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Abstract

Temporal knowledge graph reasoning (TKGR)
is a crucial task that involves reasoning at
known timestamps to complete the future facts
and has attracted more and more attention in
recent years. The current TKGR models are
mainly based on graph neural networks or ten-
sor decomposition techniques. Few works in
TKGR focus on pre-trained language mod-
els (PLMs) which have powerful sequence
modeling capabilities to capture the tempo-
ral associations between facts. In this paper,
we propose a model SALMON: a Structure-
Aware Language Model with logicality and
densification strategy. Specifically, we design a
PLM-based framework with a structure-aware
layer inside to jointly capture the temporal
evolving pattern and structural information in
TKGs. To further enhance the model’s ability
to infer causal associations of facts, we pro-
pose a logical judging module, which can guide
the model to prioritize learning the most rele-
vant evolving information of logical causal as-
sociations in TKGs during the training process.
Moreover, we propose a densification strategy
based on large language models, through a care-
fully crafted Chain of Thought prompt, to dig
out some knowledge necessary for reasoning
about fact associations, thereby making the
model perform better. Extensive experimen-
tal results demonstrate the superiority of our
model over the state-of-the-art baselines.1

1 Introduction

Knowledge graphs (KGs) (Hogan et al., 2021) rep-
resent relations among real-world entities, enabling
a broad spectrum of applications in natural lan-
guage processing tasks. As knowledge evolves
over time, timestamps are incorporated into KGs,
giving rise to temporal KGs (TKGs) (Cai et al.,

1Code is available at https://github.com/linjh1118/
SALMON.
†Equal contribution. ∗Corresponding author.
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Figure 1: A chronologically ordered timeline of events
extracted from a TKG ICEWS18 (García-Durán et al.,
2018) illustrates the actions of President Trump.

2023), which play a pivotal role in supporting ap-
plications that necessitate a temporal dimension in
their knowledge representation. Formally, a TKG
is a graph-structured dataset encompassing numer-
ous time-sensitive relational facts. These facts (also
called events) are expressed as quadruples (subject
entity, relation, object entity, timestamp), denoted
as (s, r, o, t). For example, the event (Trump,
Sign_formal_agreement, Canada, 2018-10-17),
together with the events causally associated with it
as shown in Figure 1, embody the temporal aspect
of knowledge. With the widespread application
of TKGs, temporal knowledge graph reasoning
(TKGR) (Cai et al., 2023) is proposed as a crucial
task that involves reasoning at known timestamps
to complete future facts.

Many previous efforts have been devoted to rep-
resentation learning for KGs. In recent years, some
methods based on temporal representation learn-
ing have been introduced for TKGR. Examples of
these methods include tensor decomposition-based
TNTComplEx (Lacroix et al., 2020) and graph neu-
ral network-based TeMP (Wu et al., 2020) (see
Section 2 in details). The fundamental idea is to
project entities and relations in a TKG into a low-
dimensional vector space, preserving the structure
and temporal patterns of the TKG.

Moreover, in order to further grasp the causal
associations among events, another type of ap-
proaches based on rule such as XERTE (Han et al.,
2020), Tlogic (Liu et al., 2022) have also been

8761

https://github.com/linjh1118/SALMON
https://github.com/linjh1118/SALMON


proposed. These methods mainly walk on TKGs
through rules (the walking paths constitute a rea-
soning chain), and then reach the final entity to
achieve TKGR. Although the rule-based method
can provide explainable reasoning, this walking
method has relatively high requirements on the in-
tegrity of the reasoning chain in TKGs. When a
key clue event related to the entity to be predicted
is missing, the reasoning may be interrupted.

In addition, with the excellent performance
of language models (e.g., BERT (Kenton and
Toutanova, 2019), GPT (Radford et al., 2018)) in
natural language processing tasks, TKGR based
on language models has gradually attracted atten-
tion. The earlier work KG-BERT (Yao et al., 2019)
and LASS (Shen et al., 2022) attempt to leverage
pre-trained language models (PLMs) to address tra-
ditional KG reasoning task by treating triples as
textual sequences. The recent work PPT (Xu et al.,
2023) utilizes a PLM with prompts to integrate
temporal KG information into language models
for achieving TKGR. Due to the sparsity of TKGs,
many of the facts are relatively independent and
lack historical information related to them as shown
in Figure 1. This limits the ability of PPT to fully
explore the deeper reasons for associations among
facts to a certain extent, resulting in limited perfor-
mance. The potential of language models in TKGR
task still has a great space to explore.

To address these issues, in this paper we
propose a novel model, SALMON (Structure-
Aware Language Model with LOgicality and
DeNsification Strategy), which leverages the
strengths of PLMs to enhance TKGR. Built on
top of the PLM-based framework, SALMON in-
cludes a dedicated structure-aware layer to jointly
capture the evolving patterns and structural infor-
mation in a TKG, leading to a more comprehensive
understanding of the TKG. Further, to enhance the
model’s reasoning capabilities, we design a logical
judging module. Instead of traditional rules-based
walking, our logical judgment module aims to give
priority to learning the most relevant evolving in-
formation of logical causal associations in the TKG
during the training process of PLMs. To alleviate
the sparsity of TKGs mentioned above, inspired
by the potential of recent large language models
(LLMs), we propose a densification strategy that
harnesses the power of LLMs through a carefully
designed prompt, to enhance the TKGR perfor-
mance by digging out some evidence necessary for
reasoning about associations among events. Our

contributions can be summarized as follows:

• We propose a PLM-based framework tailored
for TKGR, incorporating a well-designed
structure-aware layer to capture both tempo-
ral evolution and structure characteristics of
TKGs.

• We design a logical judging module, which
guides the model to prioritize the most rele-
vant evolving information of logical causal
associations in TKGs for reasoning.

• We propose a LLMs-based densification strat-
egy that harnesses the power of LLMs through
a carefully designed prompt, aims to mine
some evidence necessary to reason about
events with little historical information.

• To validate the efficacy of SALMON, we con-
duct extensive experiments on three datasets,
and the results show that our SALMON
achieves state-of-the-art performance for tem-
poral knowledge graph reasoning tasks.

