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Abstract

Low-resource domains, characterized by scarce
data and annotations, present significant chal-
lenges for language and visual understanding
tasks, with the latter much under-explored in
the literature. Recent advancements in Vision-
Language Models (VLM) have shown promis-
ing results in high-resource domains but fall
short in low-resource concepts that are under-
represented (e.g. only a handful of images per
category) in the pre-training set. We tackle
the challenging task of zero-shot low-resource
image classification from a novel perspective.
By leveraging a retrieval-based strategy, we
achieve this in a training-free fashion. Specifi-
cally, our method, named CORE (Combination
of Retrieval Enrichment), enriches the repre-
sentation of both query images and class pro-
totypes by retrieving relevant textual informa-
tion from large web-crawled databases. This
retrieval-based enrichment significantly boosts
classification performance by incorporating the
broader contextual information relevant to the
specific class. We validate our method on a
newly established benchmark covering diverse
low-resource domains, including medical imag-
ing, rare plants, and circuits. Our experiments
demonstrate that CORE outperforms existing
state-of-the-art methods that rely on synthetic
data generation and model fine-tuning.

1 Introduction

Low-resource domains refer to those rare domains
where the data or its annotation is truly scarce.
Similarly, low-resource languages are those that
have significantly less content available online (Ma-
gueresse et al., 2020) with respect to other high-
resource languages, like English. There exist abun-
dant research on the topic in the context of natu-
ral language processing (Ranathunga et al., 2023;
Adams et al., 2017; Fadaee et al., 2017; Pan et al.,
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“Electronics that 
control LED patterns”

“The basic circuit
diagram of LED”

“This clearly Image 
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“The soft gradient of 
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imported from Japan.”

“Image of a Tree Fern
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“Skin Cancer The 
Dangers of Melanoma”

“Two types of skin
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Input Retrieved captions

“A photo of 
a melanoma”

Figure 1: Our retrieval-based solution enriches both
images and textual descriptors with real-world captions
which contain domains and classes . Even when the
captions are generic (third row for each example), they
can still restrict the focus to the correct domain.

2017). However, surprisingly, the vision counter-
part, i.e. low-resource visual domains, is much
under-explored despite the numerous practical ap-
plications. In this paper, we focus on classifying
images in low resource domains, i.e. where we can
find only a handful of images per category. The
causes for such limited data can be various: for
example, when only certain devices are capable
of capturing the visual content, e.g. astronomy or
medical imaging; the visual content itself is sensi-
tive or private, e.g. due to privacy issues, or rarely
appears in nature, e.g. deep ocean animals, or other
long-tailed categories. Their associated annotations
can also be limited due to the expertise requires,
in particular for niche fields, e.g. electric design or
phytology.

Recent large vision-language models (VLMs)
have fostered a paradigm shift in image classifica-
tion. Their flexibility and generalization, enabled
by web-scale pre-training with text-image pairs,
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makes them versatile tools in many sub-fields of
computer vision. Numerous works have appeared,
with the objective of tuning VLMs, e.g. CLIP (Rad-
ford et al., 2021) or SigLIP (Zhai et al., 2023), to
address image zero-shot (Jia et al., 2022) or few-
shot (Chowdhury et al., 2023; da Costa et al., 2023)
image classification. However, the images involved
in those studies are mostly in high-resource image
domains, where there exist thousands of images
on the Internet for VLMs to learn from during the
web-scale pre-training (Udandarao et al., 2024).

However, directly performing zero-shot classi-
fication in low-resource domains does not yield
satisfactory performance due to the data scarcity in
pre-training. Even supervised fine-tuning might fall
short in learning the underlying data distribution
due to the very limited amount of data and anno-
tation. Among the techniques that have been ex-
plored in the pioneering work (Zhang et al., 2024),
one prominent recipe is to fine-tune the VLMs on
data augmented via synthetic generation (e.g. Sta-
ble Diffusion (Rombach et al., 2021)). Despite the
performance improvements, by analyzing the gen-
erated images, we observe that image generation
models are also affected by the low-resource nature
of the task. The generation quality is largely depen-
dent on the noise injected on the real samples: by
injecting limited noise, the synthetic images appear
very similar to the original samples, being correct
but not diverse, while by injecting more noise, the
synthetic images diversify in appearance, but are
mostly semantically incorrect and exhibit domain-
specific rule violations. This is because the data dis-
tribution of rare domains is not well-represented in
the generative models latent space (Mokady et al.,
2022; Trabucco et al., 2024).

