
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 208–221
July 28-30, 2025 ©2025 Association for Computational Linguistics

Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions
for Large Language Models

Somshubra Majumdar*, Vahid Noroozi *, Mehrzad Samadi, Sean Narenthiran,
Aleksander Ficek, Wasi Uddin Ahmad, Jocelyn Huang, Jagadeesh Balam, Boris Ginsburg

NVIDIA
{smajumdar,vnoroozi,msamadi,snarenthiran,aficek,
wasiuddina,jocelynh,jbalam,bginsburg}@nvidia.com

Abstract

Large Language Models (LLMs) require high
quality instruction data for effective alignment,
particularly in code generation tasks where ex-
pert curated datasets are expensive to produce.
We present Genetic-Instruct, a scalable algo-
rithm for synthesizing large-scale, high quality
coding instructions using evolutionary princi-
ples. Starting from a small set of seed instruc-
tions, Genetic-Instruct generates diverse and
challenging instruction-code pairs by leverag-
ing an Instructor-LLM for generation, a Coder-
LLM for code synthesis, and a Judge-LLM for
automatic quality evaluation. Our proposed
approach is highly parallelizable and effective
even with a small seed data and weaker gen-
erator models. We generated more than 7.5
million coding instructions with the proposed
approach. Then we evaluated it by fine-tuning
LLMs with the synthetic samples and demon-
strated a significant improvement in their code
generation capability compared to the other
synthetic generation approaches and publicly
available datasets. Our results highlight the ef-
ficiency, scalability, and generalizability of the
Genetic-Instruct framework.

1 Introduction

Large Language Models (LLMs) have made sig-
nificant progress in programming tasks and are
increasingly being used as code assistants (Liang
et al., 2024). To fully exploit their potential, they
require alignment (Ouyang et al., 2022), which de-
pends on paired instruction-solution examples to
shape the behavior of the model. However, cre-
ating diverse and complex instructions, especially
in coding domains, can be expensive due to the
need for expert input. A promising alternative is to
generate synthetic instructions using another LLM.
Previous research shows that synthetic instructions
are effective for both coding (Luo et al., 2024; Wu
et al., 2024; Wei et al., 2024b; Yu et al., 2024) and

*Equal contribution

general tasks (Wang et al., 2023; Honovich et al.,
2023; Xu et al., 2024).

Population

Decontamination

Instructor-LLM

Cross-Over /
Mutation

Coder-LLM Judge-LLM

Final Population

Size(Population) < Target

Figure 1: The overall process of Genetic-Instruct across
multiple parallel colonies per generation. Each colony
begins with a small seed population, from which an
Instructor-LLM applies crossover and mutation to cre-
ate new instructions. A Coder-LLM then generates
corresponding code solutions, which are evaluated by a
Judge-LLM for correctness and quality. Once the target
population size is reached, samples are decontaminated
to form the final population.

In this paper, we introduce Genetic-Instruct, a
scalable algorithm to generate synthetic coding in-
structions, illustrated in Figure 1. Inspired by evo-
lutionary algorithms, Genetic-Instruct starts with
a small set of seed instructions and uses LLMs to
generate new instruction-code pairs through two
operations of crossover and mutation.

The crossover operation follows a self-instruct
approach (Wang et al., 2023), where an LLM cre-
ates new instructions from few-shot examples, ex-
panding the topic coverage beyond the original
seeds. The crossover operator is mainly employed
to enhance diversity by expanding the overall cover-
age of the instructions to wider domains and topics
beyond the original seed instructions.

208

In the mutation operation, an LLM evolves a
given instruction into another instruction based on
some predefined rules (Luo et al., 2024). This oper-
ation can help the generation process to increase the
diversity of the instructions locally. An instruction
generated by one operation is added to the pool of
the seeds, and it may be used by the the operation
or other in the next step. This collaborative and
coupled interaction between the crossover and mu-
tation is the main key foundation of our proposed
approach. It boosts instruction diversity, which
is an essential factor in the success of synthetic
instruction generation.

Subsequently, another LLM generates answers,
including code solutions, for the instructions. We
introduce a fitness function that uses an LLM
to evaluate the correctness and quality of each
instruction-solution pair. Samples that pass these
checks are added to the population pool, and the
evolutionary process continues until the target pop-
ulation size is reached. Starting from a small set
of seed instructions, the pool grows with newly
generated synthetic instructions.

Additionally, the entire pipeline is designed for
efficient parallel execution with multiple colonies
of populations by running multiple instances of this
process in parallel. Furthermore, this process can
be repeated multiple times to generate more gen-
erations using the instructions generated from the
previous round as the seed for the next generation.