2 Related Work

2.1 Representation learning-based models
Previous research has predominantly centered
around the methodologies for capturing structural
and temporal information to facilitate inference. In
some instances, TA-DistMult (García-Durán et al.,
2018), TNTComplEx (Lacroix et al., 2020), TIME-
PLEX (Jain et al., 2020) and TeLM (Xu et al., 2021)
integrate conventional tensor decomposition tech-
niques (e.g., DistMult (Yang et al., 2015) and Com-
plEx (Trouillon et al., 2016)) with the incorporation
of temporal information. Additionally, TeMP (Wu
et al., 2020), CyGNet (Zhu et al., 2021), GTRL
(Tang and Chen, 2023) and SiMFy (Liu et al., 2023)
based on graph neural networks, explore the seg-
mentation of quadruples within TKGs based on
temporal blocks.

2.2 Rule-based models
An alternative paradigm, exemplified by rule-based
approaches such as XERTE (Han et al., 2020) and
TLogic (Liu et al., 2022), aims to capture causal
associations among events in TKGs. The main idea
is walking TKGs using rules, where a walking path
forms a inference chain, eventually reaching the
final entity. This walking method necessitates a
higher level of completeness in the inference chain
within TKGs, leading to inference breaks when key
cue events related to the final entity are missing.
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Figure 2: SALMON overview: a PLM-based framework with a structure-aware layer inside, a logical judging
module, and a densification strategy.

2.3 LMs-based models

KG-BERT (Yao et al., 2019) and LASS (Shen et al.,
2022) represent two traditional non-temporal KG
reasoning methods. The latest approach based on
pre-trained language models (PLMs) in temporal
knowledge graph reasoning is PPT (Xu et al., 2023).
By transforming sampled quadruples into PLM’s
inputs and employing a masking strategy, PPT ef-
fectively integrates temporal knowledge graph in-
formation into language models. However, due to
the sparsity of TKGs, many events lack historical
information, limiting PPT’s ability to fully explore
the deeper reasons for associations among events
and resulting in performance limitations. ICL (Lee
et al., 2023) which is a temporal reasoning model
based on large language models (LLMs), exploring
the use of in-context learning (ICL) with LLMs
for forecasting in TKGs, demonstrating that LLMs
can achieve TKGR without additional training by
leveraging patterns in the historical context.

3 Problem Formulation

A temporal knowledge graph (TKG) is an assem-
bly of facts, symbolized by G ⊂ E ×R× E × T ,
where E, R and T denote the finite sets of entities,
relations, and timestamps, respectively. A quadru-
ple (s, r, o, t) describes that a fact of relation type
r ∈ R occurs between the subject entity s ∈ E
and the object entity o ∈ E at the timestamp t ∈ T .
Boldfaced s, r, o, t represent their embeddings.

The goal of the TKG reasoning (TKGR) task is

to predict the missing object entity o via answering
query like q = (sq, rq, ?, tq) with only historical
known facts {(s, r, o, ti)|ti < tq} given. Not
that, without loss of generality, when predicting the
missing subject of a query q = (?, rq, oq, tq), we
can convert the query into q = (oq, r

−1
q , ?, tq).

4 Methodology

4.1 Overview
SALMON is built upon a PLM-based framework
as illustrated in Figure 2, incorporating a dedicated
structure-aware layer to jointly capture evolving
patterns and structural information within TKGs.
A logical judging module is also inserted into the
learning process to identify which events in the
evolving pattern are closely related, further en-
hancing the model’s reasoning capabilities. Ad-
ditionally, a densification strategy based on LLMs
is proposed. This strategy seeks to enhance the
model’s inference abilities by mining and infusing
necessary latent knowledge for TKGR, especially
for reasoning tasks lacking historical information,
thereby augmenting the prediction accuracy.

4.2 Structure-Aware Layer
In order to capture both temporal evolution and
structural characteristics, we design a structure-
aware layer which could be easily incorporated
into Transformer-based language model.

Our model SALMON contains L identical
blocks, each of which is composed sequentially
of the following modules: multi-head self-attention
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Figure 3: Structure-Aware Transformer Block.

layer, structural-aware layer, feed forward layer,
and several layer-normalization layers, as in Figure
3. Note that the data input to our model is a con-
catenation of a finite number of quadruples, which
is same as PPT (Xu et al., 2023). Next, we detail
the core layer of SALMON, i.e., structural-aware
layer consisting of two sublayers: structure-mining
sublayer, structure-attention sublayer.

Structure-Mining Sublayer This sublayer is ded-
icated to mining structural information for subse-
quent integration in the structural attention layer.
We denote the input to this sub-layer as [x1, ...,xn]
where xi ∈ Rd. Specifically, the sublayer calcu-
lates the corresponding key k and value v required
by the upcoming structural attention layer. As the
result of attention is Ex∼k|q[v(x)], we need to in-
corporate structure information into v. We make
two adjustments to v as depicted in Figure 4: (i) If
xi corresponds to a subject s in the input sequence,
we add the embedding of entities that share the
same relation r as s, considering these entities to
have similar behaviors to s; (ii) If xi corresponds
to an object, we add embedding of historical rela-
tions between the subject and the object, which is
modeled as the average-pooled embedding of the
relations. The adjustments can be formulated as:

vi =

{
WV xi +WV sSxiHE , xi ∈ sub
WV xi +WV rRxiHR, xi ∈ obj

(1)

ki = WKxi (2)

where W V ∈ Rd×d, WK ∈ Rd×d, W V s ∈ Rd×d

and W V r ∈ Rd×d are projection matrices , HE

and HR are embedding matrices of the entity and
the relation, Sxi ∈ R|E| denotes which entity has
similar behavior to sq, Rxi ∈ R|R| denotes which
relation also occurs between sq and xi.

More historical events between
    entity  and entity 

Other Head entities 
with similar behavior

Figure 4: Enhancing the incorporation of structural in-
formation: Injecting information about entities with sim-
ilar behaviors into the head entity, and injecting more
historical interaction information between the head en-
tity and the tail entity.

