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Abstract

Ensuring clinical data privacy while preserv-
ing utility is critical for AI-driven healthcare
and data analytics. Existing de-identification
(De-ID) methods, including rule-based tech-
niques, deep learning models, and large lan-
guage models (LLMs), often suffer from recall
errors, limited generalization, and inefficien-
cies, limiting their real-world applicability. We
propose a fully automated, multi-modal frame-
work, RedactOR for de-identifying structured
and unstructured electronic health records, in-
cluding clinical audio records. Our framework
employs cost-efficient De-ID strategies, includ-
ing intelligent routing, hybrid rule and LLM
based approaches, and a two-step audio redac-
tion approach. We present a retrieval-based en-
tity relexicalization approach to ensure consis-
tent substitutions of protected entities, thereby
enhancing data coherence for downstream ap-
plications. We discuss key design desiderata,
de-identification and relexicalization method-
ology, and modular architecture of RedactOR
and its integration with Oracle Health Clinical
AI system. Evaluated on the i2b2 2014 De-ID
dataset using standard metrics with strict re-
call, our approach achieves competitive perfor-
mance while optimizing token usage to reduce
LLM costs. Finally, we discuss key lessons
and insights from deployment in real-world AI-
driven healthcare data pipelines.

1 Introduction

The proliferation of AI-driven healthcare tools has
heightened the need for robust de-identification
(De-ID) systems to comply with privacy regula-
tions such as HIPAA in the US and GDPR in the
EU (Ahmed et al., 2020). Effective De-ID is crit-
ical for secure AI model training, evaluation, and
debugging, data analytics, and clinical deployment
(see §A.2). However, automating De-ID for elec-
tronic health records (EHRs) is challenging due
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to data heterogeneity, schema variability, context-
sensitive Protected Health Information (PHI) or
Personally Identifiable Information (PII), and the
multi-modal nature of healthcare data—text, im-
ages, and audio (Mohamed et al., 2023; Kayaalp,
2018).

Manual De-ID, though accurate, is impractical at
scale given the data volume in clinical settings (Pat-
terson et al., 2024). Automated approaches, in-
cluding rule-based methods, BERT-based models,
and LLMs (Meystre et al., 2010; Kovačević et al.,
2024; Altalla’ et al., 2025), face limitations in gen-
eralization, contextual reasoning, and efficiency,
particularly when trained on narrow datasets that
do not reflect real-world EHR diversity (Liu et al.,
2023). Since even a single leak of PHI/PII can have
serious privacy implications, reliable, scalable De-
ID remains a critical need.

Recent advancements address cost, scalability,
and generalizability through techniques like prompt
optimization, model quantization (Shekhar et al.,
2024; Arefeen et al., 2024), and intelligent agent
routing (Varangot-Reille et al., 2025), along with
multi-modal De-ID for text and audio (Dhingra
et al., 2024). Yet challenges persist – specifically
with, maintaining high recall, ensuring consistent
PHI/PII substitution (e.g., “Wilson” and “Dr. Adam
Wilson” both mapped to “Chang” and "Dr. Kevin
Chang" respectively), and evaluating privacy risks
with stricter metrics beyond token-level scores.

We propose RedactOR, a fully automated, multi-
modal framework for de-identifying structured and
unstructured patient records, including clinical au-
dio records. RedactOR combines LLM-based pro-
cessing for unstructured text with rule-based han-
dling of structured data to achieve low cost and
latency, and extends text de-identification for au-
dio redaction. Our framework includes a novel
retrieval-based entity relexicalization component
to ensure consistent PHI/PII replacement, enhanc-
ing coherence and privacy. We present key design
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Figure 1: Architectural overview of RedactOR

requirements (§3.1), de-identification and relexical-
ization methodology and architecture (§3.2), and
integration with Oracle Health Clinical AI system
(§A.8). We demonstrate that our framework outper-
forms other LLM-based approaches and achieves
performance comparable to specialized, closed-
source solutions while remaining adaptable through
prompt engineering – eliminating reliance on large
annotated datasets (§4), and highlight lessons and
insights from 12+ months of deployment in real-
world clinical AI system (§5).

2 Related Work

Rule-based and ML-based De-ID. Rule-based
systems rely on pattern matching, lexicons, and
heuristics (Neamatullah et al., 2008; Meystre et al.,
2010), offering simplicity and no training data
requirements (Negash et al., 2023). However,
rule creation is time-consuming and may lack ro-
bustness (Negash et al., 2023; Lee et al., 2017).
Machine learning models, especially BiLSTM-
based approaches (Ma and Hovy, 2016; Dernon-
court et al., 2017; Liu et al., 2017), improve gen-
eralization without manual rules but struggle to
transfer across datasets (Stubbs et al., 2017; Yang
et al., 2019). BERT-based models enhance De-
ID (Meaney et al., 2022) but demand significant
compute resources, hyperparameter tuning, and
still exhibit gaps in handling certain PHI/PII types.
LLM-based De-ID. LLMs offer flexible, zero/few-
shot De-ID capabilities. Kim et al. used GPT-4
to augment training data, improving BERT model
performance across datasets. Yashwanth and Shet-
tar showed fine-tuned LLMs outperform zero-shot
models, particularly under format shifts. Altalla’

et al. found GPT-4 surpasses GPT-3.5 in De-ID
accuracy and synthetic data generation. Similarly,
Wiest et al. developed a custom open-source LLM-
based Anonymizer pipeline benchmarking 8 LLMs
to De-ID 250 German clinical letters. However,
most studies lack evaluation on large real-world
cross-dataset generalization.
Synthetic Data. The growing need for large
datasets in medical research, alongside strict pa-
tient privacy rules, has led to increased interest
in synthetic data. Synthetic data generation often
involves differential privacy based approaches to
protect patient privacy and generative adversarial
networks (GAN) based methods for realistic data
replication, and its utility depends on maintaining
fidelity and minimizing biases to ensure reliable re-
search and clinical decisions (Al Aziz et al., 2021).
While synthetic data offers transformative potential
for healthcare, careful consideration is needed to
ensure its ethical and effective use in research and
practice (Altalla’ et al., 2025).
Relexicalization. Replacing PHI/PII with realistic
surrogates is underexplored. Many systems apply
dummy replacements or simple rules (e.g., gender
matching) (Sweeney, 1996; Alfalahi et al., 2012;
Lison et al., 2021). Recent work (Vakili et al.,
2024) demonstrated pseudonymizing BERT mod-
els for privacy-preserving data analysis, highlight-
ing relexicalization’s value in maintaining utility
while protecting privacy.

3 System Design and Architecture

3.1 Design Desiderata

RedactOR is designed around three core principles:

2
511



scalability, adaptability, and cost-efficiency. Scal-
ability is achieved through an end-to-end automa-
tion pipeline, enabling efficient processing of struc-
tured and unstructured clinical data while mini-
mizing computational overhead via intelligent rout-
ing and LLM-based De-ID strategies. Adaptabil-
ity is ensured through a schema-agnostic process-
ing architecture, facilitating seamless integration
across heterogeneous EHR formats and multimodal
data sources (text and audio) without the need for
dataset-specific fine-tuning. Cost-efficiency is re-
alized through token usage optimization in text-
based De-ID and leveraging text-based entity ex-
traction for audio, thereby eliminating the need
for computationally expensive, audio-specific de-
identification models. Additionally, retrieval-based
re-lexicalization enhances contextual consistency
in PHI/PII replacements, preserving both privacy
and downstream utility, making the system highly
effective for real-world AI-driven healthcare appli-
cations.