Using our Genetic-Instruct algorithm, we gen-
erated a large dataset of synthetic coding instruc-
tions (more than 7.5M samples), starting from 512
seed questions. We trained LLMs on these data
via supervised fine-tuning (SFT) and evaluated
them on code generation benchmarks. Our work
supports open-source development, avoiding any
closed-source data or models.

Models trained on our synthetic dataset achieved
strong results across coding benchmarks, outper-
forming other instruction generation methods and
also some of the existing public SFT datasets. Our
experiments also show that Genetic-Instruct can
produce high-quality data without requiring very
strong LLMs or large seed sets. We released the
dataset publicly to support open-source LLM de-
velopment 1.

1https://huggingface.co/datasets/nvidia/
OpenCodeGeneticInstruct

2 Previous Works

Synthetic data generation has become a practical
alternative to the costly and time-consuming col-
lection of human-curated data for LLM training.
A notable method is Self-Instruct (Wang et al.,
2023), which uses a pre-trained LLM to generate
instruction-output pairs from a small seed set, then
fine-tunes the base model. However, Self-Instruct
focuses on general tasks, not coding. Moreover,
while it can enhance the coverage of topics, the
synthesized samples are often simple and not chal-
lenging enough to require additional steps to arrive
at the solution.

To overcome this, Evol-Instruct (Xu et al., 2024)
introduces instruction mutation to create more com-
plex and diverse tasks through meta-instructions
that increase reasoning depth, impose constraints,
or promote conceptual evolution. This idea was
adapted to coding by WizardCoder (Luo et al.,
2024), leading to improved coding performance
in models trained on such evolved instructions.

While Self-Instruct and Evol-Instruct generate
instructions without using any code as seeds, an-
other line of work (Yu et al., 2024; Wu et al., 2024;
Wei et al., 2024b) generates instructions from ex-
isting code snippets. These approaches leverage
large code corpora to synthesize diverse prompts.
For example, INVERSE-CODER (Wu et al., 2024)
generates instructions directly matched to given
code, whereas OSS-Instruct (Wei et al., 2024b) and
WaveCoder (Yu et al., 2024) use LLMs to create
new, code-inspired instructions. However, these
methods rely on large high quality and processed
code samples, which may pose challenges for less
common programming languages.

3 Genetic-Instruct

We introduce Genetic-Instruct, an algorithm in-
spired by the population-based genetic algorithms
(Golberg, 1989). This algorithm employs the two
primary evolutionary operations of mutation and
crossover to evolve and generate new generations
from an initial population. The initial population,
termed Generation 0, comprises a limited set of
high-quality seed instructions. These seed instruc-
tions undergo a series of evolutionary operations,
mainly mutation, crossover and selection, to trans-
form them into new instructions. All the operations
are executed by leveraging LLMs and enhancing
their output with in-context learning.

The whole process of Genetic-instruct is as fol-

209

https://huggingface.co/datasets/nvidia/OpenCodeGeneticInstruct
https://huggingface.co/datasets/nvidia/OpenCodeGeneticInstruct

Algorithm 1: Pseudo-code for the Genetic-Instruct Algorithm
Input : N : Number of colonies

Pmax: Maximum population size per colony
GN : Total number of generations
Bm and Bc: Number of individuals needed for mutation and cross-over respectively
Pseed: Initial set of seed instructions
Mp: Probability of selecting mutation as operator
Pop: Probability distribution over the operations {Mutation: Mp, Cross-over: 1−Mp}

Output :FinalInstructions: Generated Synthetic Instructions for Coding Problems
for g ← 1 to GN do

Run N colonies in parallel;
foreach colony do

Initialize Ppool ← Pseed;
while len(Ppool) < Pmax do

OP ← Choose an operation from Pop;
Candidates← Select a subset of Bm or Bc individuals from Pseed randomly based on the selected

operation;
NewQuestions← InstructorLLM(Candidates,OP);
FilteredQuestions← FilterQuestions(NewQuestions);
GeneratedInstructions← CoderLLM(FilteredQuestions);
V alidatedInstructions← V alidateCode(GeneratedInstructions);
NewInstructions← JudgeLLM(V alidatedInstructions);
Ppool ← Ppool ∪NewInstructions;

end
end
Gg ← Aggregate all Ppool from N colonies;

end
AggInstructions← Aggregate all Gg , for g ∈ [1, Gn];
FinalInstructions← Decontaminate(AggInstructions);

lows. At each step, from the instruction set of the
initial population (seed population), we randomly
select a batch of instructions with replacement. The
LLM responsible for instruction generation (called
Instructor-LLM) is employed to synthetize the new
instructions based on a selected operation. Upon
generating a new instruction, another LLM, re-
ferred to as the Coder-LLM, is tasked with produc-
ing the code corresponding to this new instruction.
The newly generated instruction and its associated
code constitute a new coding instruction, which
can be utilized for training. However, there may be
instances where the generated code does not fully
address the provided question, or the question itself
may be poorly formulated. To assess the quality
of the new coding instruction, we employ another
LLM, termed the Judge-LLM, to evaluate the cor-
rectness of the instruction and its code. If a sample
passes this quality assessment, it is added to the
pool of instructions and may be selected as the seed
instruction for the next batch of synthesized sam-
ples. The entire process is iterated multiple times
to synthesize samples until the desired population
size is achieved. This resulting population is then
labeled as a generation, and the entire pipeline can
be repeated by considering this generation as the
initial population for the next generation.

