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Abstract

Industrial applications pose heightened require-
ments for consistency and reliability of large
language models (LLMs). While LLMs are be-
ing tested with increasingly complex reasoning
tasks, we argue that much can be learned via
diagnostic tools that probe a fundamentally ba-
sic type of reasoning: conceptual consistency,
e.g., a rule applying to “all surgeons” must also
apply to “cardiac surgeons” since a cardiac sur-
geon is a type of surgeon. In this emerging in-
dustry track submission, we propose a method
that takes concept hierarchies from a knowl-
edge graph (KG) and automatically generates
benchmarks that test conceptual consistency in
LLMs. We develop a multi-domain benchmark
that reveals rates of conceptual inconsistencies
in several state of the art LLMs. Addition-
ally, we use measured levels of inconsistency
and disagreement in LLMs to find potentially
problematic subgraphs in the reference KG. As
such, it offers a scalable complement to sym-
bolic curation, maintenance, and refinement of
knowledge graphs, which is a critical activity
in KG-based industrial applications.

1 Introduction

Large Language Models (LLMs), despite their
tremendous success on traditional benchmarks, of-
ten commit errors that limit their application in
real-world industrial settings (Haltaufderheide and
Ranisch, 2024; Zhang et al., 2025; Dahl et al.,
2024). Reliability and consistency of LLMs (Xu
et al., 2024; Ji et al., 2023) are key issues that under-
mine performance and trust. Developing diagnostic
tools that can measure the reliability of LLMs in
a way that is principled, scalable, and application-
domain-focused, is very difficult. Yet, it is critical
for high-stakes industrial domains like healthcare,
law, or manufacturing, where unpredictable behav-
ior can have serious consequences.

Much attention has been given to LLM abilities
on complex tasks that are challenging for even the

Figure 1: Proposed automated conceptual diagnostics
pipeline for a single dataset.

most highly trained humans (Jaech et al., 2024).
Although very impressive, we argue that diagnos-
tic tools can be built via a much more basic type
of reasoning: conceptual consistency. Conceptual
consistency is the ability to reliably produce equiv-
alent answers to semantically equivalent queries
about a conceptual hierarchy. It is basic because it
concerns the fundamental categorization and prop-
erty inheritance of concepts. For example, a rule
applying to “all surgeons” must naturally extend
to “cardiac surgeons” since a cardiac surgeon is a
type of surgeon - this is a basic generalization that
hinges on a stable conceptual framework. Further-
more, when an LLM is asked about the conceptual
hierarchy of surgeons, it should not change its an-
swer when it is asked in a slightly different but
semantically equivalent way. This is especially im-
portant in real-world applications, where organiza-
tions need to verify that the models are aligned with
domain-specific knowledge bases, such as product
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catalogs, medical specialists taxonomies, scientific
corpora, and so on.

Knowledge graphs (KGs), on the other hand, are
conceptually consistent by design, but have their
own set of issues. One of the biggest challenges in
using them in industrial applications is maintaining
them to ensure their knowledge is factual, up to
date, and as complete as necessary for its down-
stream task. With very large KGs, curating and
repairing knowledge can be a substantial obstacle.

We propose a method to automatically generate,
with a domain-agnostic process, domain-specific
benchmarks that assess the conceptual consistency
of LLMs. This domain-agnostic process facili-
tates generalization, while the creation of domain-
specific benchmarks is suited to many industrial
applications. The same process can be used to
generate benchmarks for finance products, home
appliances, medical specialties, and so on (Table
1). Furthermore, we show that analytics from our
benchmark can be used to discover areas of the
KG that are problematic and need human atten-
tion. We illustrate our method on 4 well-established
LLM families and 8 domains from the Wikidata
KG. These experiments provide empirical support
for our method and a pathway to its deployment.

This work has the following contributions:

1. We introduce a domain-agnostic method for
creating benchmark datasets that test concep-
tual self-consistency in LLMs.

2. We release a new benchmark dataset to test
conceptual self-consistency in LLMs that con-
sists of over 6,000 deducible edges and 30,000
LLM queries across 8 distinct domains ex-
tracted as a KG from Wikidata1.

3. We show that in addition to revealing incon-
sistencies in state of the art LLMs, these
benchmarks can be used to identify represen-
tational errors and problematic subgraphs in
the source KG.

Figure 1 shows the methodological contributions
of our work, discussed in detail in Sections 3 and 5.