3.2 Architecture Overview
RedactOR consists of three main components: (i)
Auto De-ID, Audio De-ID, and Auto Relexicalizer
(see Figure 1).

First, Schema Identifier automatically identifies
the appropriate schema from the Schema Registry
based on the dataType parameter in each data in-
stance (see §A.9.1) and forwards it to the Data
Processor along with the corresponding text data.
The data processor is designed to be agnostic to
text data types, requiring only the schema (stored
in the schema registry) with predefined rule flags
for each field. Currently, a rule flag can be one
of the following: (i) passThrough (rule-based)
retains the field without any changes (used for
non-PHI/PII data), (ii) shouldMask (rule-based)
replaces PHI/PII fields with generic placehold-
ers (e.g., [PERSON]), (iii) shouldHash (rule-based
pseudo-anonymization) hashes identifiers to enable
secure linkages across documents within the same
domain, or (iv) autoDeID (LLM-based) applies
LLM-based De-ID to the unstructured text fields.
This schema-agnostic design is crucial for scal-
ing our system to support health data De-ID tasks.
Meanwhile, audio data is processed separately by
the Audio De-ID component. To ensure that no
PHI/PII field definition is missed, we enforce a hu-
man review of the schema before it is pushed into
the schema registry.

Auto De-ID is an LLM component (§B.1) that

processes the context extracted by the data proces-
sor. It can support a dynamic list of entity types.
We support 33 entity types in our production de-
ployment as shown in §C. This context is split into
chunks of a pre-defined size (ω), ensuring optimal
model performance without exceeding LLM con-
text length limits. Chunks are processed in parallel
across a fixed number (p) of passes. ω and p are
heuristically chosen hyperparameters. In each pass,
the LLM extracts entities along with their surround-
ing context as position hints – that is, each extracted
entity includes nearby words that uniquely identify
its location in the text (e.g., “76 years old” instead
of just “76”, or “Mr. John Smith, the patient” in-
stead of just “John”). This context-aware extrac-
tion enables accurate entity matching and redaction
without relying on potentially unreliable character
position indices. In the first pass, the LLM detects
as many entities as possible. In subsequent passes,
entities already identified are masked in the text,
prompting the model to focus on previously missed
or hard-to-detect PHI/PII entities. Extracted enti-
ties from all passes are aggregated to form the final
entity set.

The Auto Relexicalizer, a multi-agent compo-
nent (see §B.2 and Figure 4), replaces redacted
entities with contextually consistent and realistic
alternatives. Relexicalization not only improves the
usability of de-identified data but it also strength-
ens privacy by increasing the Hiding in Plain Sight
(HIPS) factor (Carrell et al., 2020). Ensuring that
replaced entities blend seamlessly with any remain-
ing leaked PHI/PII makes re-identification attempts
significantly more challenging. A combined exam-
ple of Auto De-ID followed by Relexicalization
is shown in §A.9. It employs multiple agents as
follows:

• LLM-Based Entity Clustering: grouping ex-
tracted entities based on their context.

• Hybrid Retrieval (Vector Search + Filtering):
retrieving pre-existing replacements.

• LLM-Based Validation: Determining the va-
lidity of the retrieved replacements.

• LLM-Based Generation: Generating new re-
placements for invalid retrievals.

• OpenSearch Indexing: Storing new replace-
ments for future reuse.

Our work extends a recent work (Vakili
et al., 2024) that presents an analysis of pseudo-
anonymization. We offer an LLM-driven alterna-
tive for automated and scalable relexicalization.
A regex-based replacer replaces extracted entities
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with entity-type masks (e.g., [PERSON]) to redact
PHI/PII in unstructured text fields. See §A.4.1 for
an end-to-end example of Auto De-ID.

Our Audio De-ID feature performs a two-step
redaction process to enhance privacy. First, it uses
Automatic Speech Recognition (ASR) to detect
timestamps of spoken words and applies LLM-
based Auto De-ID to the transcript, adding an ex-
tra 100 – 200 msec of margin at token boundaries
for improved protection. Next, it examines unrec-
ognized voiced regions – identified by an aggres-
sive Voice Activity Detection (VAD) – by analyz-
ing their surrounding context words with an LLM
(§B.3), evaluating the likelihood of these regions
containing PHI/PII and selects the most likely ones.
Finally, it mutes all time boundaries (including
margins) for predicted PHI/PII tokens’ voiced re-
gions. Testing on our internal data showed that
the second step increased recall by approximately
10%. A brief end-to-end example illustrating this
is presented in §A.5.1. In summary, our Audio
De-ID component improves PHI/PII detection by
addressing ASR misalignment and deletion errors
by leveraging VAD and LLM based detection pro-
cess in the second step.

By integrating Auto De-ID for unstructured text,
Auto Relexicalizer for realistic entity replacement,
and Audio De-ID for speech data, RedactOR pro-
vides a scalable, adaptable, and cost-effective De-
ID pipeline that secures both text and audio data
while preserving its utility.

See §A.4, §A.5, and §A.6 for detailed algorith-
mic descriptions of Auto De-ID, Auto Relexical-
ization, and Audio De-ID, respectively.

4 Experiments

We present the results of evaluating RedactOR
against other LLM-based approaches and special-
ized, closed-source commercial solutions over a
publicly available medical record dataset. For par-
ity with other methods, we turn off the Auto Relex-
icalizer component. We set chunk size (ω) to 256
and number of passes (p) to 2.

4.1 Dataset

We evaluated using 2014 i2b2/UTHealth De-ID
corpus (Stubbs and Uzuner, 2015) which is widely
used in clinical De-ID research. This dataset com-
prises longitudinal clinical records for 296 patients
(with 2-5 records per patient). The annotation
scheme follows HIPAA guidelines and includes

additional indirect identifiers such as detailed date
components (e.g., year), geographic information
(states, countries), hospital names, clinician names,
and patient professions. For our experiments, we
randomly subsampled 100 clinical notes and eval-
uated on seven PHI/PII entity categories: AGE,
CONTACT, DATE, ID, LOCATION, PERSON,
and PROFESSION.

4.2 Comparative De-ID methods
We evaluated RedactOR against recent LLM-based
methods, Yashwanth and Shettar (2024) (with their
two prompt variants: ‘brief’ and ‘detailed’) and
Altalla’ et al. (2025), as well as commercial De-ID
APIs from AWS (Amazon Web Services) (AWS,
2025) and JSL (John Snow Labs) (Kocaman et al.,
2023, 2025). For a fair comparison, we used GPT-
4o (OpenAI, 2025) for all LLM-based methods.
See §A.3 for additional details.