Subsequently, a decontamination process is ap-
plied to minimize risk of contaminated instructions
in the training data. The complete pipeline is il-
lustrated in Figure 1 for one generation, and the
procedure for the whole algorithm is detailed in Al-
gorithm 1. In the following, each step is explained
in detail.

3.1 Mutation Operation
The mutation operation is inspired by an adapta-
tion of the Evol-Instruct algorithm, as devised by
(Xu et al., 2024), and further extended by Wizard-
Coder (Luo et al., 2024) to facilitate instruction
generation for code models. Evol-Instruct evolves
an instruction into another using an LLM based
on predefined tasks. For a sample selected for mu-
tation, we randomly choose one of the five tasks
defined and apply the mutation to generate a new
instruction. We employ the same five tasks intro-
duced by (Luo et al., 2024), with minor prompt
modifications to suit our Instructor-LLM. Details
on the mutation prompts are provided in Appendix
A.

3.2 Crossover Operation
The crossover operation in Genetic-Instruct is influ-
enced by the concepts introduced in Self-Instruct
(Wang et al., 2023) and Unnatural Instructions

210

(Honovich et al., 2023). It inspires from multiple in-
structions and employs the Instructor-LLM to gen-
erate new populations from the provided few-shot
example instructions. To enhance the efficiency
of the crossover operation, we provide multiple
seed instructions and request the model to gener-
ate multiple diverse new instructions based on the
provided examples in a single Instructor-LLM call.
The prompt for the crossover operation is depicted
in Appendix B.

3.3 Code Generation

After the Instructor-LLM generates a batch of
new instructions, they are passed to the Coder-
LLM to generate the corresponding code solutions.
The Coder-LLM should be proficient in coding
tasks to ensure the generation of high-quality solu-
tions. However, some generated code may not be
parseable or compilable. Therefore, we filter out
solutions whose code segments cannot be parsed
by the corresponding language’s parser/compiler.
While determining the correctness of code by ex-
ecution is the ideal case, it is challenging due to
various factors, such as language constraints, miss-
ing dependencies, or having to integrate the current
solution into a much larger codebase that may not
be available in its entirety. The prompt used in this
step is illustrated in Appendix C.

3.4 Fitness Function

Simple post-processing, such as rejecting all sam-
ples that don’t pass the Abstract Syntax Tree
checks, is applied to filter out incorrect instruc-
tions. Then, they are scored using a fitness func-
tion in order to discard candidates that have low
quality. We employ a Judge-LLM to assign a bi-
nary score indicating whether a candidate code
solution meets the minimum requirements. The
Judge-LLM is provided with an instruction and
its code solution to determine the correctness of
the instruction and its corresponding solution. To
enhance the performance, we employ techniques
such as in-context learning with few-shot examples
and Chain-of-Thought (Wei et al., 2022) prompting
to making a better decision. The prompt for the
Judge-LLM is depicted in Appendix D.

3.5 Scaling Up the Process

An advantage of genetic algorithms is their inherent
capacity for parallelization. When utilizing com-
putationally intensive LLMs for sample generation,
it is crucial to leverage this parallel structure. We

execute multiple colonies of populations in paral-
lel processes and synchronize them periodically.
These colonies are evolved and populated inde-
pendently, starting from the same seed population.
Upon reaching the desired size, the colonies are
merged into a single population and called a gen-
eration. Additionally, to improve the diversity, we
make sure that seed examples selected to be used
in a batch are all different.

3.6 LLM Decontamination

To prevent any evaluation benchmark questions
from leaking into our training samples, we
adopted the decontamination methodology pro-
posed by Yang et al. (2023), which involves
two primary stages. First, for each synthe-
sized question, we performed an embedding-based
similarity search using a Sentence Transformer
(Reimers and Gurevych, 2020) model to iden-
tify the most similar test example from all bench-
mark datasets. Second, we constructed question
pairs by matching each synthesized question with
its most similar test example. An LLM, specifi-
cally Meta-Llama-3-70B-Instruct, was then em-
ployed to evaluate whether any of these pairs con-
stituted a paraphrase (details on the prompt are
provided in Appendix E).