The rest of this paper is organized as follows. We
begin with preliminaries regarding conceptual hier-
archies (Section 2) followed by our core method-
ology (Section 3). We present our findings across
several domains and LLMs (Section 4) and propose

1https://huggingface.co/datasets/ibm-research/
knowledge_consistency_of_LLMs

Figure 2: Concept axiom tests (dotted edges numbered
1-5) shown on an example concept hierarchy (solid
lines) of medical specialist.

a feedback mechanism for discovering problems
with the source KG (Section 5). We conclude with
directions for future research (Section 7) and limi-
tations (Section 8).

2 Conceptualization properties

Webster defines a concept as "an abstract or generic
idea generalized from particular instances." Simi-
larly, a type is "a particular kind, class, or group".
Either of these definitions refer to a set of in-
stances that share similar properties and can be
organized into a generalization hierarchy (Brach-
man and Levesque, 2004). Operationally, we define
a concept C as a set of instances. For example, the
concept “land vehicle” represents a broad category
that includes instances of cars, trucks, motorcycles,
etc. and they all have a propulsion system, a steer-
ing system, the ability to transport people or goods
and so on.

The subconcept relation (also known as an “is-
a” or ”subclass of” relationship or taxonomy) is a
hierarchical relationship where a more specific con-
cept (the subconcept) inherits the properties of a
broader, more general concept (the parent concept),
while the parent concept inherits the instances of
its subconcepts. An illustration of subconcept rela-
tions in the medical specialities domain is shown
in Figure 2.

Given a concept hierarchy with subconcept re-
lations, a set of concept axioms may be used to
compute the deductive closure of the graph, which
is the full set of edges that can be inferred from
the set of explicit edges. The following axioms are
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used to compute the deductive closure of the con-
ceptual hierarchy: (1) edge reflexivity/identicality,
which simply asserts the existence of a known edge,
(2) negative edge, in which the absence of an edge
implies its negation, (3) strict inclusion, which pre-
vents subconcept cycles in the hierarchy, (4) transi-
tivity, which enables transitive inference of subcon-
cept relations, and (5) property inheritance, which
asserts that if a property exists for a given concept,
then it also exists for all corresponding subcon-
cepts. Property inheritance is especially powerful,
as is underpins the utility and coherence of struc-
tured concept hierarchies. The hierarchy in Figure
2 shows how these axioms indicate that some edges
are part of the deductive closure (green edges 1,4,5),
while other edges contradict it (red edges 2,3). Fol-
lowing (Uceda-Sosa et al., 2024), we evaluate the
conceptual consistency of LLMs with respect to
the most fundamental elements of the conceptual
hierarchy: the basic subconcept relations and a sin-
gle property. We use tests that are based on the
concept axioms described above.

3 Building benchmarks to test conceptual
consistency

We aim to automatically generate datasets that eval-
uate the conceptual consistency of large language
models (LLMs) with respect to a concept hierarchy.
Due to the proprietary and sensitive nature of most
customer data, we adopt the Wikidata concept hi-
erarchy as an open and structured knowledge base
(Vrandečić, 2012; Erxleben et al., 2014; Vrandečić
and Krötzsch, 2014; Voß, 2016) whose contents are
widely available.

We focus on eight distinct domain-specific
datasets encompassing concepts at varying levels
of abstraction and ontological persistence (Borgo
et al., 2023), spanning from concrete entities such
as software products, financial services, and house-
hold appliances, to more abstract categories like
music genres, academic disciplines, and event
types such as natural disasters (Table 1). While
the top-level concepts and properties are manually
selected, the associated subgraphs are retrieved au-
tomatically using the Wikidata public SPARQL
endpoint.2

The pipeline to create these datasets is depicted
in Figure 1. Steps in blue are symbolic in nature,
while the orange steps are executed by the LLMs.
We start by extracting a concept hierarchy based on

2https://query.wikidata.org

Domain Predicate C Q
C

Academic Disciplines used for 443 4.20
Dishes has ingredient 1220 5.15
Finance Products used for 725 4.57
Home Appliances used for 421 5.67
Medical Occupations has occupation 740 4.94
Music Genres practiced by 1990 6.09
Natural Disasters has cause 357 4.52
Software studied in 249 4.49

Table 1: Sample domains in benchmark; number of
clusters denoted by C; number of questions per cluster
denoted by Q

C

a top concept plus one property and a curated set
of 10–20 seed leaf concepts per domain. We select
these seed concepts for expediency of results, since
some of these hierarchies may have tens of thou-
sands of leaves, but it is by no means a compulsory
step. Practitioners may decide to automatically pro-
cess all possible leaves in a hierarchy, provided
they have the computational power.

