 23.17±0.23

S-Oracle (Magar and Farimani, 2023) 5.60±0.04 93.43±0.04 51.17±0.35

M-Oracle (Koudounas et al., 2024b) 5.12±0.04 94.41±0.06 22.89±0.12

4 +397

Random 9.45±0.11 88.09±0.10 36.44±0.27

KNN 8.29±0.02 89.51±0.07 25.50±0.29

Clustering (Dheram et al., 2022) 7.42±0.07 90.89±0.08 36.08±0.31

CM 6.59±0.04 91.75±0.05 38.19±0.25

CSI (ours) 5.31±0.03 94.19±0.05 19.89±0.21

S-Oracle (Magar and Farimani, 2023) 5.84±0.06 93.44±0.06 46.40±0.33

M-Oracle (Koudounas et al., 2024b) 5.19±0.06 94.25±0.07 18.72±0.17

5 +467

Random 9.58±0.10 88.04±0.10 34.80±0.39

KNN 8.31±0.03 89.50±0.06 21.24±0.23

Clustering (Dheram et al., 2022) 7.68±0.06 90.61±0.05 29.75±0.27

CM 6.70±0.05 91.69±0.03 25.34±0.23

CSI (ours) 5.39±0.06 94.05±0.04 14.55±0.08

S-Oracle (Magar and Farimani, 2023) 5.85±0.06 94.76±0.03 46.94±0.25

M-Oracle (Koudounas et al., 2024b) 5.28±0.04 94.08±0.06 14.01±0.11

- +4606 All data 6.58±0.17 93.11±0.17 39.78±0.12 (K = 5)

yields comparable results across different K values.
Notably, the top-K most challenging subgroups of-
ten involve sensitive attributes, e.g., age and gender.
For FSC, in the top-2 we find the subgroup of male
speakers aged 41-65 who speak quickly. Further
examples of retrieved subgroup composition can
be found in Appendix B. This demonstrates our
approach’s effectiveness in identifying challenging
subgroups and acquiring data accordingly, all while
avoiding direct access to sensitive information.

The supervised oracle (S-Oracle), which relies
on ground truth labels, serves as a reference for
the CM-based strategy. This oracle and our CSI
achieve comparable overall intent error rates and F1
macro score, with our approach performing slightly
better and showing improved IER for the top-K
subgroups (IER top-K). We attribute this perfor-

Figure 2: ITALIC, XLS-R large. Intent Error Rate (IER)
and Top-K Subgroups IER for K ∈ [2, 5].

mance enhancement to our model’s awareness of
disparities within distinct population subgroups,
which enables targeted retraining. Conversely, the
supervised oracle disregards the information about
the challenging subgroups, focusing on the samples
that the model will predict incorrectly.

Similar considerations also apply to ITALIC and
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Table 2: LibriSpeech, Whisper base. Mean ±std of
three runs. Best results for each number of subgroups
K in light-blue , best results w/ oracles in bold.

K N Approach WER ↓ WER top-K ↓
- 83211 Original 8.05±0.05 25.91±0.98 (K = 2)

2 +6912

Random 7.96±0.29 25.02±0.44

KNN 7.80±0.04 18.44±0.32

Clustering 7.33±0.08 14.05±0.38

CM 7.70±0.09 14.86±0.27

CSI (ours) 7.25±0.06 12.33±0.15

S-Oracle 7.28±0.09 24.17±0.29

M-Oracle 7.22±0.06 12.51 ±0.09

- +20803 All data 6.31±0.07 17.46±0.87 (K = 2)

3 +8120

Random 7.71±0.31 22.15±0.41

KNN 7.55±0.05 16.29±0.28

Clustering 7.08±0.10 13.09±0.31

CM 7.49±0.07 13.01±0.23

CSI (ours) 6.81±0.08 10.97±0.17

S-Oracle 6.87±0.07 21.86±0.32

M-Oracle 6.80±0.05 10.94±0.11

4 +9958

Random 7.40±0.24 20.43±0.33

KNN 7.33±0.04 14.84±0.19

Clustering 6.81±0.08 12.55±0.24

CM 7.21±0.05 12.56±0.18

CSI (ours) 6.48±0.07 10.16±0.15

S-Oracle 6.47±0.09 19.74±0.29

M-Oracle 6.43±0.05 10.15±0.09

5 +12026

Random 7.14±0.09 17.52±0.31

KNN 7.03±0.04 12.77±0.16

Clustering 6.42±0.07 11.19±0.26

CM 6.81±0.05 11.04±0.19

CSI (ours) 6.32±0.04 9.33±0.13

S-Oracle 6.34±0.05 15.01±0.26

M-Oracle 6.31±0.04 9.32±0.08

- +20803 All data 6.31±0.07 12.24±0.79 (K = 5)