Our design above is based on the following idea:
when predicting the trends of a specific entity sq, it
is crucial to refer to other entities that exhibit simi-
lar behaviors. For instance, to predict the behavior
of Donald Trump, who frequently participates in
various activities including signing agreements or
engaging in negotiations. We can consider the be-
havior of other entities, such as Barack Obama,
who also frequently signs agreements or engages
in negotiations. Additionally, to incorporate addi-
tional structural information, we introduce addi-
tional context into the tail entity, revealing other
events related to the head entity. This incorporation
of structural information is depicted in Figure 4.

Structure-Attention Sublayer This sublayer, a
variant of multi-head cross-attention with twelve
attention heads. The first four attention heads are
configured with masks to constrain their attention
exclusively on subjects, ensuring that the atten-
tion mechanism captures shared structural features
among similar entities within the input sequence.
In contrast, the subsequent four attention heads are
also equipped with masks to restrict their atten-
tion solely to objects, facilitating the extraction of
global structural information related to tail entities
in the input sequence. And we keep the last four
attention heads the same as normal attention heads.
The process for the first four attention heads can be
formulated as follows:
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ai = Softmax[

(
xiW

Q
)
[k1, ..,kn]√
dk

+Mask(kj /∈ sub)]

(3)

zi =
∑n

j=1 aijvj (4)

where WQ ∈ Rd×d is a trainable projection matrix,
ai ∈ Rd is the attention vector of xi, and zi ∈ Rd

is the output representation of xi. The next four
heads use the same formula, but with Mask(kj /∈
sub) replaced by Mask(kj /∈ obj).

4.3 Logicality Judging Module
To further enhance the model’s reasoning capabili-
ties, we design a logical judging module. This mod-
ule is designed to give priority to learning the most
relevant evolving information of logical causal as-
sociations in TKGs during the training process of
language models. By incorporating logicality into
the learning process, SALMON is better equipped
to make informed predictions and decisions, con-
tributing to the overall effectiveness of TKGR.

This module draws inspiration from BERT (Ken-
ton and Toutanova, 2019), which presents a ground-
breaking approach to language representation learn-
ing via a training objective known as the “masked
language model”. To delve into the details of this
module, consider a set of discrete tokens repre-
sented as x = {x1, x2, ..., xL}, where each xi be-
longs to the token vocabulary X . The model de-
fines a joint probability distribution over this token
set as follows:

p(x|θ) = 1

Z(θ)

L∏

i=1

φi(x|θ) ∝ exp

(
L∑

i=1

logφi(x|θ)
)

(5)

where φi represents the i-th potential function char-
acterized by parameters θ, while Z denotes the
partition function. The log potential (energy) func-
tions for each location are defined by

P = log φi(x|θ) = xT
i fθ(x\i) (6)

x\i = (x1, ..., xi−1, [MASK], xi, ..., xL) (7)

where the function fθ(x\i) is a multi-layer bidirec-
tional transformer model.

We identify a limitation in the aforementioned
formula: it does not consider whether the current
[MASK] can be genuinely inferred from the con-
text. In certain situations, the current [MASK]
and the context are independent, but optimizer will

still force model to fit a conditional distribution,
capturing illogical errors in contextual associations.

To alleviate this problem, we innovatively design
a new rule-based log potential function Prule:

log Prule

= g(q,G1:tq−1) log[
exp(oTq f(q|G1:tq−1))∑

oi∈E exp(oTi f(q|G1:tq−1))
]

≈ g[e, e1, ..., en] log[
exp(oTq f(q|G1:tq−1))∑

oi∈E exp(oTi f(q|G1:tq−1))
]

≈ g[e, e1, ..., en] hoq (8)

where oq represents the embedding of the answer
to the query, E denotes the finite set of entities,
e1, ..., en represent events in the evolution line, q
represents the current query (s, p, ?, t). For sim-
plicity, we denote the second term of Eq.(8) as hoq .

Here, the function g above represents the
strength of the causal relationship between the re-
sult of current query and the context in an evolving
line. It will help to refine the model’s decision-
making process, prioritizing the most relevant in-
formation for reasoning. We posit that the strength
of causality is determined by the interconnection
of events, and furthermore, this interconnection is
largely independent of entities. So we formulate g
as follows:

g[e, e1, ..., en]
.
= g[re, re1 , ..., ren ]

≈M [α(re, re1), ..., α(re, ren)]
(9)

where the function α stands for the relativity of two
relations, meanwhile the function M stands for the
merge operation on all relativity. Based on this
idea, we define α as the co-occurrence confidence
between relations, as shown in Eq.(10), where the
numerator represents the number of entity pairs
(s, o) that have both relations rex and rey , and the
denominator represents the number of entity pairs
(s, o) that have relation rex .

C(rex , rey ) =
#(s, o) : (s, rex , o, ti) ∧ (s, rey , o, tj)

#(s, o) : (s, rex , o, tx)
(10)

Considering that the function α do most heavy lift-
ing, so for simplicity, we set the Function M as
AV ERAGE. Thus, with the help of logicality
judging module, the most qualified evolution se-
quence information will be prioritized for training.
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4.4 Densification Strategy

In TKGs, some events have very limited related
historical events. In order to alleviate the issue, we
aim at mining evidence necessary for reasoning.
With the help of sufficient evidence, we believe
that the prediction would be much more credible
and accurate. Given that LLMs possess substantial
knowledge reserves, we propose a densification
strategy based on LLMs specifically for TKGR.

Our densification strategy consists of three steps.
The first step involves two mining prompts, one
focuses on background information and the other
on historical events. Given that large models are
prone to hallucinations, the first step may yield
evidence containing errors. Therefore, as a second
step, we leverage the large model once more to
scrutinize and filter out any evidently unreasonable
data. In the third step, we inject the generated
evidence corpus into the model.

Step-1: Mining Evidence From Multiple View
Background-Mining Prompt TB is to extract rel-

evant background information about the entities in
the quadruple. To achieve this, we carefully design
a prompt template, which consists of three parts.
The first part outlines the task, specifying how the
LLM should gradually contemplate and generate
evidence. The second part provides a demonstra-
tion, offering the LLM with insights into what con-
stitutes valid evidence. The third part includes the
quadruple for which background information is
currently being mined.