To control for potential positional bias in the
LLM’s paraphrase detection, we generated two
pairs for each match: one where the synthesized
question appeared first and another where the test
set question was presented first (Toshniwal et al.,
2024). If any of these pairs were determined to be
similar by the LLM, the synthesized question was
removed.

4 Experiments

We fine-tune the base LLM models using super-
vised fine-tuning (SFT) to evaluate the effective-
ness of a given instruction set. In all experi-
ments, the models are evaluated on four benchmark
datasets: HumanEval (HE) (Chen et al., 2021),
MBPP (Odena et al., 2021), HumanEval+ (HE+),
and MBPP+ (Liu et al., 2023). The MBPP+ and
HumanEval+ datasets, part of the EvalPlus bench-
mark, are extensions of the original MBPP and Hu-
manEval test sets, respectively. These extensions
include additional test cases designed to ensure
the correctness and accuracy of the generated code.
The prompts used for the evaluation benchmarks
are provided in Appendix F. All code evaluations

211

are conducted using greedy decoding. Prior to SFT
training, all training datasets undergo a decontami-
nation process.

We use 512 samples from the Tiger-Leetcode
collection (TigerResearch, 2023) as the initial pop-
ulation in most experiments. This collection serves
as the seed dataset for the first generation and con-
sists of interview-style coding questions. Through-
out all experiments, we employ the same genera-
tion models as Instructor-LLM, Coder-LLM, and
Judge-LLM. Since our evaluation focuses exclu-
sively on Python coding benchmarks, we constrain
the generated solutions to Python by instructing the
models to produce only questions that can be an-
swered with Python code. After code is generated
by Coder-LLM, we verify its syntactic correctness
using Python’s ast package, regardless of its ex-
ecutability, to ensure the structural validity of the
generated code.

4.1 Experimental Settings
We used the AdamW optimizer (Kingma and Ba,
2015) for all supervised fine-tuning (SFT) experi-
ments, with a learning rate of 5e-6 decaying to 5e-7
over three epochs, following a cosine annealing
schedule (Loshchilov and Hutter, 2022). All mod-
els were trained using tensor parallelism and BF16
precision to accelerate the training process. Experi-
ments were conducted using the NeMo framework
(Harper et al., 2025) and NeMo Aligner (Shen et al.,
2025).

For high-throughput inference with large effec-
tive batch sizes, we used vLLM (Kwon et al., 2023)
as the inference engine. Nucleus sampling (Holtz-
man et al., 2020) was employed for decoding, with
a temperature of 1.2 for Instructor-LLM, and 1.0
for both Coder-LLM and Judge-LLM. To improve
GPU utilization and speed up generation, we ran
20 colonies in parallel for each generation step. A
maximum sequence length of 1024 tokens was set
across all LLMs to optimize generation speed and
memory usage.

For Genetic-Instruct, the mutation probability
(Mp) was set to 0.5 by default. During the muta-
tion operation, a batch size of 100 (Bm) was used,
while the crossover operation used a batch size
of 10 (Bc). These values were chosen based on
our observation that, the model generates approx-
imately 10 unique instructions per generation on
average, aiming to maintain a consistent number
of generated samples per batch. In the crossover
operation, Instructor-LLM used 3-shot in-context

Figure 2: The accuracy of Llama-3.1-8B trained on dif-
ferent data sizes. Code accuracy is calculated as the
average of the model’s accuracy on all the four bench-
marks. With scaling up the synthetic, accuracy improves
but starts to show diminishing improvements later.

learning and was prompted to generate up to 20
new instructions.

4.2 Performance Evaluation

In this section, we evaluate the effectiveness of
our proposed approach for generating synthetic
supervised fine-tuning (SFT) samples aimed at en-
hancing the coding capabilities of LLMs. We used
Llama3.1-8B-Base (Grattafiori et al., 2024) as the
base model and employed Mixtral-8x22B (Jiang
et al., 2024) as the Instructor-LLM, Coder-LLM,
and Judge-LLM.

Figure 2 illustrates the relationship between
the size of the SFT dataset generated by Genetic-
Instruct and coding accuracy. Coding accuracy is
computed as the average model performance across
all four benchmarks. We generated synthetic in-
structions across six generations, each consisting of
approximately 1.5 million samples, totaling around
7.8 million samples. The results show a clear up-
ward trend, where increasing the dataset size leads
to significant improvements in accuracy. Notably,
models trained on more than 3 million samples out-
perform the Llama3.1-8B-Instruct model. Starting
from a baseline accuracy of approximately 45%,
the Llama3.1-8B-Base model shows consistent im-
provement as the dataset grows, demonstrating the
scalability and effectiveness of our synthetic data
generation strategy. However, beyond approxi-
mately 6 million samples, the accuracy gains begin
to plateau, indicating diminishing returns.