LibriSpeech. Figure 2 visually illustrates the intent
error rates both at the overall (IER) and subgroup
(Top-K Subgroups IER) levels for the ITALIC
dataset. The error rates are higher w.r.t. FSC,
as the Italian dataset is more complex, and the
multilingual XLS-R model achieves per se worst
initial scores. Nonetheless, our approach consis-
tently outperforms baselines and the supervised
oracle while exhibiting comparable results to the
metadata-based one. These findings emphasize
the robustness and effectiveness of the proposed
methodology across diverse datasets and languages
for the IC domain. The results in tabular form can
be found in Appendix C.

Table 2 finally summarizes the outcomes on Lib-
riSpeech for the ASR task. Similar to the behavior
observed for IC, our approach consistently outper-
forms all baselines, achieving the lowest WER over-

all (6.32) and among the top-K subgroups (9.33,
K = 5) and demonstrating superior or comparable
results with respect to the two oracles. We observe
a clear trend: as we incorporate more data, the per-
formance consistently improves. ASR is inherently
more complex than other tasks, such as intent clas-
sification. This complexity underscores the signifi-
cance of our performance improvements. Despite
the difficulty of the task, by acquiring only 60%
of the entire held-out data, our method achieves
performance comparable to using the full dataset.
More importantly, our targeted data selection strat-
egy allows for the effective reduction of model
biases. For example, we report a top-K WER of
12.24 (with K = 5) when all the available data
are added (last row of Table 2), whereas our ap-
proach achieves a significantly lower top-K WER
of 9.33. While our results may not represent the
state-of-the-art in ASR, our focus is to demonstrate
the effectiveness of the privacy-aware data selec-
tion strategy. Specifically, using Whisper base as
a model, our approach clearly illustrates how tar-
geted subgroup-based acquisition can enhance per-
formance and mitigate biases effectively.

5 Conclusion

We introduced a data selection strategy to enhance
speech model performance while addressing data
privacy concerns. Our approach leverages a Chal-
lenging Subgroup Identification (CSI) model to
detect population subgroups that a model struggles
with, without requiring demographic metadata at
testing or runtime. We propose acquiring additional
data based on the samples labeled as challenging
by the CSI model and using them for model re-
training. Extensive experiments across two tasks,
three datasets, and two languages demonstrate the
approach’s effectiveness in mitigating biases and
outperforming baselines. Its privacy-preserving na-
ture makes it ideal for industry deployment, where
collecting demographic data is often restricted. Our
results show that the CSI model can be seamlessly
integrated into speech recognition pipelines, offer-
ing a practical solution for more equitable speech
technology in production settings.

Ethical Statement

The paper adheres to the ACL Ethics Policy. This
work aims to address fairness and bias in speech
recognition systems, which has significant ethi-
cal implications. By developing methods that can
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mitigate performance disparities without requiring
sensitive demographic data, we promote more eq-
uitable speech technology while respecting user
privacy. However, we acknowledge that any auto-
mated system for bias mitigation should be care-
fully monitored, as it may inadvertently introduce
new biases or fail to address all forms of discrimi-
nation. Throughout our research and development
process, we prioritized transparency, interpretabil-
ity, and fairness in our methodological choices.