Historical-Event-Mining Prompt TH is to ex-
plore more historical events that occurred between
the head/tail entities within a quadruple, or events
related to one of the entities. To accomplish this
objective, we meticulously crafted a prompt, struc-
tured into three components, which is similar to the
Background-Mining Prompt.

Step-2: Filter Unreasonable Evidence
The step-1 may generate flawed evidence due

to the LLM’s hallucinatory output issue. Conse-
quently, we further utilize the LLMs again to metic-
ulously examine and eliminate any obviously im-
plausible evidence through our designed Hallucina-
tions Flitering Template (TF ).

The details of three prompts (TB , TH , TF ) can
be found in Appendix A.1.

Step-3: Implicit Densification
After the first two steps, we obtain an Evi-

dence Corpus EC as showcased in Appendix A.2.
We employ an implicit densification approach to

seamlessly integrate the EC into the SALMON.
We achieve this by minimizing the SALMON’s
Masked Language Model (MLM) loss on the EC.

The above process of densification strategy is
summarized in the Algorithm of Appendix A.3.

4.5 Training
The training process of SALMON is divided into
two stages. In the first stage, we perform densifica-
tion strategy on the training set to obtain the Evi-
dence Corpus EC. We subsequently train a PLM by
minimizing its MLM loss on the EC. In the second
stage, we first sample a series of same-head quadru-
ples on the training set and concatenate them into
evolving lines, which are then aggregated to form
an evolving corpus as shown previously in Figure
2. Next, we integrate our Structure-Aware Layer
into the PLM trained in the first stage and intro-
duce the Logicality Judging Module to enhance the
training process. Ultimately, this results in the final
SALMON model. The formulas involved in this
process can be found in Appendix D.

5 Experiment

5.1 Experiment Setup
Datasets and Evaluation Metrics We conduct
experiments on three commonly used benchmark
datasets for TKGR, including ICEWS14 (García-
Durán et al., 2018), ICEWS18 (Boschee et al.,
2015), and ICEWS0515 (García-Durán et al.,
2018). We compute the mean reciprocal rank
(MRR) and hits@k for k ∈ {1, 3, 10}. The statis-
tics of datasets, the evaluation metrics and settings
are detailed in Appendix B.

Baseline methods In addition to selecting the ex-
isting non-temporal models, e.g., DistMult (Yang
et al., 2015) and others (Xu et al., 2023). We mainly
compare SALMON with the state-of-the-art tem-
poral baselines, including:

• Embedding/Rule-based Temporal Models:
HyTE (Dasgupta et al., 2018), TTransE (Jiang
et al., 2016), TA-DistMult (García-Durán
et al., 2018), RGCRN (Seo et al., 2018),
CyGNet (Zhu et al., 2021), RE-NET (Jin et al.,
2019), RE-GCN (Li et al., 2021), and the rule-
based TKGR model TLogic (Liu et al., 2022).

• LMs-based Temporal Models: PPT (Xu
et al., 2023) is the previous SOTA TKGR
model based on PLMs, and ICL (Lee et al.,
2023) is a LLM-based TKGR method.
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ICEWS18 ICEWS05-15 ICEWS14

Method MRR Hits@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

DistMult 13.86 5.61 15.22 31.26 19.91 5.63 27.22 47.33 20.32 6.13 27.59 46.61
ComplEx 15.45 8.04 17.19 30.73 20.26 6.66 26.43 47.31 22.61 9.88 28.93 47.57
R-GCN 15.05 8.13 16.49 29.00 27.13 18.83 30.41 43.16 28.03 19.42 31.95 44.83
ConvE 22.81 13.63 25.83 41.43 31.40 21.56 35.70 50.96 30.30 21.30 34.42 47.89

ConvTransE 23.22 14.26 26.13 41.34 30.28 20.79 33.80 49.95 31.50 22.46 34.98 50.03
RotatE 14.53 6.47 15.78 31.86 19.01 10.42 21.35 36.92 25.71 16.41 29.01 45.16

HyTE 7.41 3.10 7.33 16.01 16.05 6.53 20.20 34.72 16.78 2.13 24.84 43.94
TTransE 8.44 1.85 8.95 22.38 16.53 5.51 20.77 39.26 12.86 3.14 15.72 33.65

TA-DistMult 16.42 8.60 18.13 32.51 27.51 17.57 31.46 47.32 26.22 16.83 29.72 45.23
RGCRN 23.46 14.24 26.62 41.96 35.93 26.23 40.02 54.63 33.31 24.08 36.55 51.54
CyGNet 26.46 16.62 30.57 45.58 35.46 25.44 40.20 54.47 35.45 26.05 39.91 53.20
RE-NET 26.17 16.43 29.89 44.37 36.86 26.24 41.85 57.60 35.77 25.99 40.10 54.87
RE-GCN 27.51 17.82 31.17 46.55 38.27 27.43 43.06 59.93 37.78 27.17 42.50 58.84
Tlogic† - 15.50 27.20 41.20 - - - - - 26.50 39.50 53.10

ICL† - 13.60 22.40 32.10 - - - - - 24.70 36.30 47.10
PPT 26.63 16.94 30.64 45.43 38.85 28.57 43.35 58.63 38.42 28.94 42.50 57.01

SALMON 28.57 18.75 32.66 47.70 39.38 29.10 43.95 59.37 38.78 28.92 43.29 57.83

APG 1.06 0.93 1.49 1.15 0.53 0.53 0.60 -0.56 0.36 -0.02 0.79 -1.01
RPG (%) 3.85 5.22 4.78 2.47 1.36 1.86 1.38 -0.93 0.94 -0.07 1.86 -1.72

Table 1: Comparison between our SALMON and baselines. APG and RPG indicate the absolute performance gains
and the relative performance gains achieved by our model compared with the best-performing baselines (REGCN or
PPT). APG and RPG can be calculated by APG = Rours−Rbaseline and RPG = (Rours−Rbaseline)/Rbaseline,
where Rours and Rbaseline denote the results of our model and baselines (REGCN or PPT), respectively. Best
results are in bold, and the second best are underlined. The results indicated by † are reported in Lee et al. (2023),
and the results of other baselines are referred from Xu et al. (2023).