To show the effectiveness of Genetic-Instruct
compared to other approaches, we evaluated the
samples generated by Genetic-Instruct with some

212

Generation Algorithm/Dataset Data Size MBPP MBPP+ HumanEval HumanEval+ Average
Llama 3.1 8B Instruct - 73.0 62.7 66.5 61.6 65.9
Genetic Instruct 7.5M 79.9 69.1 66.5 63.4 69.7
Genetic Instruct 4M 76.5 66.9 65.9 62.8 68.0

Alternative Synthetic Data Generation Methods
WizardCoder 4M 72.8 62.4 65.9 61.6 65.7
Self-Instruct 4M 74.9 66.7 64.6 61.0 66.8
OSS-Instruct 4M 73.3 61.4 62.2 58.5 63.9
INVERSE-INSTRUCT 4M 59.8 49.2 29.3 26.2 41.1

Public Datasets
Code Parrot Apps 5k 39.7 34.7 29.9 28.1 33.1
TACO 25K 47.1 40.2 31.1 27.4 36.5
OpenCoder Stage 1 1M 67.2 57.1 66.5 61.0 62.9
OpenCoder Stage 2 170K 67.5 61.1 58.5 56.1 60.8
Code Alpaca 20K 31.8 26.7 24.4 20.7 25.9

Table 1: Comparison of Genetic-Instruct with other data generation algorithms and datasets. Average of the
accuracies on all the benchmarks are also reported.

other baseline approaches which are designed for
generating synthetic SFT data for coding problems.
To make the comparisons fair, we re-implemented
all the baseline approaches and performed the com-
parisons with the same generator model, seed popu-
lation, base model for SFT, and size of training data.
We did not rely on the results reported in the orig-
inal papers, as each one used different generation
models, seed populations, base models and bench-
marks. Among these baselines, WizardCoder and
Self-Instruct follow a similar paradigm to ours, us-
ing a collection of coding questions to expand into
a larger instruction set. In contrast, OSS-Instruct
(Wei et al., 2024b) and INVERSE-INSTRUCT (Wu
et al., 2024) generate instructions from a large set
of real code snippets.

For OSS-Instruct and INVERSE-INSTRUCT,
we used around 1.4M Python functions extracted
from Stack v2 (Lozhkov et al., 2024) as the seed
population, following the seed collection proce-
dure adopted in Wei et al. (2024a), while for the
rest of the baselines we used Tiger-Leetcode. The
same number of samples are generated by each
one of the approaches with three generations. Ex-
tra samples from the last generation are dropped
randomly to make all the sizes exactly 4M. The
results of 5 generations (7.5M) are also reported
for Genetic-Instruct. We also evaluated some of
the publicly available coding instruction datasets:
Apps (Hendrycks et al., 2021), TACO (Li et al.,
2023), and OpenCoder (Huang et al., 2024). All

the results are presented in Table 1.
For OSS-Instruct and INVERSE-INSTRUCT,

we used around 1.4M Python functions extracted
from Stack v2 (Lozhkov et al., 2024) as the seed
population, following the procedure outlined in
Wei et al. (2024a). For the remaining baselines,
we used Tiger-Leetcode as the seed dataset. For
each approach, we generated the same number
of samples over three generations, and any ex-
tra samples from the final generation were ran-
domly discarded to standardize the dataset size
to 4 million. For Genetic-Instruct, we also report
results with five generations (more than 7.5M sam-
ples). Additionally, we evaluated models fine-tuned
on publicly available coding instruction datasets:
Apps (Hendrycks et al., 2021), TACO (Li et al.,
2023), and OpenCoder (Huang et al., 2024). The
results are summarized in Table 1.

The results clearly highlight the superior perfor-
mance of Genetic-Instruct across multiple evalua-
tion metrics. Models trained on data generated by
our method consistently outperform those trained

Generation Algorithm MBPP MBPP+ HE HE+ Avg
Cross-Over Only 74.9 66.7 64.6 61.0 66.8
Mutation Only 73.3 64.0 66.5 62.8 66.6
Genetic Instruct 76.5 66.9 65.9 62.8 68.0

Table 2: Comparing the effectiveness of different oper-
ations in the Genetic-Instruct algorithm. We generate
4 million samples for each experiment and used Llama
3.1 8B Base as the base model.