6 Limitations

While our approach shows promising results, a few
limitations should be considered. First, the perfor-
mance of the CSI model depends on the quality
and diversity of the initial training data. If cer-
tain subgroups are severely underrepresented in
the training data, the model may not effectively
identify them as challenging. Second, the ap-
proach requires a held-out dataset for data selection,
which may not always be available in sufficient
quantities in real-world scenarios. Finally, com-
putational overhead for training multiple models
(speech model, CM, and CSI) may present chal-
lenges for resource-constrained deployments. It is
worth noting, however, that the CM and CSI mod-
els themselves require minimal computational re-
sources, typically converging within minutes. The
primary computational costs arise from the two-
phase training of the speech model - initial train-
ing followed by fine-tuning with the augmented
dataset. To address this limitation, future imple-
mentations could explore incremental update strate-
gies using parameter-efficient fine-tuning methods
such as Low-Rank Adaptation (Hu et al., 2021).
These approaches would enable targeted updates
to small portions of the model, substantially reduc-
ing computational requirements and training time
while maintaining performance improvements
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A Experimental setup

A.1 Datasets
We evaluate our approach on three publicly avail-
able datasets: Fluent Speech Commands (FSC) and
ITALIC for the IC task in English and Italian, re-
spectively, and LibriSpeech for ASR. FSC includes
30,043 English utterances, each labeled with three
slots (action, object, location) defining the intent.
ITALIC consists of 16,521 audio samples from Ital-
ian speakers, with the intent defined by action and
scenario slots. We select the “Speaker” configura-
tion for ITALIC, aligning with FSC’s setup, ensur-
ing distinct speakers in the train, validation, and
test sets. For LibriSpeech, we utilize the clean-360
partition, which comprises 360 hours of clean au-
dio samples. A complete overview of the datasets’
characteristics is provided in Table 3.
Metadata. For the above datasets, we consider
the following metadata when using DivExplorer to
automatically extract subgroups: (i) demographic
metadata describing the speaker (e.g., gender, age,
language fluency level), (ii) factors related to speak-
ing and recording conditions (e.g., duration of si-
lences, number of words, speaking rate, and noise
level), and (iii) intents represented as combinations
of action, object, and location for FSC, or action
and scenario for ITALIC. We discretize continuous
metadata using frequency-based discretization into
three distinct ranges, labeled as “low,” “medium,”
and “high”. Hence, continuous values are catego-
rized into discrete bins based on their respective fre-
quencies within the dataset. In the experiments, we
explore all subgroups with a minimum frequency s
of 0.03.

A.2 CM training
We use the following features to train the confi-
dence models:

• Acoustic embeddings: We use the embeddings
extracted from the audio signal. Specifically,
we use the HuggingFace implementation of
the wav2vec 2.0 base2, XLS-R3, and whisper
base4 models, and we extract the embeddings
from the models’ last hidden layer.

• n-best list: For LibriSpeech, we use the n-best
list of the model, i.e., the list of the n most
probable hypotheses for each utterance.

2huggingface.co/facebook/wav2vec2-base
3huggingface.co/facebook/wav2vec2-xls-r-300m
4huggingface.co/openai/whisper-base.en

• Output probabilities: For FSC and ITALIC,
we use the output probabilities of the model
for each class.

• Speech metadata: We use the metadata ex-
tracted from the audio signal, including the
number of words, number of pauses, speaking
rate (word per second), and signal-to-noise
ratio.

The CM consists of two hidden layers with
GELU activation functions, dropout, and normal-
ization, initialized with the Kaiming normal tech-
nique. The CM is trained for up to 10,000 epochs
with early stopping, using the NAdam optimizer
and a learning rate of 5e-3. For FSC and ITALIC
datasets, we use Cross-Entropy (CE) loss. For Lib-
riSpeech, we add a Mean Squared Error (MSE)
term, using WER as an additional target. The total
loss function is a weighted combination of CE and
MSE, defined as: Ltot = αLCE + (1− α)LMSE ,
where α is 0.6. The training of the CM takes a few
minutes only to converge.

A.3 Models and training procedure
We fine-tune the transformer-based wav2vec 2.0
base (ca. 90M parameters) and multilingual XLSR
(ca. 300M parameters) models on the FSC and
the ITALIC dataset, respectively, and the whisper
base (ca. 74M parameters) model on LibriSpeech.
The pre-trained checkpoints of these models are
obtained from the Hugging Face hub (Wolf et al.,
2020). Experiments were run on a machine
equipped with Intel Core TM i9-10980XE CPU,
2 × Nvidia RTX A6000 GPU, 128 GB of RAM
running Ubuntu 22.04 LTS.
IC task. We trained the models for 2800 steps for
FSC and 5100 for ITALIC, with a batch size of 32,
using the AdamW optimizer with a learning rate of
1e-4 and 500 warmup steps.
ASR task. We trained the model for 3 epochs, with
a batch size of 32, using the AdamW optimizer
with a learning rate of 1e-5.