4.3 Evaluation Methods
We assessed De-ID performance using traditional
metrics such as precision, recall and F1-score,
as well as all-or-nothing recall, applied to (PER-
SON, AGE, CONTACT, ID, LOCATION). All-or-
nothing recall (Scaiano et al., 2016) determines
whether every instance of a given entity type or a
document is correctly redacted. If any instance is
missed, all-or-nothing recall is set to 0; otherwise,
it is set to 1.

We evaluated all systems using a stricter method-
ology for true positive computation incorporating
entity position matching. Position information is
critical for data redaction in unstructured health
records, as it often differentiates PHI from clini-
cal information. For example, in the phrase ‘76 yrs
old,’ the number ‘76’ represents age (PHI), whereas
in ‘oxygen saturation rate is 76,’ it denotes a vital
sign.

In the evaluation for each entity type, we com-
pared our system with AWS and JSL using addi-
tional matching criteria, including entity-level text
matching and label matching. The metrics were
assessed at the PHI/PII entity level (multi-word
spans) rather than individual tokens, as in (Yash-
wanth and Shettar, 2024), ensuring a fair compar-
ison between entities with varying token counts.
To account for minor variations (e.g., ‘Mrs. Mary
Smith’ vs. ‘Mary Smith’), we applied the Lev-
enshtein similarity with a heuristically determined
threshold of 0.6. Yashwanth and Shettar (2024) and
Altalla’ et al. (2025) are omitted in entity type spe-
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Model Precision Recall F1-score All-Or-
Nothing
Recall

Y&S_Brief 0.5634 0.6580 0.6070 0.3700
Y&S_Detail 0.6178 0.8270 0.7072 0.5600
Altalla 0.9675 0.6715 0.7927 0.3600
RedactOR 0.9769 0.9525 0.9646 0.7900
AWS 0.9549 0.9425 0.9487 0.7500
JSL 0.9481 0.9865 0.9669 0.9000

Table 1: Performance of zero-shot GPT-4o and com-
mercial De-ID systems on all PHI/PII entities. This
evaluation does not consider the entity type constraint.

cific evaluation, because they provide only binary
PHI/PII labels, but not entity types.

4.4 Comparison with LLM-Based De-ID
Frameworks

As shown in Table 1, a comparison with other LLM-
based methods (Yashwanth and Shettar, 2024; Al-
talla’ et al., 2025) indicates that RedactOR outper-
forms existing methods, achieving the highest F1-
score of 0.9646 with a well-balanced precision
and recall. The high recall can be attributed to
RedactOR’s multi-chunk and multi-pass strategy,
which systematically refines entity detection by it-
eratively masking extracted entities and forcing the
model to focus on overlooked PHI. Similarly, in
terms of precision, RedactOR outperforms Yash-
wanth and Shettar (2024), highlighting the effec-
tiveness of its context-aware entity extraction. By
leveraging contextual clues and maintaining intra-
document consistency, RedactOR reduces false pos-
itives, whereas single-pass prompting methods tend
to over-redact ambiguous terms.

While Yashwanth and Shettar (2024)’s Detailed
version achieves higher recall than the Brief, it does
so at the expense of precision. This highlights a
fundamental trade-off in zero-shot protected terms
extraction: models optimized for recall often over-
mask non-protected terms, leading to reduced util-
ity of the redacted text. RedactOR strikes a balance
between recall and precision, making it more suit-
able for real-world clinical applications where both
PHI/PII removal and utility are essential.

4.5 Comparisons with Commercial APIs

Unlike prior zero-shot LLM-based approaches,
commercial De-ID APIs (e.g., AWS, JSL) are fine-
tuned on proprietary clinical datasets. Table 1
shows that while RedactOR does not surpass JSL
in recall, it achieves higher precision and a compa-
rable F1-score. This suggests that while JSL bene-

fits from domain-specific fine-tuning, RedactOR’s
context-aware extraction minimizes false positives,
leading to more reliable entity masking.

Table 2 presents a breakdown of performance
by entity types. RedactOR demonstrates high pre-
cision and strong recall across all entities, partic-
ularly excelling on CONTACT and PERSON en-
tities. RedactOR achieves perfect recall on CON-
TACT entities, outperforming AWS and JSL, and
shows competitive performance on PERSON and
DATE entities. However, it underperforms on LO-
CATION and ID, presumably due to the structural
variability of PHI in clinical texts. LOCATION
entities, in particular, often appear within complex
sentence structures, posing challenges to generic
LLM-based masking. This suggests the need for in-
struction updates for these entities or a specialized
LLM.

4.6 All-or-Nothing Recall Results
Table 3 shows performance by PHI/PII entity type
with all-or-nothing recall, a stricter metric requir-
ing both correct entity type and position alignment.
These results highlight RedactOR’s strength in
high-precision redaction for certain entities while
emphasizing the advantage of domain-tuned mod-
els for broader recall coverage.
RedactOR outperforms other methods using the

same underlying LLM (Table 1) and approaches the
performance of specialized models like JSL. Specif-
ically, it excels in CONTACT and ID compared to
commercial methods. RedactOR’s multi-pass ex-
traction and context-aware masking enhance the
LLM’s effectiveness, showcasing its strength with-
out specialized fine-tuning. However, JSL leads in
most other entity types, achieving the highest over-
all recall. The recall gap – especially for complex
entities like DATE and LOCATION – highlights
the need for improved prompt instructions and pos-
sibly a specialized LLM for de-identification to
match domain-specific systems.

4.7 Ablation Study with Open-Source Model
To demonstrate the adaptability of RedactOR to
open-source models and evaluate the benefit of its
multi-pass de-identification strategy, we conducted
an ablation study using LLaMA-3.2-3B-Instruct
(MetaAI, 2024) – a compact, publicly available
LLM.

Figure 2 illustrates the effect of increasing the
number of passes (from 1 to 4) on all-or-nothing re-
call across seven PHI/PII entity types. Notably, we
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Entity Type RedactOR AWS JSL
Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score

AGE 0.8987 0.9930 0.9435 0.9684 0.9935 0.9808 0.9748 0.9688 0.9718
CONTACT 1.0000 1.0000 1.0000 1.0000 0.4545 0.6250 0.7879 1.0000 0.8814
DATE 0.9495 0.9988 0.9735 0.9202 0.9949 0.9561 0.9918 0.9883 0.9900
ID 0.9275 0.6667 0.7758 0.7917 0.6129 0.6909 0.8667 0.9123 0.8889
LOCATION 0.7855 1.0000 0.8799 0.7890 0.9820 0.8750 0.9469 0.9808 0.9636
PERSON 0.9595 0.9912 0.9751 0.9461 0.9461 0.9461 0.9572 0.9933 0.9749
PROFESSION 0.9167 1.0000 0.9565 0.9130 0.7778 0.8400 1.0000 0.9565 0.9778
All 0.9159 0.9790 0.9465 0.9042 0.9510 0.9270 0.9664 0.9839 0.9751

Table 2: Performance of De-ID systems for each entity type and all data.

observe consistent improvement across most entity
types as the number of passes increases. The largest
relative gains are observed between pass 1 and pass
2, especially for sparse or context-sensitive types
such as ID, DATE, and LOCATION, which tend to be
missed in early passes but are recovered in subse-
quent iterations.