213

Base Model Generation Model MBPP MBPP+ HumanEval HumanEval+ Average

Llama3.1 8B

Mixtral 8x22B 72.8 64.0 62.8 59.8 64.8
Mixtral 8x7B 66.7 57.7 52.4 49.4 56.5
Qwen 32B 74.6 65.1 65.2 62.8 66.9
Qwen 7B 72.2 61.9 67.7 64.0 66.5

Qwen2.5 7B

Mixtral 8x22B 79.1 67.2 72.6 65.9 71.2
Mixtral 8x7B 78.8 67.2 72.0 65.2 70.8
Qwen 32B 82.0 72.8 79.3 75.0 77.3
Qwen 7B 81.2 69.6 81.1 75.0 76.7

Table 3: Ablation study on the effect of the generator model on the quality of the data generation. Average of the
accuracies on all the benchmarks are also reported.

on all baseline approaches and public datasets. In
particular, our five-generation dataset achieves a
significantly higher average accuracy of 69.7%
compared to the best-performing public dataset,
OpenCoder Stage 1, at 62.9%. Even our smaller
dataset (4M) achieves an average of 68.0%, further
underscoring the effectiveness and efficiency of our
approach.

4.3 Ablation Study

In this ablation study, we assess the impact of mu-
tation and crossover operations in Genetic-Instruct
on the quality of generated data. We compare three
setups: Crossover-Only, where only the crossover
operation is used during data generation; Mutation-
Only, where only the mutation operation is applied;
and the full Genetic-Instruct approach, which em-
ploys both.

For each setup, we generated three genera-
tions totaling 4 million samples and fine-tuned
a Llama3.1-8B Base model to evaluate down-
stream performance. This setup allows us to assess
the individual and combined impact of these ge-
netic operators on downstream model performance.
Mutation-Only resembles WizardCoder conceptu-
ally, but with a key distinction: it updates the evolv-
ing seed pool with newly generated samples, unlike
WizardCoder, which evolves only the initial seeds.

As shown in Table 2, combining both opera-
tions yields the highest average accuracy across all
benchmarks, confirming their complementary ben-
efits. While Mutation-Only slightly outperforms
the full approach on the HE benchmark, these find-
ings suggest that while both operations individually
contribute to improved performance, and their syn-
ergistic combination in Genetic-Instruct yields the
most substantial overall gains in coding capability.

4.4 Influence of the Generator Model
Table 3 presents an ablation study evaluating the
impact of different generator models on the quality
of the synthetic data. We generated 1.5 million sam-
ples for each experiment with different generation
models and then trained Llama3.1-8B-Base and
Qwen2.5-7B-Base on them. The results indicate
that the Qwen models (Yang et al., 2024) outper-
form the Mixtral family across most benchmarks,
highlighting that stronger LLMs tend to produce
higher-quality synthetic data.

Interestingly, Qwen-7B performs closely to
Qwen-32B, suggesting that even a smaller model
within the Qwen family is capable of generating
high-quality training data. These findings imply
that while the strength of the generator plays a
key role in data quality, relatively smaller LLMs
can still yield competitive performance, offering
a more cost-effective alternative for synthetic data
generation.

5 Conclusion

We introduced Genetic-Instruct, a novel algorithm
inspired by evolutionary principles to generate
synthetic coding instructions for LLMs. Genetic-
Instruct is specifically designed to support parallel
generation, making it a scalable solution for syn-
thetic data creation. We benchmarked our approach
against several baseline methods and publicly avail-
able datasets, and the results consistently demon-
strated its effectiveness in improving performance
on code generation tasks. Also in our ablation
studies, we demonstrated the effectiveness of com-
bining the two main operations to achieve the best
performance. We publicly released the 7.5M syn-
thetic instruction-solution dataset to facilitate the
development of open source LLMs.

214

References
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming

Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

David E Golberg. 1989. Genetic algorithms in search,
optimization, and machine learning. addion wesley.
Reading, 673:3.

Aaron Grattafiori et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Eric Harper, Somshubra Majumdar, Oleksii Kuchaiev,
Li Jason, Yang Zhang, Evelina Bakhturina, Vahid
Noroozi, Sandeep Subramanian, Koluguri Nithin, Jo-
celyn Huang, Fei Jia, Jagadeesh Balam, Xuesong
Yang, Micha Livne, Yi Dong, Sean Naren, and
Boris Ginsburg. 2025. Nemo: a toolkit for con-
versational ai and large language models. https:
//github.com/NVIDIA/NeMo. If you use this soft-
ware, please cite it as below.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2023. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14409–14428, Toronto, Canada.
Association for Computational Linguistics.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran
Hao, Liuyihan Song, Yang Xu, J. Yang, J. H. Liu,
Chenchen Zhang, Linzheng Chai, Ruifeng Yuan,
Zhaoxiang Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili
Wang, Yuan Qi, Yinghui Xu, and Wei Chu. 2024.
Opencoder: The open cookbook for top-tier code
large language models. arXiv preprint.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, LÃl’lio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
ThÃl’ophile Gervet, Thibaut Lavril, Thomas Wang,
TimothÃl’e Lacroix, and William El Sayed. 2024.
Mixtral of experts. Preprint, arXiv:2401.04088.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San
Diega, CA, USA.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611âĂŞ626, New York, NY, USA. Associ-
ation for Computing Machinery.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong
Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023.
Taco: Topics in algorithmic code generation dataset.
arXiv preprint arXiv:2312.14852.