B Subgroups composition

Table 4 presents the top-5 most divergent retrieved
subgroups identified by our approach across the
three datasets: FSC, ITALIC, and LS. These sub-
groups represent specific combinations of attributes
that exhibit notable performance differences com-
pared to the overall dataset distribution. For the
FSC dataset, we observe that subgroups related to
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Table 3: Datasets characteristics. Cardinality of the train (#Train), held-out (#Held-out), validation (#Val)
and test (#Test) sets, the number of distinct speakers (#Spkr), and the number of classes (#C) for each dataset.

Dataset #Train #Held-out #Val #Test #Spkr #C

FSC (Lugosch et al., 2019) 18506 4626 3118 3793 97 31
ITALIC (Koudounas et al., 2023a) 10498 2625 1957 1441 70 60

LIBRISPEECH (Panayotov et al., 2015) 83211 20803 2703 2620 1001 -

Table 4: Subgroups composition. Top-5 most divergent retrieved subgroups for the three considered datasets.

Dataset Subgroup Support

FSC

{action=activate, object=music} 0.04
{age=41-65, gender=male, speakRate=high} 0.03
{gender=male, loc=none, speakRate=high, totSilence=high, trimDur=low} 0.03
{action=increase, gender=male, nWords=low, speakRate=high} 0.04
{action=activate, loc=none, speakRate=high, totSilence=high} 0.03

ITALIC

{gender=male, totSilence=high} 0.05
{gender=male, age=22-40, totSilence=high, nWords=low} 0.03
{speakRate=high, totDur=low, scenario=play} 0.03
{gender=male, scenario=music, totSilence=high} 0.04
{nWords=high, nPauses=high, scenario=cooking} 0.03

LS

{speakRate=high, totDur=low, totSilence=low} 0.05
{gender=female, nWords=medium, totDur=high} 0.04
{nPauses=high, gender=female, totDur=low} 0.03
{nPauses=low, speakRate=high, totDur=low, totSilence=low} 0.03
{nPauses=high, nWords=high, speakRate=high} 0.03

voice commands (particularly those involving ac-
tivation requests and music) demonstrate the high-
est divergence. Additionally, demographic factors
such as male gender combined with high speak-
ing rates appear consistently across multiple sub-
groups. The ITALIC dataset reveals interesting
patterns around specific scenarios, with music-,
cooking- and playing-related interactions show-
ing the highest divergence, particularly when com-
bined with male gender and high total silence. In
contrast, the LS dataset subgroups are primarily
characterized by speech pattern attributes rather
than content-based factors. The most divergent
subgroup features a high speaking rate combined
with low total duration and silence. The female gen-
der appears in two of the top-5 subgroups. These
findings highlight the importance of considering
fine-grained subgroup performance when evaluat-
ing speech recognition systems, as specific combi-
nations of demographic, behavioral, and contextual
factors can significantly impact model performance.
Most importantly, they highlight the capability of
our CSI model to correctly capture demographic

information within those subgroups.

C Results on ITALIC

Table 5 presents a comprehensive evaluation of the
XLS-R model on the ITALIC dataset, comparing
our proposed CSI approach against various base-
lines and oracle methods. The experiments were
conducted across different numbers of challenging
subgroups (K ∈ [2, 5]) with corresponding sample
selection strategies.

Our CSI method demonstrates superior perfor-
mance across multiple metrics, consistently achiev-
ing the lowest Intent Error Rate (IER) among all
non-oracle approaches. For K = 2, CSI reduces
the IER to 21.94%, which represents a significant
improvement over the original model’s 26.21%.
Notably, this performance is remarkably close
to the metadata-based oracle (M-Oracle), which
achieves 21.12%.

The improvement becomes particularly evident
when examining the IER for the top-K most chal-
lenging subgroups. CSI reduces the IER top-K
from 72.15% in the original model to 59.98% for
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Table 5: ITALIC, XLS-R model. Mean ±std of three runs. K indicates the number of challenging subgroups
considered, N is the number of samples selected. We compare the results of the Original fine-tuning procedure, the
baselines, our CSI, and the two oracles (M-Oracle considering metadata, S-Oracle leveraging supervised labels).
Best results for each number of subgroups K are highlighted with light-blue . Best results with oracles in bold.