5.2 Experiment Results

We report the results of SALMON and baselines in
Table 1. The results show that SALMON outper-
forms baselines across all most of settings on three
datasets.

1. Compared with the performance of the non-
temporal models, our model SALMON outper-
forms all baselines (average of 6.87 improvement
in MRR), showing that SALMON can better cap-
ture the temporal dependencies in TKGs.

2. Compared with embedding-based tempo-
ral models, our model is also better than most
of baselines, only RE-GCN performs better than
SALMON for hits@10 on the datasets ICEWS14
and ICEWS05-15. The results show that our model
has stronger temporal representation and reasoning
abilities. Moreover, compared with the rule-based
model Tlogic, our SALMON achieves significant
average improvements of up to 2.84 Hits@1, 4.63
Hits@3, 5.62 Hits@10 across two datasets, demon-
strating the effectiveness of our rules.

3. Compared with the PLM-based model, our
SALMON are better than the previous SOTA
model PPT on almost all metrics (except that it is
slightly lower than PPT in Hits@1 on ICEWS14).

SALMON improves MRR value by about 1.94
on the ICEWS18 dataset. The overall better per-
formance demonstrates that SALMON further en-
hances PLM’s understanding of TKGs.

4. Our model SALMON also outperforms the
LLM-based model ICL in all metrics. It is ob-
served that 5.15 and 4.22 Hits@1 improvements
on ICEWS18 and ICEWS14 datasets, which show
that SALMON better fits the reasoning in TKGs
by training a small language model and assisting
with a LLM-based implicit knowledge densifica-
tion strategy.

5.3 Ablation Study

We conduct ablation studies to understand the
contribution of different model components of
SALMON as shown in Table 2.

Impact of Structure-Aware Layer We insert
a structure-aware layer into the SALMON model.
When the structure-aware layer is removed (-SAL),
there is a decline in performance metrics. Such
change causes 0.22 drop in terms of Hits@3 on
ICEWS18. Similar trends are observed in other
metrics, demonstrating the significant contribution
of the structure-aware layer.
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ICEWS18 ICEWS05-15 ICEWS14

Method MRR Hits@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

SALMON 28.57 18.75 32.66 47.70 39.38 29.10 43.95 59.37 38.78 28.92 43.29 57.83
- Logic - Dens - SAL 26.63 16.94 30.64 45.43 38.85 28.57 43.35 58.63 38.05 28.45 42.40 56.27

- Logic - SAL 26.76 16.92 30.51 46.17 38.95 28.61 43.58 58.89 38.08 28.15 42.91 56.92
- Logic - Dens 26.91 17.03 30.98 46.31 38.98 28.77 43.29 58.94 38.06 27.71 42.69 58.33
- Dens - SAL 27.36 17.42 31.36 46.82 39.01 28.62 43.99 58.99 38.17 28.31 42.28 57.59

- Logic 27.91 17.85 32.03 47.34 39.28 28.62 44.37 59.96 38.38 28.54 42.70 57.63
- Dens 28.26 18.33 32.44 47.38 39.22 29.25 43.66 58.58 38.27 28.24 42.61 57.50
- SAL 28.48 18.63 32.40 47.67 39.34 29.13 43.84 59.25 38.46 28.55 43.12 57.21

Table 2: Ablation Study on eliminating the structure-aware layer (-SAL), logical judging module (-Logic) and
densification strategy (-Dens) from SALMON.

Impact of Logical Judging Module The
SALMON model, with the logical judging mod-
ule included, generally exhibits superior perfor-
mance across various metrics. For instance, on
the ICEWS18 dataset, the full model achieves an
MRR of 28.57 and Hits@1 of 18.75. Removing the
logical judging module (-Logic) leads to a notice-
able drop in MRR to 27.91 and Hits@1 to 17.85,
underscoring the module’s contribution.

While the logical judging module significantly
improves precision at higher ranks (e.g., Hits@1),
it may slightly impact broader retrieval accuracy
(e.g., Hits@10). For instance, on the ICEWS05-15
dataset, while Hits@1 increases with the module,
Hits@10 slightly decreases.

Impact of Densification Strategy The inclusion
of the densification strategy in SALMON signifi-
cantly improves overall performance metrics. Re-
moving the densification strategy (-Dens) causes
0.31 and 0.42 drop in terms of MRR and Hits@1 on
ICEWS18 respectively. More concretely, we can
get more observations from the results of deleting
different combination modules in Table 2, which
further suggest that the structure-aware layer, logi-
cal judging module and densification strategy are
all important.

5.4 Analysis of the Intrinsic TKGR Capability
of the LLM used for Densification

Since our method injects necessary evidence mined
by the LLM via the densification strategy, we con-
duct further experimental analysis to verify whether
the LLM itself has the ability to directly use these
information to effectively implement TKGR.

We conduct experiments on the TKGR task un-
der four settings (detailed in Appendix C), based on
the LLM Llama2-7b-chat previously used for den-
sification strategy. The results are shown in Table
3. we observe that the direct use of the LLM ex-

ICEWS18

LLM Setting Acc Refuse Wrong

unsupervised 0.01 0.63 0.36
unsupervised+cot 0.03 0.25 0.72

supervised 0.07 0.58 0.35
supervised+cot 0.08 0.20 0.72

Table 3: Performance of using the LLM directly for
TKGR. Acc, Wrong, Refuse denotes the frequency
of answer accurately, incorrectly and refusal to answer,
respectively.

LLM MRR hit@1 hit@3 hit@10

Llama-2-7b-chat 28.57 18.75 32.66 47.74
Llama-3-8B-Instruct 28.65 18.74 32.89 47.84
Qwen2-7B-Instruct 28.44 18.59 32.44 47.56

Table 4: Comparison of different LLMs in the densifica-
tion strategy.

hibits weak temporal reasoning capabilities, often
yielding incorrect answers or refusing to respond
to a majority of queries. However, these results
may also indirectly show that the gain of our model
does not come entirely from the evidence infor-
mation mined by the LLM, but is based on the
structure-aware layer, logical judging module and
densification strategy we proposed.