The top concept and leaf nodes create a bounded,
domain-specific KG (step 1). While it is feasible
to automatically process all -or randomly selected-
leaf concepts across the full hierarchy, yielding sig-
nificantly larger domain-specific KGs, we found
that even this modest sampling reveals substantial
inconsistencies and allows us to easily bypass eso-
teric concepts and less informative (e.g. bookkeep-
ing) edges. Next, we compute the deductive closure
of the hierarchy and arbitrary negative edges to test
(step 2). The resulting KG consists of a set of
domain-specific concepts, the subconcept-of rela-
tionships between them, one property (e.g. ‘has
occupation’ in Figure 2), and additional edges that
enable axiom tests.

Our goal isn’t to check whether LLMs perfectly
match the domain-specific knowledge graph (KG),
but whether they are consistent with their own inter-
nal understanding of the conceptual hierarchy. To
test this, we rely on the models themselves to gen-
erate semantically equivalent paraphrases of each
edge (either physical or virtual) in the hierarchy
(step 3). When multiple models agree on these
paraphrases within a domain, we then test them fur-
ther by inserting real examples from the KG (step
4). Finally, we check again across models to make
sure they all still treat the paraphrased queries as
having the same meaning (step 5).

It is worth noting that not all paraphrases are
equivalent across domains, just like not all queries
are relevant to all domains. For example, "Is every

533

https://query.wikidata.org


↓ LLM responses pred(A,B) ¬pred(A,B)
All YES CA CD-FP
All NO CD-FN CA
Mixed YES,NO Inconsistent Inconsistent

Table 2: Breakdown of possible LLM behaviors in our
consistency benchmark: consistent agreement (CA),
consistent disagreement (CD) with false positive (-FP)
and false negative (-FN) variants. pred(A, B) indicates
that entity A is related to entity B through a relationship
(predicate). ¬pred(A,B) is the negation of it.

X a Y?" does not make sense in academic disci-
plines. You can’t ask "Is every algebra a mathe-
matics?" However, in medical specialties, "Is every
orthopedic surgeon a surgeon?" makes sense This
is why the steps 3, 4 and 5 above need to be domain
specific.

Next, we build the dataset, creating query clus-
ters, sets of questions designed to evaluate edges
within the concept hierarchy (step 6)—whether ex-
plicitly stated, inferred through deductive closure,
or deliberately constructed as a non-existent (i.e.,
false) edge, as illustrated in Figure 2. Despite their
differing origins, all clusters share the property that
their constituent questions are expected to elicit a
uniform binary response: either all ‘yes’ (denoting
a positive edge cluster, shown in green) or all ‘no’
(denoting a negative edge cluster, shown in red).
For this reason, we refer to them collectively as
binary agreement (BA) clusters.

The majority of BA clusters in our dataset test
individual edges using sets of four semantically
equivalent paraphrased questions. These canonical
clusters form the basis for assessing local concep-
tual consistency. A subset of the positive edge
clusters, however, evaluate virtual relations, such
as those implied by transitivity or property inheri-
tance, present only in the deductive closure of the
graph. These cases are represented by higher-order
conceptualization tests, with an antecedent and a
consequent. For example, in the case of transitivity
we may have in the antecedent the edges ‘A sub-
concept of B’ and ‘B subconcept of C’ and, in the
consequent ‘A subconcept of C’. The correspond-
ing BA clusters for these axioms involve multiple
sets of semantically equivalent queries, each testing
both antecedents and consequents. While not all
questions in these extended clusters are paraphrases
of each other, the expectation of binary agreement
still holds: the model should answer consistently
across all questions within a cluster.

Empirical evidence supporting the validity of
our approach is reflected in the high agreement rate
among models: across all tested domains (see Sec-
tion 4 below), LLMs provide consistent and correct
answers to the generated queries in approximately
90% of cases, underscoring the effectiveness of our
method in probing conceptual consistency.

4 Evaluation

Irrespective of the specific paraphrasing, all binary
agreement (BA) clusters, by construction, elicit a
uniform binary response, either ‘yes’ or ‘no’. If
the LLM answers the entire cluster uniformly and
with an answer that is consistent with the KG, then
the cluster is marked consistent agreement. Con-
versely, if the model answers the entire cluster uni-
formly but contradicts the truth label derived from
the knowledge base (e.g., uniformly answering yes
to a cluster that corresponds to an edge that doesn’t
exist in the KG), we classify the cluster as having
a consistent disagreement. Only when the LLM
responds to semantically equivalent questions with
a mixture of yes and no responses is the cluster
marked conceptually inconsistent. Table 2 shows
these conditions as a truth table.