For dominant or well-signaled types like PERSON,
CONTACT, and PROFESSION, the recall is already
high at pass 2, with marginal improvements be-
yond that point. By pass 3, the recall curve starts
to saturate for most entity types, indicating dimin-
ishing returns on additional passes.

These trends suggest that the number of passes
is a critical, model-dependent hyperparameter:
lightweight models like LLaMA-3.2-3B benefit
from 2–3 passes, while larger models may reach
optimal performance sooner. RedactOR supports
this flexibility by treating the pass count as a config-
urable parameter, allowing practitioners to trade off
between computational cost and de-identification
completeness depending on the capacity of the un-
derlying LLM.

4.8 Qualitative Evaluation of Audio De-ID on
Internal Data

To assess the impact of our two-step Audio De-ID
process, we conducted a qualitative evaluation on
an internal clinical audio dataset. The LLM-based

Entity Type RedactOR AWS JSL
AGE 0.8904 0.9589 0.9452
CONTACT 1.0000 1.0000 0.7666
DATE 0.7300 0.6000 0.9500
ID 0.8958 0.8333 0.8541
LOCATION 0.6923 0.6026 0.8333
PERSON 0.8556 0.8041 0.8659
PROFESSION 0.9091 0.9090 1.0000
All 0.8214 0.7701 0.8906

Table 3: All-or-nothing recalls constrained on entity
types for RedactOR and commercial models.

Figure 2: Entity-wise all-or-nothing recall for LLaMA-
3.2-3B as the number of passes increases from 1 to 4.
Most entities show the greatest gain between pass 1 and
2, with diminishing improvements thereafter.

timestamp detector identified and muted several
additional audio segments that were missed by text
de-identification on just the transcript. A subset
of these newly muted segments included person
names that had previously gone undetected, lead-
ing to a noticeable improvement in all-or-nothing
recall on direct identifiers—approximately 12%.
Another small portion involved relevant medical
or personal context (e.g., complaints or medica-
tions), introducing minor precision trade-offs. The
majority of muted segments, however, were non-
informative, consisting of background noise or idle
speech such as keyboard activity. Overall, over
84% of the additionally muted content was deemed
to have no negative impact on clinical utility. These
findings demonstrate that the second-pass audio de-
tection enhances recall with minimal utility loss,
validating its inclusion in real-world deployments.
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5 Deployment Lessons and Insights

In the course of developing and deploying
RedactOR, we realized that efficient scaling of de-
identification is crucial to handle the large volume
of healthcare data post-deployment, including au-
dio files, SOAP notes, and longitudinal records
with thousands of FHIR resources (Bender and
Sartipi, 2013). Once the service is launched, a con-
tinuous influx of data follows, and as the products
expand, the ability to optimize processing at scale
becomes critical. Simple yet powerful reductions
in computation and processing can significantly
impact efficiency, cost, and system performance.

One key optimization we employed was reduc-
ing token usage. RedactOR extracts only PHI/PII
entities and their position hints, minimizing the
number of LLM’s output tokens by approximately
50%. This reduction not only lowers processing
costs but also decreases latency, ensuring that De-
ID remains accurate and efficient at scale.

Further, processing each FHIR resource individ-
ually causes delays and backlogs. Our schema
agnostic approach allows us to batch lightweight
resources (e.g., vitals, medications) in the schema
processor by merging their schemas and free-text
fields into a single composite schema. For exam-
ple, if the batch size is n, n resource schemas could
be combined into one, allowing all associated text
to be de-identified in a single LLM request. The
batch size can be chosen heuristically based on the
LLM used, the context length it supports, the sys-
tem prompt size, and the average number of tokens
present in the unstructured texts of the resource
schemas.

Finally, dynamic batching further enhances scal-
ability by grouping incoming resources based on
size and complexity. This approach enables large
and diverse datasets to be processed in real time,
preventing bottlenecks as data streams grow.

Our initial implementation focused on just de-
identification but we decided to incorporate relex-
icalization after realizing that relexicalized data
significantly enhances the ease of use by applied
scientists as part of their model training, quality &
bias evaluation, and debugging pipelines since this
data has similar format and characteristics as the
production data.

6 Conclusion And Future Directions

Motivated by the need for protecting patient pri-
vacy while enabling utility, we presented RedactOR

a multi-modal, scalable, flexible, and cost-efficient
LLM-powered framework for clinical data de-
identification, and demonstrated its efficacy in de-
identifying 33 PHI/PII entities over the i2b2 dataset.
We showed that our approach outperforms other
LLM-based methods and achieves performance
comparable to specialized, closed-source solutions.
Further, RedactOR supports relexicalizing redacted
entities with contextually consistent alternatives,
enhancing data usability and strengthening privacy.
By presenting the methodology, technical architec-
ture, and lessons learned from over 12 months of
production deployment as part of Oracle Health
Clinical AI system, we hope that the insights and
experience from our work are useful for researchers
and practitioners working on clinical AI systems.

There are several avenues for future work. The
variability in healthcare datasets across institu-
tions affects generalizability, necessitating adaptive
prompting techniques. While our method excels in
detecting ID, PERSON, and DATE entities, it may re-
quire further refinement of entity-specific LLM in-
structions (e.g., for address- and occupation-related
entities). More broadly, RedactOR’s generalizabil-
ity can be enhanced across diverse institutional
datasets by integrating domain-adaptive prompt en-
hancements.

Another direction is to investigate domain-
adaptive VAD techniques in de-identification set-
tings. Although we incorporate a VAD-based so-
lution to mitigate ASR inaccuracies, our use of a
simpler VAD algorithm introduces false positives,
leading to over-redaction. Additionally, transcrip-
tion variability due to noise and overlapping speech
increases the risk of PHI/PII leakage. Integrat-
ing deep learning-based VAD models alongside
domain-adaptive ASR techniques could enhance
precision while maintaining recall, reducing unnec-
essary redactions without compromising PHI/PII
protection.

Furthermore, we could design standardized
benchmarks for evaluating relexicalization tech-
niques, following ideas discussed in §A.7. An
ideal dataset would include PHI/PII-tagged text,
gold relexicalized outputs, and context to ensure
consistency across documents and domains such as
clinical notes, transcripts, and structured records.
More broadly, a promising direction is to extend
our framework to handle other modalities such as
medical images and videos, and design correspond-
ing end-to-end evaluation methodolgies and bench-
marks.
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A Appendix

A.1 Ethics Statement
Despite the high performance of our De-ID system,
there remains a non-zero risk that some PHI/PII
might not be detected or removed. Consequently,
any output produced by automated De-ID system
should still be handled with the same security and
privacy precautions as raw identifiable data. We un-
derscore that users of our De-ID framework should
apply rigorous privacy safeguards when handling
the processed data, just as they would for original
clinical records. For example, we restrict access
to the de-identified data using encryption and ac-
cess control mechanisms, and require scientists and
engineers to go through appropriate privacy and
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healthcare regulation related trainings before being
granted access to the de-identified data.