5.5 Effectiveness of Different LLMs in
Densification Strategy

To assess the effectiveness and universality of the
densification strategy, we evaluated the impact
of incorporating various large language models
(LLMs). Specifically, we integrated two addi-
tional LLMs—Qwen2-7B-Instruct and Llama3-8B-
Instruct—into the densification process alongside
the original Llama-2-7b-chat used in the SALMON
model. The results on the ICEWS18 dataset are
summarized in Table 4.
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Sparse ICEWS18 ICEWS18

MRR hit@1 hit@3 hit@10 MRR hit@1 hit@3 hit@10

SALMON (-Dens) 23.01 14.19 26.84 39.93 28.26 18.33 32.44 47.38
SALMON 24.69 15.55 28.49 42.21 28.57 18.75 32.66 47.70
Dense Gain 1.67 1.36 1.65 2.28 0.31 0.42 0.22 0.32
Dense Gain (%) 7.25% 9.58% 6.14% 5.70% 1.09% 2.29% 0.67% 0.48%

Table 5: Experiments on how the sparsity of TKG specifically affects model performance and how the densification
strategy can mitigate these effects, where "-Dens" denotes our SALMON model without the densification strategy.

The results indicate that: (i) Incorporating differ-
ent LLMs within the densification strategy leads to
consistently good performance, highlighting the ro-
bustness of our method. (ii) Utilizing models with
more parameters, such as Llama-3-8B-Instruct,
demonstrate slightly better performance, suggest-
ing that the densification strategy has significant
potential to improve further with stronger LLMs.
These results support the versatility and potential
of our densification strategy across various LLMs.

5.6 Robustness of Densification Strategy
under extremely Sparse Situations

To provide a quantitative assessment of how the
sparsity of TKGs affects model performance and
to evaluate the effectiveness of our densification
strategy in highly sparse conditions, we performed
additional experiments. Specifically, we created a
more sparse TKG by retaining only 10% of the orig-
inal outgoing edges per entity (with a minimum of 1
edge per entity). We then applied our densification
strategy to this more sparse TKG and compared
its performance against the SALMON model both
with and without the densification strategy.

The results in Table 5 demonstrate that in-
creased sparsity significantly diminishes model per-
formance. The MRR drops from 28.57 to 24.69.
This trend is consistent across other evaluation met-
rics such as hit@1, hit@3, and hit@10. Impor-
tantly, the densification strategy effectively counter-
acts these performance losses, achieving a notable
improvement in MRR by 1.67 points when applied
to the sparse TKG. In contrast, the improvement in
MRR for the original TKG was 0.31 points.

The gain percentages of the densification strat-
egy on the original TKG are [1.09%, 2.29%, 0.67%,
0.48%] for [MRR, hit@1, hit@3, hit@10], respec-
tively. When applied to the sparse TKG, these
gains increase to [7.25%, 9.58%, 6.14%, 5.70%]
for the same metrics. These findings demonstrate

that our densification strategy not only improves
model performance but also maintains robustness
in extremely sparse scenarios.

6 Conclusion

In this paper, we propose a novelty TKGR model
SALMON. Specifically, we design a PLM-based
framework with a structure-aware layer inside to
jointly capture evolving patterns and structural in-
formation in TKGs. Moreover, we propose a logi-
cal judging module to give priority to learning the
most relevant evolving information in TKGs dur-
ing the training process. Furthermore, we propose
a LLMs-based densification strategy to alleviate
the difficulty of the model in making accurate in-
ferences about sparse events in TKGs. Results on
TKGR benchmarks demonstrate the effectiveness
of our method.

Limitations

Explanation limitations. Although SALMON intro-
duces a logical module to improve the logic of rea-
soning, the decision-making process of the model
may still not be transparent. Because PLM, the
base of SALMON, is a black box model.
LLM selection limitation in densification strategy.
We have not fully tried the use of other LLMs
(e.g., GPT-4 and others). Existing LLM methods
(e.g., ICL (Lee et al., 2023) and GenTKG (Liao
et al., 2024)) have already achieved good results.
In subsequent work, we will further explore how
to efficiently use other LLMs to enhance the
performance of SALMON.
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A Densification Strategy

A.1 Details of Prompt Templates
Details of our mining prompt template (TB, TH )
are shown in Figure 5 and Figure 6.

Task
Please convert a temporal knowledge graph (TKG) quadruple of the form 
(subject, action, object, the corresponding time of occurrence) into a
natural language sentence which is delimited by triple backticks.
Additionally, please provide a plausible reason for the event from th�
is perspective: international political relations. 
Here is an demonstration to guide you: 

Demonstration-Background
Quadruple: ('Foreign Affairs (Italy)', 'Sign formal agreement', 
            'Emma Bonino', '2014-01-08')
Answer: 
The Foreign Affairs of Italy signed a formal agreement with Emma Bonino 
on January 8, 2014. Because Emma Bonino is a Italy politician and human
rights activist.

Input Question
Quadruple: ('Foreign Affairs (Italy)', 'Consult', 
            'Foreign Affairs (Isrel)', '2014-01-17')

Answer: 
�������

Figure 5: Background-Mining Prompt Template

The hallucinations flitering template TF is
shown in Figure 7. The first part of the template
involves task specification based on role-playing,
where we prompt the LLM to play the role of an

Task
Please convert a temporal knowledge graph (TKG) quadruple of the form 
(subject, action, object, the corresponding time of occurrence) into a
natural language sentence which is delimited by triple backticks.
Additionally, please provide a plausible reason for the event from th� 
is perspective: recent historical events. 
Here is an demonstration to guide you: 

Demonstration-Historical-Event
Quadruple: ('South Korea', 'Criticize or denounce', 
            'North Korea', '2014-05-13')

Answer: 
South Korea strongly criticized North Korea on May 13, 2014. Because N-
orth Korea accused South Korea on May 11, 2024.