We have evaluated the benchmarks described
above using four model families: DeepSeek,
Llama, Granite and Mistral (Figure 3).

As we see in Figure 3, LLMs reason inconsis-
tently on approximately 10% of clusters, regardless
of model size or version. It is worth noting that
all LLMs tested show some level of inconsistency,
although some domains, like ‘software’, seem to
be more reliable than others. In particular, we see
that ‘music genres’ seems to be an outlier in terms
of consistency.

Within the set of consistent clusters, consistent
disagreements occur in approximately 2% of all
evaluated clusters across all LLMs. The high-
est rate of consistent disagreement for any given
cluster-LLM combination is less than 6% (see Ap-
pendix for detailed statistics). Despite their rela-
tive rarity, consistent disagreement clusters appear
across all tested LLMs and domains, with the sole
exception of DeepSeek-V2 in the software domain.

An additional layer of insight emerges when an-
alyzing the polarity of these disagreements. We
estimate the proportion of consistent disagreement
clusters in which the LLM asserts the existence of
edges that are absent in the source KG (CD-FP in
Table 2). These can be thought of as consistent
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Figure 3: Percentages of inconsistent clusters by model and domain.

hallucinations with respect to the KG. These ac-
count for approximately 15% of an already small
subset of clusters (see Appendix for details). This
means that the dominant trend in LLM disagree-
ment involves false negatives (CD-FN in Table 2),
where the model systematically denies edges that
are present in the KG.

Finally, we observe that neither architectural
scale nor newer model versions significantly mit-
igate the observed inconsistencies. This suggests
that such structural inconsistencies are not merely
artifacts of model size or versioning, but are instead
deeply rooted in the underlying training data and
inductive biases of current LLM architectures. Ad-
dressing these limitations may require architectural
innovations or fundamentally new approaches to
knowledge representation and reasoning in LLMs.

5 Identifying problematic subgraphs

As noted above, conceptual consistency does not
depend on uniform agreement with the reference
KG. Although community curated KGs such as
Wikidata are very rich approximations of world
knowledge, we cannot treat them as definitive
ground truth. Indeed, curating, validating, and
maintaining KGs is a significant challenge for in-
dustrial applications that use them. In this section
we show that LLM consensus can be leveraged
to identify and potentially resolve ambiguous or
conflicting edges in the underlying KG.

We consider two types of evidence that parts
of the KG are subjective, incorrect, or otherwise
problematic from a knowledge modeling perspec-
tive: occurrence of consistent cluster disagreement
and rate of edge disagreement. If a particular do-
main was factually incorrect, we would expect the
clusters for that domain to have a high rate of con-
sistent disagreement across several LLMs. How-
ever, as noted in Section 4, this only occurs ap-

proximately 2% of the time across all domains and
LLMs, which is not a strong signal of incorrectness
at the domain level. To get a more detailed picture,
we measure the rate of edge disagreement, which
is the proportion of queries on which the LLM dis-
agrees with the KG, irrespective of the consistency
of the LLM reasoning.

This approach proves particularly insightful in
the case of the music genres domain, which con-
sistently emerges as an outlier across all evaluated
models. As illustrated in Figure 4, the distribu-
tion of disagreements exhibits a long tail: the top
100 edges on which LLMs most often disagree
account for 48.8% of all disagreements across
LLMs. Notably, the majority of disagreements
occur around three semantically dense regions of
the subgraph: English folk and country music, Jam-
grass, and Christmas-themed genres such as carols
and hymns. The Wikidata hierarchies in this do-
main are deep, with many detailed categorizations
that may not be standard across knowledge bases.
There may also be some disagreement in the mean-
ing of some terms, as in ‘country music’, which can
be equated with ‘folk music’ or can be understood
as a more specific genre specific to North America
(US and Canada) by some Wikidata contributors.
This points to the challenges of modeling complex
domains, particularly those characterized by soft
taxonomies, federated authorship or overlapping
conceptual boundaries. In such cases, even small
inconsistencies or modeling decisions can lead to
cascading effects in inference and reasoning. Lever-
aging the probabilistic consensus of LLMs may
offer a scalable complement to symbolic curation,
suggesting a novel avenue for semi-automated KG
refinement, and helping to surface latent ambigui-
ties to improve KG robustness over time.
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Figure 4: Frequency of edge disagreement across LLMs.
*Examples of edges that are subjective and possibly
incorrect in the KG.