Given the sensitivity of De-ID data pipelines,
we do not release the prompt verbatim or source
code of RedactOR to prevent potential privacy risks
and attacks. However, to support transparency and
reproducibility, we provide descriptions of individ-
ual components, including retrieval-based relexi-
calization, hybrid rule/LLM logic, intelligent rout-
ing, and a two-step audio redaction process, in the
pipeline. This approach enables secure replication
of our methodology while safeguarding patient con-
fidentiality in our system.

A.2 Intended Use of De-Identified Data.

The de-identified data produced by RedactOR is
intended for a variety of critical use cases within
AI-driven healthcare systems. First, it serves as a
valuable resource for debugging production issues,
enabling engineers and data scientists to analyze
system behavior and identify root causes of errors
without compromising patient privacy. Second, the
data supports understanding production model be-
havior, providing insights into model performance,
biases, and failure modes, which guide iterative
improvements and model refinements. Finally, the
de-identified dataset can be leveraged for training
and evaluating downstream machine learning mod-
els, including clinical documentation automation,
clinical named entity recognition, and “needle in
a haystack” tasks such as rare condition detection
or retrieval of highly specific information from lon-
gitudinal records. Additionally, de-identified data
is essential for conducting R&D and facilitates
collaboration with external researchers and clini-
cians, enabling innovation while ensuring compli-
ance with privacy regulations. These applications
illustrate the dual importance of ensuring privacy
while maintaining data utility for real-world health-
care advancements.

A.3 All Models

We compare our methods with others as follows:

1. Yashwanth and Shettar (2024): This study
uses a zero-shot approach with two prompts
– brief and detailed – applied with GPT-3.5
and GPT-4. The model returns “[Censored]”
in lieu of explicit entity labels. In our exper-
iments, we evaluate this approach using the
GPT-4o to be a fair comparison with the Auto
De-ID model.

2. Altalla’ et al. (2025): This study employs
a zero-shot prompt with GPT-3 and GPT-4,
where outputs are marked “[Redacted]” rather
than providing explicit entity annotations. Al-
though originally evaluated on a proprietary
dataset, we adapt this baseline for the i2b2
corpus and evaluate it using the GPT-4o vari-
ant.

3. RedactOR (ours): The Auto De-ID model’s
outputs are post-processed to align with our
predefined PHI/PII entity categories. We
use the following configuration parameters
to ensure consistency across experiments:
max_passes = 2, max_words = 256, and tem-
perature = 0.

4. Commercial Cloud APIs: We assess two
widely adopted commercial De-ID services
that offer API-based solutions for PHI/PII ex-
traction, namely, AWS (Amazon Web Ser-
vices Medical Comprehend) and JSL (John
Snow Labs). For these services, we standard-
ize the output entity tags to align with our
evaluation schema, ensuring fair comparison
across systems.

These settings were chosen based on preliminary
tuning to balance performance and computational
efficiency.

A.4 Auto De-ID Algorithm

Algorithm 1 Auto De-ID Algorithm

Require: Text T , chunk size ω, prediction model
M , entity types E , passes p

Ensure: Redacted text T̂
1: Split T into m = ⌈|T |/ω⌉ chunks.
2: for each chunk ci do
3: for j = 0 to p− 1 do
4: Extract entitiesRi ←M(ci, E)
5: Update fact dictionary D ← D ∪Ri

6: end for
7: end for
8: Replace detected entities in T with placehold-

ers. return T̂

The Auto De-ID algorithm processes text T by
segmenting it into m = ⌈|T |/ω⌉ chunks. Each
chunk undergoes p passes of entity extraction,
where the set of identified entities is aggregated:

D =
m⋃

i=1

p⋃

j=1

Ri
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Choice of Chunk Size: The chunk size ω is cho-
sen to balance entity extraction accuracy. Sending
large texts in a single request increases the risk of
missing entities, as the model may fail to attend to
all parts equally. By processing smaller chunks, we
reduce the chance of entity leakage and improve
recall.

Multiple Passes Strategy: Using multiple
passes (p) helps mitigate biases in the model’s at-
tention. In the first pass, the model extracts easily
detectable entities. In the subsequent passes, pre-
viously detected entities are masked using their
entity type (e.g., [PERSON]), allowing the model to
focus on overlooked entities. This iterative process
enhances recall, especially for underrepresented en-
tity types. These hyperparameters can be adjusted
based on the capabilities of the chosen LLM.

Handling Context in Redaction: A naive ap-
proach to redaction might simply replace all ex-
tracted entity mentions in the text with their cor-
responding entity types (e.g., replacing “76” with
[AGE]). However, this often leads to over-redaction
when identical strings appear in different contexts.
Consider the sentence:

“The patient is 76 years old and takes 76
mg of aspirin daily.”

In this case, only the first occurrence of “76”
refers to the patient’s age and should be redacted
as [AGE]. The second occurrence of “76” is part
of a medication dosage and should not be redacted
as age. If we blindly replace all instances of “76”
with [AGE], we would incorrectly redact “76 mg,”
resulting in a loss of valuable clinical information.

Our entity extraction method avoids this by in-
structing the LLM to extract entities along with
sufficient context that signals their specific mean-
ing and position in the text. In this example, “76
years old” would be extracted as an [AGE] entity,
while “76 mg” would either be ignored or extracted
as a separate [DOSAGE] entity. This ensures that
only the appropriate mention is redacted.

Since obtaining exact character positions from
LLMs is unreliable, context-based entity extraction
allows us to align each detected entity with its pre-
cise occurrence in the text, ensuring accurate and
minimal redaction.

Detected entities in T are replaced with place-
holders to yield the final redacted text T̂ , ensuring
sensitive data is masked correctly while preserving
non-sensitive content.

A.4.1 Example Workflow

To illustrate Auto De-ID’s process, consider the
following structured JSON input:

Field Value
patient_name Robert Johnson
patient_id A12345
gender male
medical_history Robert Johnson, a patient aged 53

was admitted to Springfield General
Hospital for chest pain. Dr. Mary
Smith prescribed medication.

Step 0: Schema Identification The De-ID
schema specifies rules for each field:

Field De-ID Rule
patient_name Mask as [PERSON]
patient_id Hash
gender Pass-through
medical_history Auto De-ID (LLM-based)

Step 1: Schema Processing The structured
fields are processed:

Field Processed Value
patient_name [PERSON]
patient_id HASH(A12345)
gender male

Step 2: Chunking The unstructured text is split
into overlapping chunks:

Chunk Text
C1 "Robert Johnson, a patient aged 53 was admit-

ted to Springfield General Hospital for chest
pain."

C2 "for chest pain. Dr. Mary Smith prescribed
medication."

Step 3: LLM-Based Entity Extraction The
model extracts PHI:

Entity Type Extracted Entities
PERSON Robert Johnson, Dr. Mary Smith
ORGANIZATION Springfield General Hospital

Step 4: Multi-Pass Refinement Previously de-
tected entities are masked in subsequent passes:

Pass Input Chunk for 2nd Pass After Masking
2nd "[PERSON], a patient aged 53 was admitted to

[ORGANIZATION] for chest pain."
2nd "for chest pain. [PERSON] prescribed medica-

tion."