Input Question
Quadruple: ('North Korea', 'Make pessimistic comment', 
            'Japan', '2014-05-28')

Answer: 
�������

Figure 6: Historical Event Mining Prompt Template

expert with extensive historical knowledge. Sub-
sequently, the model is tasked with determining
whether a given event is Reasonable or Unrea-
sonable. The second part focuses on a demon-
stration with balanced positive and negative exam-
ples. Balancing the categories aims to prevent the
model from favoring the class with more samples.
We carefully select evidence for both categories,
choosing a markedly flawed example for Unrea-
sonable and a moderately reliable one for Reason-
able. Through this selection process, we find that
the LLM can effectively filter data. The third part
presents the evidence that is currently being judged
as Reasonable or Unreasonable.

A.2 Evidence Corpus Showcase

We select some evidence in Evidence Corpus EC to
demonstrate the effectiveness of the densification
strategy, as shown in Figure 8.

A.3 Algorithm of Densification Strategy

The pseudocode for Densification Strategy is
shown in Algorithm 1.

B Datasets and Experimental Settings

We conduct experiments on the dataset Integrated
Crisis Early Warning System (ICEWS) (Boschee
et al., 2015), which contains information about
international events and is a commonly used bench-
mark dataset for link prediction on TKGs. We
choose the subsets ICEWS14 (García-Durán et al.,
2018), ICEWS18 (Boschee et al., 2015), and
ICEWS0515 (García-Durán et al., 2018), which
include data from the years 2014, 2018, and 2005
to 2015, respectively. Note that each dataset is split
into training, validation, and test set, so that the
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Task
You are a seasoned politician with extensive knowledge of political ev�
ents and their contexts. You will be given two inputs: a political eve�
nt quadruple and a corresponding explanation. Your task is to evaluate 
whether the explanation is clearly unreasonable in relation to the giv�
en event quadruple.
Here are two demonstrations to guide you:

Demonstration-1
Quadruple: ('Uhuru', 'Make an appeal or request', 
            'Citizen (Kenya)', '2014-12-08')

Explanation: 
Uhuru made an appeal or request to the Citizen of Kenya on December 8, 
2014. Because the Citizen of Kenya is a Kenyan politician.

Evaluation:
[Unreasonable]

Demonstration-2
Quadruple: ('South Korea', 'Criticize or denounce', 
            'North Korea', '2014-05-13')

Explanation: 
South Korea strongly criticized North Korea on May 13, 2014. Because N-
orth Korea accused South Korea on May 11, 2024.

Evaluation:
[Reasonable]

Quadruple: ('South Sudan', 'Praise or endorse', 
            'Riek Machar', '2014-05-27')

Explanation: 
South Sudan praised Riek Machar, the leader of the rebel movement, on 
May 27, 2014. Because Riek Machar is the f�rst Vice President of South 
Sudan.

Evaluation:
�����������

Input Question

Figure 7: Hallucinations Flitering Template

Algorithm 1: Densification Strategy
Input:
G: Training set of TKG
Mg: The LLM for generating evidences
Mf : The LLM for filtering hallucinations
TB, TH , TF : Prompt Template for
Background Mining, Historical Event
Mining, Hallucinations Flitering
Output: EC: Evidence Corpus

1 EC ← ∅
2 for quadruple q ∈ G do

// Step 1: Generate evidence
3 Construct Prompt pb by TB and q ;
4 Generate evidence from G usingMg;
5 Evb←Mg(pb)
6 Construct Prompt ph by TH and q ;
7 Generate evidence from G usingMg;
8 Evh←Mg(ph)

// Step 2: Filter hallucinations
9 for evidence ev ∈ {Evb, Evh} do

10 Construct Prompt pf by TF and ev ;
11 Is_Reasonable←Mf (pf ) ;
12 if Is_Reasonable is True then
13 EC ← EC ∪ {ev}
14 return EC

Evidence-1
Quadruple: ('Yoshitaka Shindo', 'Make statement', 
            'Media (Japan)', '2014-01-01')

Evidence: 
Yoshitaka Shindo, the Japanese politician, made a statement on January 
1, 2014. Because Media (Japan) is a Japanese media company.

Evidence-2

Quadruple: ('Shimon Peres', 'Consult', 
            'Barack Obama', '2014-01-02')

Evidence: 
Shimon Peres consulted with Barack Obama on January 2, 2014. Because S-
himon Peres is a former Prime Minister of Israel, and Barack Obama is 
the President of the United States.

Evidence-3

Quadruple: ('Business (Russia)', 'Criticize or denounce', 
            'European Parliament', '2014-09-18')

Evidence: 
Russian businesses criticized or denounced the European Parliament due 
to the economic sanctions imposed by the EU in response to Russia's a-
ctions in Ukraine.

Figure 8: Examples of evidence in Evidence Corpus

Dataset #E #R #Granularity #Train #Valid #Test

ICEWS18 23033 256 24 (hours) 373018 45995 49545
ICEWS05-15 10094 251 24 (hours) 368868 46302 46159
ICEWS14 6869 230 24 (hours) 74845 8514 7371

Table 6: Statistics of the datasets. E and R denote the
entities and relations.

timestamps in the training set occur earlier than the
timestamps in the validation set, which again oc-
cur earlier than the timestamps in the test set. The
statistics of the datasets are provided in Table 6.

We compute the mean reciprocal rank (MRR)
and hits@k for k ∈ {1, 3, 10}. For a rank x ∈ N,
the reciprocal rank is defined as 1

x , and the MRR
is the average of all reciprocal ranks of the cor-
rect query answers across all queries. The met-
ric hits@k indicates the proportion of queries for
which the correct entity appears under the top k
candidates.

The batch size is searched in {4, 8, 16, 32}
and the learning rate is tuned in
{1e− 4, 3e− 4, 5e− 4}. We use the AdamW
optimizer (β1 = 0.9, β2 = 0.99). The max epoch
of stage-1 training is searched in {1, 2, .., 10}. We
use bert-base-cased as our pre-trained model. We
choose an open source LLM Llama2-7b-chat in
densification strategy.