Jenny T Liang, Chenyang Yang, and Brad A Myers.
2024. A large-scale survey on the usability of ai
programming assistants: Successes and challenges.
In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pages 1–13.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Ilya Loshchilov and Frank Hutter. 2022. Sgdr: Stochas-
tic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

Augustus Odena, Charles Sutton, David Martin Do-
han, Ellen Jiang, Henryk Michalewski, Jacob Austin,
Maarten Paul Bosma, Maxwell Nye, Michael Terry,
and Quoc V. Le. 2021. Program synthesis with large
language models. In n/a, page n/a, n/a. N/a.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual using
knowledge distillation. Preprint, arXiv:2004.09813.
URL: https://huggingface.co/sentence-
transformers/multi-qa-MiniLM-L6-cos-v1.

215

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://nvidia.github.io/NeMo/
https://nvidia.github.io/NeMo/
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2023.acl-long.806
https://doi.org/10.18653/v1/2023.acl-long.806
https://arxiv.org/pdf/2411.04905
https://arxiv.org/pdf/2411.04905
https://arxiv.org/abs/2401.04088
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813

Gerald Shen, Olivier Delalleau, Sahil Jian, Jimmy
Zhang, Jiaqi Zeng, Daniel Egert, Zhilin Wang, Zi-
jie Yan, Yi Dong, Ausin Markel, Ali Taghibakhshi,
Li Tao, Jian Hu, Xin Yao, Hongbin Liu, Ashwath
Aithal, and Oleksii Kuchaiev. 2025. Nemo-aligner: a
toolkit for model alignment. https://github.com/
NVIDIA/NeMo-Aligner. If you use this software,
please cite it as below.

TigerResearch. 2023. Tigerbot kaggle leet-
code solutions dataset (english) - 2k. https:
//huggingface.co/datasets/TigerResearch/
tigerbot-kaggle-leetcodesolutions-en-2k.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
2024. Openmathinstruct-2: Accelerating ai for math
with massive open-source instruction data. Preprint,
arXiv:2410.01560.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng
Ding, Naman Jain, Zachary Mueller, Harm de Vries,
Leandro Von Werra, Arjun Guha, and LINGMING
ZHANG. 2024a. Selfcodealign: Self-alignment for
code generation. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding,
and Lingming Zhang. 2024b. Magicoder: Empow-
ering code generation with oss-instruct. In Inter-
national Conference on Machine Learning, pages
52632–52657. PMLR.

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang,
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao
Yuan, Rui Zhang, Xishan Zhang, et al. 2024. In-
versecoder: Unleashing the power of instruction-
tuned code llms with inverse-instruct. arXiv preprint
arXiv:2407.05700.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,

Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E.
Gonzalez, and Ion Stoica. 2023. Rethinking bench-
mark and contamination for language models with
rephrased samples. Preprint, arXiv:2311.04850.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2024. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. Preprint, arXiv:2312.14187.

216

https://github.com/NVIDIA/NeMo-Aligner
https://github.com/NVIDIA/NeMo-Aligner
https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k
https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k
https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k
https://arxiv.org/abs/2410.01560
https://arxiv.org/abs/2410.01560
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=xXRnUU7xTL
https://openreview.net/forum?id=xXRnUU7xTL
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2312.14187
https://arxiv.org/abs/2312.14187

A Mutation Prompts

Mutation Prompt

Please increase the difficulty of the given programming test question a bit. Do not provide any hints,
solutions or outputs. Only one new instruction is allowed.
You can increase the difficulty using, but not limited to, the following methods:
{method}
Original Instruction:
{instruction}
New Instruction:

Operation: Constraint

Rewrite the original instruction, adding new constraints and requirements, with approximately 10 additional words.

Operation: Deepening

Write the original instruction. Then, replace a commonly used requirement in the programming task with a less common and

more specific.

Operation: Erroneous Code

Write the original instruction. Then provide a piece of wrong python code as a reference solution to increase misdirection.
Your wrong reference solution should start with "Reference Solution (Wrong)", marked in “‘ blocks.

Finally, ask to write the correct solution for the instruction. Do NOT provide the correct solution.

Operation: Reasoning

Write the original instruction after the new instruction. Then, if the original instruction can be solved with only a few logical
steps, please add more reasoning steps after the original instruction.