Step 5: Final Entity Extraction Previously de-
tected entities combined with the second pass ex-
tractions.

Entity Type Extracted Entities
PERSON Robert Johnson, Dr. Mary Smith
ORGANIZATION Springfield General Hospital
AGE 53

Step 5: Final Redaction. The final de-identified
record:
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Field Final Value
patient_name [PERSON]
patient_id HASH(A12345)
gender male
medical_history "[PERSON], a patient aged [AGE]

was admitted to [ORGANIZA-
TION] for chest pain. [PERSON]
prescribed medication."

This final output ensures all PHI/PII is masked
while maintaining text coherence.

A.5 Audio De-ID Algorithm

Figure 3: Audio De-Id Workflow Diagram

Algorithm 2 Audio De-ID Algorithm

Require: Audio A, ASR model MASR, VAD
MV AD, De-ID model MDeid, PHI/PII Detec-
tor MLLM , entity types E

Ensure: Redacted Audio AT̂
1: Generate transcript T ←MASR(A)
2: Extract PHI/PII D ←MDeid(T, E)
3: Identify missing timestamps Tmissing and detect

human speech with MV AD

4: for each human-voiced timestamp thuman do
5: Extract context, detect PHI/PII with

MLLM , and update D
6: end for
7: Mute detected PHI/PII in A. return AT̂

Audio De-ID first converts speech to text using
ASR:

T = MASR(A)

Entities are extracted from T to construct D:

D = MDeid(T, E)

Gaps in ASR timestamps Tmissing are analyzed with
MV AD to identify human speech regions, where
PHI/PII detection is refined using an LLM-based
model. The final redacted audio AT̂ is generated
by muting PHI-containing segments.

A.5.1 Example Workflow
ASR-Generated Transcript:

“The patient visited Dr. Smith
last week a follow-up in his
clinic at Creekwood Hospital.
They discussed medication
changes and scheduled the next
appointment for next month. The
patient also mentioned feeling
unwell over the weekend.”

Auto De-ID Detected PHI:

• “Dr. Smith” (00:04.23 - 00:04.80)

• “Creekwood Hospital” (00:12.57 - 00:13.20)

Identifying Missing Timestamps (Set Subtrac-
tion):

• (00:02.85 - 00:02.95) (Missed speech)

• (00:07.42 - 00:07.57) (Missed speech)

• (00:15.10 - 00:15.30) (Missed speech)

VAD Filtering (Keeping Only Human Speech
Segments):

• (00:02.85 - 00:02.95) - Human voice detected
✓

• (00:07.42 - 00:07.57) - Human voice detected
✓

• (00:15.10 - 00:15.30) - Background noise, dis-
carded ×

Timestamp Adjustment for ASR Errors: To
compensate for ASR errors, timestamps are ad-
justed with a safe margin of 300ms:

• Before: “Dr. Smith” (00:04.23 - 00:04.80)

• After: “Dr. Smith” (00:03.93 - 00:05.10)

• Before: “Creekwood Hospital” (00:12.57 -
00:13.20)
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• After: “Creekwood Hospital” (00:12.27 -
00:13.50)

Reconstructing the Transcript: The transcript
is updated by inserting missing timestamps:

“<human_timestamp_(00:02.85
- 00:02.95)> The patient
visited Dr. Smith last week
<human_timestamp_(00:07.42 -
00:07.57)> a follow-up in his
clinic at Creekwood Hospital.
They discussed medication
changes and scheduled the next
appointment for next month. The
patient also mentioned feeling
unwell over the weekend.”

This updated transcript is analyzed by an LLM
to predict the likelihood of inserted timestamps
containing PHI/PII. For example, suppose the LLM
predicted the following:

• <human_timestamp_(00:02.85 -
00:02.95)> - NON-PHI/PII

• <human_timestamp_(00:07.42 -
00:07.57)> - PHI/PII

Then the final set of detected PHI/PII times-
tamps—extracted via Auto De-ID and combined
by the LLM—guided additional timestamps is used
for muting the corresponding sections in the final
redacted audio. The final audio will correspond to
the following:

“The patient visited [MUTED] last
week [MUTED] a follow-up in his
clinic at [MUTED]. They discussed
medication changes and scheduled
the next appointment for next
month. The patient also mentioned
feeling unwell over the weekend.”

A.6 Auto Relexicalization Algorithm
Auto Relexicalization clusters fact entities using
Mcluster and retrieves candidate replacements from
an index using vector search:

Ri = Msearch(Qi, I)

If the decision model Mdecision rejects the match, a
new replacement Rnew is generated using a replace-
ment model:

Rnew = Mreplace(Qi, T )

Algorithm 3 Auto Relexicalization Algorithm

Require: Text T , fact dictionary D, index I ,
clustering Mcluster, retrieval Msearch, decision
Mdecision, replacement model Mreplace

Ensure: Relexicalized text T̂
1: Cluster entities: CD ←Mcluster(T,D)
2: for each cluster Ci do
3: Generate query Qi and retrieve match

Ri ←Msearch(Qi, I)
4: if Valid replacement Mdecision(Qi, Ri, T )

then
5: Use Ri

6: else
7: Generate new replacement Rnew ←

Mreplace(Qi, T )
8: Ingest new replacement and original

entity into index I
9: Store Rnew for final relexicalization

10: end if
11: end for
12: Apply adjustments and replace entities. return

T̂

This new replacement, along with the original en-
tity, is then ingested into the index I to ensure
consistency across documents. The final text T̂ is
formed after replacing entities accordingly.

A.7 Proposed Metrics for Relexicalization

We propose a set of evaluation metrics to assess
the effectiveness of re-lexicalization in preserving
entity roles, maintaining contextual coherence, en-
suring replacement consistency, and minimizing
unintended biases in clinical models.
Entity Preservation Rate evaluates whether
the re-lexicalized entity retains its semantic role
and contextual attributes. Higher scores indicate
better preservation. For instance, in the sentence

“Dr. Emily Carter is a cardiologist at St. Mary’s
Hospital,” a poor re-lexicalization would be “Alice
is a teacher at Westwood Academy”, which alters
both the profession and institution type. A good
re-lexicalization would be “Dr. Kevin Chang is
a cardiologist at Lincoln Medical Center”, as it
preserves the entity’s role and contextual relevance.

Contextual Coherence Score measures whether
the re-lexicalized entity integrates naturally within
the surrounding text without disrupting fluency or
meaning. For example, in the original sentence

“John met his lawyer, Mr. Anderson, at the firm,” a
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Figure 4: Relexicalization Workflow Diagram

poor substitution would be “Harry met his lawyer,
Pizza Hut, at the firm”, introducing a semantic
inconsistency. A more appropriate replacement
would be “Harry met his lawyer, Mr. Bennett, at
the firm”, maintaining contextual coherence.