6 Related work

The idea that LLMs implicitly encode relational
knowledge, traditionally stored in symbolic knowl-
edge bases (KBs) appears early on (Petroni et al.,
2019). Subsequent research sought to quantify and
address inconsistencies in knowledge and reason-
ing. Efforts include new evaluation protocols (Jang
et al., 2021; Laban et al., 2023; Sahu et al., 2022;
Feng et al., 2023; Wang et al., 2023) and the devel-
opment of consistency-aware loss functions (Elazar
et al., 2021). These studies highlighted inconsis-
tency not merely as a surface-level artifact, but as
a persistent limitation rooted in how LLMs gen-
eralize across paraphrased queries. Relevant re-
search has identified improving internal consis-
tency as a key frontier in the development of trust-
worthy, knowledge-centric LLMs (AlKhamissi
et al., 2022).

Parallel work has explored the emergence of
reasoning-like behaviors in LLMs, particularly un-
der chain-of-thought (CoT) prompting (Wei et al.,
2022). These strategies elicit multi-step answers,
raising questions about whether such outputs reflect
genuine reasoning or simply surface-level pattern
matching (Kojima et al., 2023; Wei et al., 2022).
(Wang et al., 2023) specifically studied consistency
in CoT-generated answers and proposed strategies
for improving it. Comprehensive surveys of reason-
ing in LLMs (Huang and Chang, 2023; Plaat et al.,
2024; Zhang et al., 2024), catalog the current land-
scape of techniques and open challenges. While
much of the existing literature focuses on strategic
or contextual reasoning capabilities of LLMs, we
argue that foundational inconsistencies arise even
at the level of basic conceptual hierarchies. These
should be prioritized and systematically examined
as a prerequisite to more complex reasoning tasks.

Therefore, we build on the foundational query
cluster approach introduced by (Uceda-Sosa et al.,
2024), although our work significantly extends this
line of inquiry in several ways. First, we adapt
and scale the query clustering methodology to a
broader set of domains by formalizing domain-
specific conceptualization axioms, enabling auto-
mated construction benchmarks tailored for indus-
trial applications. Second, we introduce a novel
taxonomy of cluster types and corresponding met-
rics that not only assess the consistency of LLMs,
but also expose structural issues within the KGs
themselves. Lastly, we release our novel, multi-
domain, conceptual consistency dataset.

Crucially, our approach goes beyond simple fac-
tual probing by leveraging inter-model consensus
to generate domain-specific paraphrases, offering a
principled mechanism for evaluating and augment-
ing both LLM outputs and KG structures. This en-
ables a richer, bidirectional analysis between sym-
bolic and neural representations, improving both
the interpretability and trustworthiness of down-
stream applications.

7 Conclusions and future work

In this work, we have shown that, even when evalu-
ating against a fixed body of knowledge—whether
accurate or flawed—state-of-the-art LLMs exhibit
between 7–10% inconsistency on basic factual rela-
tionships. Notably, our benchmarks contain query
clusters of modest size (Table 1), meaning that in-
consistencies arise with as few as 4 paraphrased
questions. While in-context learning has shown
promise in mitigating these inconsistencies (Uceda-
Sosa et al., 2024), it does not eliminate them fully.

Addressing this challenge requires further ad-
vances in both fine-tuning and prompting strategies.
One promising direction involves CoT prompting,
with or without explicit instruction (Wei et al.,
2023; Wang and Zhou, 2024), which has been
shown to improve both consistency and reasoning
depth in LLMs. A second avenue for improvement
lies in the modeling of conceptual relationships.
Future extensions to our framework could incorpo-
rate graded membership, contextual reasoning, or
type disambiguation, resulting in a more expressive
and accurate assessment of model consistency.

Furthermore, large language models often strug-
gle to generalize safely outside of their training
distributions. This poses challenges when evalu-
ating consistency against domain-specific knowl-
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edge graphs, which typically assume a closed-
world semantics, in contrast to the open-world as-
sumptions underlying LLM behavior. This seman-
tic mismatch complicates the interpretation of in-
completeness: when a model hedges or abstains
from answering, it may reflect uncertainty rather
than a true knowledge gap. Bridging this divide
will likely require techniques such as uncertainty
modeling, retrieval-augmented generation (Lewis
et al., 2021), or grounding in structured knowledge
sources (Yang et al., 2025).