K N Approach IER (%) ↓ F1 Macro (%) ↑ IER top-K (%) ↓
- - Original 26.21±0.32 68.08±0.37 72.15±0.42 (K = 2)

2 +725

Random 23.95±0.14 72.20±0.19 70.76±0.58

KNN 23.44±0.06 72.65±0.08 69.13±0.49

Clustering (Dheram et al., 2022) 22.98±0.14 71.92±0.13 68.05±0.73

CM 23.70±0.11 71.96±0.08 67.41±0.64

CSI 21.94±0.10 72.87±0.11 59.98±0.59

S-Oracle (Magar and Farimani, 2023) 22.86±0.09 72.84±0.12 70.17±0.31

M-Oracle (Koudounas et al., 2024b) 21.12±0.12 72.94±0.10 58.17±0.45

- +2625 All data 24.29±0.36 73.22±0.33 65.91±0.34 (K = 2)

3 +975

Random 24.02±0.16 72.01±0.17 66.14±0.64

KNN 23.59±0.05 71.26±0.09 56.83±0.38

Clustering (Dheram et al., 2022) 23.17±0.09 71.69±0.08 56.71±0.39

CM 23.75±0.04 71.88±0.03 57.15±0.55

CSI 22.50±0.06 72.66±0.04 51.09±0.44

S-Oracle (Magar and Farimani, 2023) 22.99±0.12 71.77±0.10 57.51±0.42

M-Oracle (Koudounas et al., 2024b) 21.74±0.08 73.15±0.08 50.98±0.38

4 +1395

Random 23.01±0.11 72.61±0.15 63.94±0.57

KNN 22.81±0.04 72.48±0.05 55.12±0.37

Clustering (Dheram et al., 2022) 22.35±0.08 72.78±0.06 55.04±0.29

CM 22.69±0.05 72.66±0.06 55.61±0.41

CSI 22.05±0.02 72.86±0.03 49.25±0.43

S-Oracle (Magar and Farimani, 2023) 22.54±0.07 72.79±0.04 61.02±0.58

M-Oracle (Koudounas et al., 2024b) 21.69±0.03 73.24±0.04 47.16±0.19

5 +1509

Random 23.59±0.15 72.26±0.17 58.49±0.71

KNN 23.09±0.04 72.04±0.04 48.15±0.48

Clustering (Dheram et al., 2022) 22.19±0.02 72.85±0.03 50.71±0.22

CM 23.10±0.05 71.99±0.04 49.74±0.43

CSI 22.14±0.01 72.30±0.03 42.19±0.39

S-Oracle (Magar and Farimani, 2023) 22.56±0.03 72.85±0.05 60.56±0.19

M-Oracle (Koudounas et al., 2024b) 21.95±0.04 72.99±0.05 41.88±0.21

- +2625 All data 24.29±0.36 73.22±0.33 58.44±0.37 (K = 5)

K = 2 and achieves an even more important re-
duction to 42.19% for K = 5. This represents
an improvement of approximately 17% and 42%,
respectively, demonstrating CSI’s effectiveness in
addressing performance disparities.

Furthermore, CSI consistently outperforms es-
tablished baselines, including Random sampling,
KNN, Clustering, and CM approach across all K
values. The performance gap is particularly pro-
nounced for the IER top-K metric, indicating CSI’s
superior ability to target and improve model perfor-
mance on the most challenging subgroups.

Interestingly, CSI’s performance closely approx-
imates the M-Oracle, which leverages sensitive de-
mographic metadata. This suggests our approach
can effectively identify and address performance
disparities without requiring direct access to poten-

tially sensitive attributes like age and gender. For
K = 5, CSI achieves an IER top-K of 42.19%,
nearly matching M-Oracle’s 41.88%.

When compared to the supervised oracle
(S-Oracle), which utilizes ground truth labels, CSI
demonstrates superior performance on the IER top-
K metric across all K values. This highlights CSI’s
advantage in specifically addressing subgroup dis-
parities rather than simply focusing on overall error
reduction.

These results confirm that our CSI approach ef-
fectively identifies challenging subgroups, strategi-
cally selects additional training samples, and sig-
nificantly improves model fairness and overall per-
formance without requiring access to sensitive at-
tributes or supervised labels.
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