Replacement Consistency Score ensures that
an entity is consistently replaced across multiple
documents, preserving identity coherence. For
instance, in “Dr. Emily Carter attended the
surgery”, a conflicting replacement in another
document such as “Dr. Jennifer Smith is a
cardiologist” introduces inconsistency. A high
score indicates that the same entity is replaced
uniformly across contexts.

Clinical Model Consistency assesses whether re-
lexicalized data, when used in clinical decision-
making models, avoids introducing biases related
to race, ethnicity, region, or age group. If a model
trained on real data produces a metric value X , a
poor re-lexicalization may yield a metric of X +
δx, where δx is significantly large, indicating a
deviation from real-world behavior. An optimal re-
lexicalization ensures that the metric shift remains
marginal, preserving the integrity of the clinical
model.

A.8 Integration of RedactOR with Oracle
Health Clinical AI System

Our RedactOR framework is integrated into Oracle
Health Clinical AI system to facilitate the privacy-
preserving processing of longitudinal EHRs (in-
cluding SOAP notes (Podder et al., 2024)), ambi-
ent intelligence data, and conversational AI outputs.
The system operates autonomously, as the Produc-
tion Environment is inaccessible to any user group,
ensuring a fully automated pipeline. A dedicated
worker module, running continuously, monitors the
DataSink, retrieves unprocessed files, submits them
to the RedactOR service for PHI/PII removal, and
securely transfers the de-identified records to the
Data Science Lab Environment. A one-way policy
enforces strict data flow control, guaranteeing that
only de-identified data is accessible within a secure
research environment, where authorized users in-
teract with it via an SSH-secured virtual machine,
preserving both data integrity and analytical utility.
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Figure 5: Diagram explaining the integration of our RedactOR framework with Oracle Health Clinical AI System
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A.9 End to End Example Illustrating Text De-identification and Relexicalization using RedactOR

A.9.1 Schema for the Input Record

Listing 1: Sample Schema Definition
schema_definition = {

"$schema": "http://json -schema.org/draft -04/schema#",
"type": "object",
"recordVersion": "1.0",
"description": "Schema for a free text record",
"dataType": "clinicalRecord"
"properties": {

"PatientId": {
"type": "string",
"description": "Patient ID.",
"autoDeId": False ,
"shouldMask": False ,
"shouldHash": True ,
"entity_type": None

},

"MRN": {
"type": "string",
"description": "MRN of the Patient",
"autoDeId": False ,
"shouldMask": False ,
"shouldHash": True ,
"entity_type": None

},

"AGE": {
"type": "string",
"description": "Age of the Patient",
"autoDeId": False ,
"shouldMask": True ,
"shouldHash": False ,
"entity_type": "[AGE]"

},

"note": {
"type": "string",
"description": "Clinical Note",
"autoDeId": True ,
"shouldMask": False ,
"shouldHash": False ,
"entity_type": None

}
},

}

A.9.2 Input Record

Listing 2: Sample record with PHI/PII
{

"PatientId": "123456789",
"MRN": "A987654321",
"AGE": "45 years",
"note": "John Doe , a 45-year -old male , presented to Stanford Medical Center on 03/

16/2025 complaining of severe abdominal pain. He was referred by Dr. Emily
Smith from Valley Health Clinic. His address is 123 Main St, Palo Alto , CA 943
01. Contact number: (650) 555-1234. Past medical history includes hypertension
and Type 2 diabetes. His insurance ID is INS -789456123. The p a t i e n t s wife ,
Jane Doe , can be reached at (650) 555-5678. A CT scan was performed and

results were discussed with the patient at 2:00 PM. Follow -up scheduled on 03/
22/2025 at 9:00 AM. Patient is employed as a software engineer at TechNova
Corp. Social Security Number: 987-65-4321."

}
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A.9.3 Entities Extracted by Auto De-ID

Listing 3: Extracted Entities
{

"PERSON": [
"Jane Doe",
"Emily Smith",
"John Doe"

],
"ADDRESS": [

"123 Main St, Palo Alto , CA 94301"
],
"AGE": [

"45 years"
"45-year -old"

],
"LOCATION": [

"Palo Alto"
],
"MARITAL_STATUS": [

"wife"
],
"PARENTHOOD": [],
"OCCUPATION": [

"software engineer"
],
"BIRTH_DATE_TIME": [],
"SSN_OR_TAXPAYER": [

"987-65-4321"
],
"EMAIL": [],
"FIN": [

"INS -789456123"
],
"GUID": [

"987-65-4321"
],
"ORGANIZATION": [

"TechNova Corp",
"Stanford Medical Center",
"Valley Health Clinic"

],
"PHARMACY": [],
"DIAGNOSTIC_LABS": []

}
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A.9.4 DeID-Only Output

Listing 4: DeID-Only Output
{

"PatientId": "HASHED_VALUE",
"MRN": "HASHED_VALUE",
"AGE": "[AGE]",
"note": "[ PERSON], a [AGE] male , presented to [ORGANIZATION] on 03/16/2025

complaining of severe abdominal pain. He was referred by Dr. [PERSON] from [
ORGANIZATION ]. His address is [ADDRESS ]. Contact number: [TELEPHONE_NUMBER ].
Past medical history includes hypertension and Type 2 diabetes. His insurance
ID is [FIN]. The p a t i e n t s [MARITAL_STATUS], [PERSON], can be reached at [
TELEPHONE_NUMBER ]. A CT scan was performed and results were discussed with the
patient at 2:00 PM. Follow -up scheduled on 03/22/2025 at 9:00 AM. Patient is

employed as a [OCCUPATION] at [ORGANIZATION ]. Social Security Number: [GUID ]."
}

A.9.5 De-ID + Relexicalization Output

Listing 5: DeID+Relexicalization Output
{

"PatientId": "HASHED_VALUE",
"MRN": "HASHED_VALUE",
"AGE": "mid -forties",
"note": "Michael Johnson , a mid -forties male , presented to Harvard Medical Center

on 03/16/2025 complaining of severe abdominal pain. He was referred by Dr.
Sophia Brown from Green Valley Clinic. His address is 456 Elm St, Mountain
View , CA 94041. Contact number: (123) 274-0846. Past medical history includes
hypertension and Type 2 diabetes. His insurance ID is INS -123456789. The
p a t i e n t s spouse , Alice Johnson , can be reached at (123) 274-6354. A CT scan
was performed and results were discussed with the patient at 2:00 PM. Follow -

up scheduled on 03/22/2025 at 9:00 AM. Patient is employed as a data scientist
at Innovatech Inc.. Social Security Number: 123-45-6789."

}
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B High Level Prompt Templates for Different LLM Components

Due to compliance, privacy, and business confidentiality considerations, we do not release the exact
prompts used for each LLM component in RedactOR. Instead, to foster reproducibility and enable
community adaptation, we provide high-level prompt templates that capture the structure, intent, and
output format of each prompt while omitting sensitive implementation details.

These templates define:

• The role of the LLM in each component (e.g., entity extraction, clustering, relexicalization),

• The core task description and guidelines for execution,

• The expected output schema in JSON format for integration and evaluation,

• Placeholders for data inputs, reference context, and special parameters (e.g., shift values, entity-
specific rules).