Do NOT provide any reason or explanation.

Operation: Task Complexity

Write the original instruction after the new instruction. Then propose higher time or space complexity requirements, but

please refrain from doing so frequently.

Figure 3: Prompt template for mutation operation

217

B Crossover Prompt

Crossover Prompt

You are asked to come up with a set of 20 diverse code generation task instructions. These task
instructions will be given to a GPT model and we will evaluate the GPT model for completing the
instructions.
Here are the requirements:
1. Try not to repeat the verb for each instruction to maximize diversity.
2. The language used for the instruction also should be diverse. For example, you should combine
questions with imperative instructions.
3. The type of instructions should be diverse. The list should include diverse types of programming
tasks like open-ended generation, classification, editing, optimization etc.
4. A GPT language model should be able to complete the instruction.
5. The instructions should be in English.
6. The instructions should at least 1 to 2 sentences long. Either an imperative sentence or a question is
permitted.
7. You should generate an appropriate input to the instruction. The input field should contain a specific
example provided for the instruction. It should involve realistic data and should not contain simple
placeholders. The input should provide substantial content to make the instruction challenging but
should ideally not exceed 100 words.
8. Not all instructions require input. For example, when a instruction asks about some general
information, "write a program to load a file.", it is not necessary to provide a specific context. In this
case, we simply put "〈noinput〉" in the input field.
9. The output should be an appropriate response to the instruction and the input.
10. All tasks should be coding or programming-related.
List of 20 tasks:

Few-Shot Examples

###
1. Instruction: Convert a Binary Search Tree to a sorted Circular Doubly-Linked List in place. You can think of the left and
right pointers as synonymous to the predecessor and successor pointers in a doubly-linked list. For a circular doubly linked
list, the predecessor of the first element is the last element, and the successor of the last element is the first element. We want
to do the transformation in place. After the transformation, the left pointer of the tree node should point to its predecessor, and
the right pointer should point to its successor. You should return the pointer to the smallest element of the linked list.
1. Input: root = 4,2,5,1,3
###
2. Instruction: · · ·
· · ·
###
3. Instruction:

Figure 4: Prompt template for the crossover operation with few-shot in-context learning

218

C Prompts for Coder-LLM

Python Code Generation Prompt

You are an expert in Python coding. Using only Python code, write the correct solution that answers
the given coding problem.
{instruction}
Answer:

Figure 5: Prompt template for code Generation with Coder-LLM

D Fitness Prompt for Judge-LLM

Fitness Prompt

You are an expert python programmer.
Below is a question and code solution. Decide if the solution follows the below criteria and give a final
Yes/No, and place it in the 〈judge〉〈/judge〉 tags.
Only look at the function generated, not any examples/print statements etc. Just the core logic.
Please first briefly describe your reasoning (in less than 30 words), and then write Decision: \\boxed{Yes
or No} in your last line.

Criteria:
1. 〈llm-code〉〈/llm-code〉 contains a code solution in any programming language.
2. If the code was executed with the proper libraries imported and correct inputs, it would execute
without error.
3. Given the question, the code solution seems to answer the problem if it was to be used correctly.
4. The code solution provides an elegant solution to the problem and doesn’t seem overly complicated.

Few-Shot Examples

Question: {instruction}
〈llm-code〉
{code}
〈/llm-code〉
〈judge〉
{reason}
Score: \\boxed{score}.
〈/judge〉

Figure 6: Prompt template for code quality judgement with Judge-LLM

219

E Decontamination Prompt

Prompt Template for Contamination Detection

Help me determine if the following two coding problems are the same.

First problem: {instruction 1}

Second problem: {instruction 2}

Disregard the names and minor changes in word order that appear within. If the two problems are very
similar and if they produce the same answer, we consider them to be the same problem. Respond with
only "True" (problems are the same) or "False" (problems are different). Do not respond with anything
else.

Figure 7: Prompt template for checking contamination

220

F Evaluation Prompts

Evaluation Prompt Template for MBPP and MBPP+

Here is a problem for which you need to generate code:

{instruction}

Please continue to complete the code with python programming language.

The solution should be in the following format:

“‘python

Your code here

“‘

Do not generate any tests. Your function should have the same name as the function in the assert
statement.

Figure 8: Prompt template for code evaluation on MBPP and MBPP+

Evaluation Prompt Template for HumanEval and HumanEval+

Here is a problem for which you need to complete code:

{instruction}

Please continue to complete the code with python programming language.

The solution should be in the following format:

“‘python

Your code here

“‘

Do not generate any tests. You are not allowed to modify the given code and do the completion only.

Figure 9: Prompt template for code evaluation on HumanEval and HumanEval+

221