Altogether, our findings demonstrate that even
small, targeted benchmarks can surface meaningful
patterns in LLM reasoning behavior. Even fur-
ther, they can serve as a powerful feedback mech-
anism to discover problematic subgraphs in refer-
ence KGs, offering a novel method for aiding in the
curation, maintenance and refinement of domain-
specific KGs. Extending this framework to larger
knowledge graphs, broader domain coverage, and
multi-hop inferential tasks represents a fruitful di-
rection for future work, with the ultimate goal of
deploying our method to enable more reliable and
trustworthy AI systems.

8 Limitations

While our work presents a principled framework
for building benchmarks for evaluating the concep-
tual consistency of large language models (LLMs)
with respect to structured knowledge bases, it is
currently limited both in scope and results.

First, despite automating the subgraph extraction
process, the initial selection of domains, top-level
concepts, and associated properties remains man-
ual. This introduces constraints on scalability and
reproducibility, particularly in industrial or propri-
etary settings where domain-specific knowledge
graphs may exhibit idiosyncrasies or unexpected
structural complexities. Automating the concept
selection process—potentially through ontology
alignment or schema matching techniques—could
enhance generalization and reduce reliance on
manual configuration. Building a community-
curated benchmark library spanning multiple do-
mains would also increase robustness, though such
an initiative lies beyond the scope of this paper.

Second, our methodology depends on LLMs
themselves to generate semantically equivalent
paraphrase clusters. As these are shaped by the
models’ pretraining data, linguistic biases may
be introduced—especially in specialized domains

where certain formulations are rare or underrepre-
sented. This may limit the semantic coverage of
paraphrase clusters. Future work should explore
hybrid approaches that incorporate external para-
phrasing tools or human-in-the-loop validation to
improve semantic fidelity and robustness.

Third, the non-deterministic nature of LLMs
poses challenges for consistency evaluation. Even
semantically equivalent prompts may yield diver-
gent outputs across multiple runs due to stochastic
decoding. While we try to minimize this through
cross-model consensus and greedy decoding, other
sampling strategies should be explored to further
stabilize evaluations and reduce variance.

Still, these limitations suggest promising av-
enues for future research aimed at improving both
the scalability and reliability of LLM conceptual
consistency assessment, especially in complex or
high-stakes domains.
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9 Appendix

9.1 Models used in evaluation

We provide the hugging face URLs for the models
used:

• https://huggingface.co/deepseek-ai/
DeepSeek-R1
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• https://huggingface.co/deepseek-ai/
DeepSeek-V2.5

• https://huggingface.co/deepseek-ai/
DeepSeek-V3

• https://huggingface.co/ibm-granite/
granite-3.0-8b-instruct

• https://huggingface.co/ibm-granite/
granite-3.1-8b-instruct

• https://huggingface.co/ibm-granite/
granite-3.2-8b-instruct

• https://huggingface.co/meta-llama/
Llama-3.1-70B-Instruct

• https://huggingface.co/meta-llama/
Llama-3.3-70B-Instruct

• https://huggingface.co/mistralai/
Mistral-Large-Instruct-2407

• https://huggingface.co/mistralai/
Mixtral-8x22B-Instruct-v0.1

• https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1

9.2 Wikidata Q and P nodes
Table 3 lists the domains in our released benchmark
(as in Table 1) but we also list the Wikidata Q nodes
for domains and P nodes for properties.

9.3 Example Semantically Equivalent Queries
To test an edge asserting that A is a subconcept of
B, of one such group of semantically equivalent
queries to test a single edge, is shown below:

• Is A a subconcept of B?

• Is A a type of B?

• Is every kind of A also a B?

• Is A a subcategory of B?

9.4 Consistent Disagreement
Figure 5 shows how often models consistently dis-
agreed with the reference KG.

Figure 6 shows how often models consistently
asserted the existence of an edge that was not in
the KG.
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Domain Domain Q-Node Predicate Property P-node
Academic Disciplines Q11862829 used for P366
Dishes Q746549 has ingredient P527
Finance Products Q15809678 used for P1535
Home Appliances Q212920 used for P366
Medical Occupations Q3332438 has occupation P425
Music Genres Q188451 practiced by P3095
Natural Disasters Q8065 has cause P828
Software Q7397 studied in P7397

Table 3: Wikidata Q nodes and P nodes for Domains (concepts) and Predicates (properties) respectively.

Figure 5: Percentages of consistent disagreement clusters by model and domain.

Figure 6: Percentage of edges hallucinated in consistent disagreement clusters
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