By offering these templates, we enable researchers and practitioners to develop specialized prompts
tailored to their own datasets, privacy policies, and LLM configurations, while ensuring compatibility
with our overall system architecture.

B.1 Auto De-ID LLM Component
prompt: |

{{role}} # High-level role of the LLM.
Describe that it acts as a De-Identification Specialist tasked with
extracting PHI/PII from clinical text while adhering to legal privacy regulations
(e.g., HIPAA). Include general expectations on accuracy and coverage.

{{entity_extraction_guidelines}} # Instructions on how to treat text
(e.g., case sensitivity, contractions), exclusions (e.g., medication names, diagnoses),
and how to handle special cases. Mention precision requirements for each entity type
and the need to distinguish similar types (e.g., ADDRESS vs LOCATION).

{{controls}} # List and description of specific PHI/PII categories to be extracted
(e.g., names, dates, contact info, IDs, financial details, technical identifiers,
demographic information). This section should align with the entity types and provide
guidance on inclusion/exclusion criteria.

{{context_awareness}} # Explain the need for context-sensitive entity extraction to
avoid over-redaction. Describe how identical strings may appear in different contexts
with different meanings and the importance of using surrounding context to correctly
identify which instance to redact. Highlight that the model must associate each extracted
entity with its specific textual occurrence based on context, not just string matching.

The output format should strictly just be a JSON dictionary with the entity mentioned
above as the key and its list of words/phrases found in the text as its value.

For eg., "ENTITY": ["A", "B", "C"]

You must not add any key which is not a part of the guidelines above. You must add all
the entity as the keys in the output even if the value list for that is empty.

The final output format must look like as follows. You must not produce anything
except the json output. Ensure the output can be parsed by Python json.loads

{
<entity_type1>: <list_of_words_or_phrases_for_entity_type1>,
<entity_type2>: <list_of_words_or_phrases_for_entity_type2>,
... and so on

}

{{self_checklist}} # List of validation checks the LLM must perform before returning output.
For example, ensure PERSON doesn’t include pronouns, validate that BIRTH_DATE_TIME only includes
birth dates, and confirm all keys in output match allowed entity types.

Here is the input text:
{{input_text}} # Placeholder for the input clinical text to be de-identified.
This is the text the LLM will process.
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B.2 Relexicalizer Components

clustering_prompt: |
{{role}} # Describe the clustering task: grouping contextually identical entities from two medical documents.

{{task_overview}} # Outline the goal: assign consistent identifiers to contextually similar entities across documents.

{{guidelines}} # Provide detailed guidelines: consistency, identifier format, handling of subnames, JSON format compliance.

{{example_input_output}} # Include sample input/output structure for clarity (optional for template use).

{{input_dict_placeholder}} # Placeholder for the input dictionary of entities.

{{reference_text_placeholder}} # Placeholder for the contextual text reference.

Output Format:
```json
{

"ENTITY_TYPE": {
"ENTITY_TYPE_1": ["entity_variant_1", "entity_variant_2"],
"ENTITY_TYPE_2": ["entity_variant_3"]

},
...

}

query_prompt: |
{{role}} # Describe task: generate semantic query strings for each entity cluster to retrieve similar entities.

{{guidelines}} # Explain how to synthesize cluster information into a concise semantic query.

{{example_input_output}} # Provide example input and expected query outputs for context (optional for template use).

{{cluster_placeholder}} # Placeholder for the input clusters.

{{reference_text_placeholder}} # Placeholder for reference context.

Output Format:
```json
{

"ENTITY_TYPE": {
"ENTITY_TYPE_1": "query_string_for_entity_1",
"ENTITY_TYPE_2": "query_string_for_entity_2"

},
...

}

decision_prompt: |
{{role}} # Describe task: evaluate semantic similarity of search results to query entities.

{{guidelines}} # Provide detailed decision rules for matching: exact match, partial, cultural context, ambiguity.

{{constraints}} # State output constraints: JSON format, result length consistency, no assumptions.

{{example_input_output}} # Include examples of query, search results, context, and expected Y/N output.

{{query_placeholder}} # Placeholder for input query.

{{search_result_placeholder}} # Placeholder for search results.

{{context_placeholder}} # Placeholder for reference context.

Output Format:
```json
{

"result": ["Y", "N", ...]
}

replacement_prompt: |
{{role}} # Describe task: generate realistic replacement values for each cluster entity.

{{guidelines}} # Explain general rules for replacement: alignment with entity attributes, format, and uniqueness.

{{special_rules}} # Detailed per-entity replacement rules for privacy-preserving, contextually realistic generation.

Output Format:
```json
{

"ENTITY_TYPE_1": {"replacement": "replacement_value_1", "type": "ENTITY_TYPE"},
"ENTITY_TYPE_2": {"replacement": "replacement_value_2", "type": "ENTITY_TYPE"},
...

}
```
{{input_cluster_placeholder}} # Placeholder for the entity clusters to replace.
{{existing_replacements_placeholder}} # Placeholder for existing replacements to avoid duplication.
{{reference_text_placeholder}} # Placeholder for context to guide realistic replacements.
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B.3 Audio PHI/PII Timestamps Detector
prompt: |

{{role}} # Describe task: infer most likely entity type
for missing audio segments using surrounding transcript context.

{{entity_definitions}} # Provide detailed descriptions of each possible
entity type (e.g., PERSON, AGE, ADDRESS, etc.) and how to identify them from context.

{{transcript_format}} # Describe how transcript data is presented
with timestamps and missing sections.

{{example_input_output}} # Provide an example transcript with missing
timestamps and corresponding expected entity predictions.

{{task_instruction}} # Instruct model to return a JSON dictionary where
keys are timestamps and values are predicted entity types or "UNKNOWN".

Output Format:
```json
{

"TIMESTAMP1": "ENTITY_TYPE",
"TIMESTAMP2": "ENTITY_TYPE",
...

}
```

{{partial_transcript_placeholder}} # Placeholder for the transcript
input with missing sections.

C Entity types supported by RedactOR in Production
- ADDRESS
- SSN_OR_TAXPAYER
- EMAIL
- PASSPORT_NUMBER_US
- TELEPHONE_NUMBER
- DRIVER_ID_US
- BANK_ACCOUNT_NUMBER
- BANK_SWIFT
- BANK_ROUTING
- CREDIT_DEBIT_NUMBER
- MEDICAL_RECORD_NUMBER
- HEALTH_PLAN_ID
- CERTIFICATE_NUMBER
- FIN
- VEHICLE_LICENSE_PLATE_US
- VEHICLE_IDENTIFIER_US
- GUID
- PERSON
- DIAGNOSTIC_LABS
- PHARMACY
- ORGANIZATION
- AGE
- LOCATION
- PARENTHOOD
- MARITAL_STATUS
- OCCUPATION
- RACE
- ETHNICITY
- BIRTH_DATE_TIME
- DEATH_DATE_TIME
- IP_ADDRESS
- URL
- MAC_ADDRESS
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