C Supplementary Details of LLMs
Experiments in Section 5.4

We conduct experiments on the TKGR task under
four settings. The first setting unsupervised only
involves direct inference of queries by the LLM,
while the second setting unsupervised+cot employs
the CoT technique, let the LLM considers relevant
evidence before providing an answer. Neither of
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these two approaches involves training. The last
two settings represent the supervised counterparts
of the aforementioned unsupervised configurations,
we utilize the supervised finetuning (SFT) to inject
information from the training set into the LLM
before inference. To control costs, we sample 100
queries from ICEWS18, repeating the process five
times to mitigate sampling bias. We tested four
settings based on three evaluation metrics: Acc,
Wrong, Refuse which stand for the frequency
of answer accurately, incorrectly and refusal to
Answer.

The prompt template for the unsupervised set-
ting and supervised setting query LLM is named
Query Template and is denoted as TQ, while the
prompt template for the latter two setting unsu-
pervised+cot and unsupervised+cot query LLM
is named Query CoT Template and is denoted as
TQ_CoT .

The details of (TQ, TQ_CoT ) are shown in Table
7 and 8. The Instruction-Tuning Data using in SFT
is shown in Table 9. We also present the reasons
why LLMs refused to answer in Table 10.

D Formulas involved in the Training
Process

We describe the training process in Section 4.5.
The formulas involved in the training process are
as follows:

Lstage1 = −
∑

s∈EC

∑

x∈Xmask

logP (x = xlabel|s)

(11)

θ∗plm = argmax
θplm

Lstage1 (12)

Lstage2 = −
∑

s∈EC

∑

e,q∈s

g[e, e1, ..., en] hoq

= −
∑

s∈EC

∑

e,q∈s

M [α(re, re1), ..., α(re, ren)] hoq .

(13)

θsalmon = θ∗plm + θSAL (14)

θ∗salmon = argmin
θsalmon

Lstage2 (15)

where θplm denotes the parameter of the PLM
trained in Stage-1, θSAL denotes the parameter of
the Structure-Aware Layer SAL trained in Stage-
2. θsalmon denotes the parameter of the full
SALMON model in Stage-2.

## Task
You are provided with a quadruple from
a temporal knowledge graph. A temporal
quadruple typically consists of four compo-
nents: subject, verb, time, and object. In
this case, the subject, verb, and time are
given, but the object is missing.
Your task is to infer the most likely object
for this quadruple based on the given
subject, verb, and time. Remember, this
temporal knowledge graph focuses on
international relations and political events,
so consider these factors in your reasoning.

## Query Quadruple
Subject: {query_subject}
Verb: {query_relation}
Time: {query_time}
Object: ? (Unknown)

## Output Format
Please provide your answer in the following
format:
Object: [Your Final Answer Object]

## Output
Generate a plausible answer object for this
quadruple:

Table 7: The unsupervised querying prompt template in
the experiments of Section 5.4. We replace the colored
slot with quadruple before querying the LLMs. Note
that we use the same template when conducting SFT on
LLM.
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## Task
You are provided with a quadruple from a temporal
knowledge graph. A temporal quadruple typically
consists of four components: subject, verb, time, and
object. In this case, the subject, verb, and time are
given, but the object is missing.
Your task is to apply logical reasoning to infer the
missing object. Here’s a step-by-step approach to
guide your thinking:
1. Understand the context: Analyze the subject and
verb to identify the type of event or action described.
For example, is it a military action, a diplomatic
move, or an economic sanction?
2. Consider temporal factors: Take into account the
time frame specified in the quadruple. This may help
you identify relevant historical events or political
developments that could be related to the subject and
verb.
3. Apply domain knowledge: ICEWS14 focuses on
international relations and political events. Use your
knowledge of international politics and current affairs
to identify potential candidates for the missing object.
4. Reason logically: Based on the context, temporal
factors, and domain knowledge, apply logical
reasoning to determine the most plausible object for
the quadruple. Consider factors such as causality,
precedents, and related events.

## Query Quadruple
Subject: {query_subject}
Verb: {query_relation}
Time: {query_time}
Object: ? (Unknown)

## Output Format
Please provide your answer in the following format:
Thinking: [Your Thinking]
Object: [Your Final Answer Object]

## Output
Apply the above steps to infer a plausible object for
this quadruple. Remember, your answer should be
grounded in logic and supported by your analysis of
the given information. Generate a plausible answer
object for this quadruple:

Table 8: The unsupervised+cot querying prompt tem-
plate in the experiments of Section 5.4. We replace the
colored slot with quadruple before querying the LLMs.
Note that we use the same template when conducting
SFT+cot on LLM.

#### [User_INPUT]
## Task
You are provided with a quadruple from
a temporal knowledge graph. A temporal
quadruple typically consists of four compo-
nents: subject, verb, time, and object. In
this case, the subject, verb, and time are
given, but the object is missing.
Your task is to infer the most likely object
for this quadruple based on the given
subject, verb, and time. Remember, this
temporal knowledge graph focuses on
international relations and political events,
so consider these factors in your reasoning.

## Query Quadruple
Subject: {query_subject}
Verb: {query_relation}
Time: {query_time}
Object: ? (Unknown)

## Output Format
Please provide your answer in the following
format:
Object: [Your Final Answer Object]

## Output
Generate a plausible answer object for this
quadruple:

#### [LLM_Output]
Object: Germany

Table 9: The Instruction-Tuning Data using in SFT.

[Query Quadruple]
Subject: Donald Trump
Verb: Sign formal agreement
Time: 2018-10-17
Object: ? (Unknown)

[Response of LLM]
Based on the given input quadruple, it is
difficult to infer a specific object for the
verb "Sign formal agreement" without more
context. However, some possible objects
that could be inferred include:
1. A treaty or agreement between two coun-
tries or organizations.
2. An executive order or directive signed by
the President.
It is also worth noting that the time stamp
given suggests that this event occurred on
October 17th, 2018. This could provide
some additional clues about the context of
the agreement being signed, such as the lo-
cation or topic of the negotiations.

Table 10: LLM refuses to answer.
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