Instead of generating synthetic images as data
augmentation, we explore the possibility of re-
trieving relevant information from a textual corpus,
crawled from the Internet, to enrich the data rep-
resentation at inference time, as shown in Fig. 1.
It turns out that retrieval is also non-trivial in the
low-resource regime as (i) pre-trained models gen-
erally under-represent the low-resource domains,
thus greatly limiting the retrieval efficacy; (ii) large
web-crawled databases can contain noisy or incor-
rect content, a problem that is more severe in low-
resource domains.

Thus, a careful design is required to leverage
the retrieved data. In this work, we propose
the first training-free and retrieval-based method,
CORE (Combination of Retrieval Enrichment), to

tackle low-resource image classification. Follow-
ing a VLM-based zero-shot classification paradigm,
we propose to enrich the representation for both the
query image and the class prototypes with textual
content retrieved with different encoder backbones
from large web-crawled databases. Specifically,
for the query image, we employ the pre-trained
image encoder from a VLM as our vision retrieval
backbone. We perform image-to-text retrieval, ob-
taining the most relevant captions with respect to
the query image.

From our preliminary analysis, we observe that
although the specific category (e.g. “LED”) appears
sparsely in the retrieval, its broader category (“cir-
cuit”) does occur frequently. Previous studies have
empirically demonstrated that enriching the prompt
with the broader concept, together with noise, can
significantly boost the zero-shot recognition per-
formance (Roth et al., 2023). We thus enrich the
image embedding by combining it with the textual
embedding from image-to-text retrieval. Similarly,
we construct the enriched class prototypes. For
each class, we form its corresponding text prompt
and embed it with a pre-trained text encoder to re-
trieve captions that are most relevant. Then, the
retrieved captions are encoded with the VLM text
encoder and aggregated together with the textual
embedding of the original class prompt. The final
categorization is obtained by computing the cosine
similarity between the enriched visual representa-
tion against the enriched textual class prototypes.

To validate the effectiveness of our proposed
method, we also collect a set of datasets that cov-
ers diverse low-resource domains, including medi-
cal imaging, rare plants, and circuits. CORE can
effectively improve the data representation in a
training-free fashion, with a noticeable improve-
ment in image classification performance on all the
datasets, outperforming the state-of-the-art method
that involves synthetic image generation and model
fine-tuning.

To summarize, our contributions are:

• We propose the first training-free retrieval-
based method CORE for addressing zero-shot
low-resource image classification;

• we propose a data representation enrichment
strategy for both query image and class proto-
types, using the textual content retrieved from
the database;

• we establish a benchmark featuring zero-shot
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low-resource image classification, composed
of representative datasets and VLM-based
baselines and state-of-the-art methods;

• our training-free method is effective in clas-
sifying low-resource images, outperforming
competitors with training and other training-
free baselines by a large margin.

2 Related work

High-resource data. The de-facto standard in
Deep Learning has become to train larger foun-
dation models with a high volume of data, e.g. Im-
ageNet (Deng et al., 2009) or LAION-5B (Schuh-
mann et al., 2022) for vision, which contain up to
5 billion images, or FineWeb (Penedo et al., 2024)
for text, which contains 15 trillion of tokens. For
vision-related tasks, data focuses on natural im-
ages, which are plentiful online and can be easily
obtained. However, when moving to more specific
domains, e.g. medical (Irvin et al., 2019), satellite
imaging (Helber et al., 2019), or long-tailed dis-
tributed data (Van Horn et al., 2018), data becomes
less available. Although these rare domains have
been understudied in favor of higher-available data,
we follow the study of (Zhang et al., 2024) and
investigate domains where the number of available
data is in the order of hundreds, and training is an
under-performing option.

We propose a novel way to address the challenge,
and we exploit the knowledge coming from web-
scale image-text pairs datasets through retrieval.
Retrieval-based solutions have proved successful
for image classification (Liu et al., 2023b; Conti
et al., 2023) and NLP tasks (Lewis et al., 2020),
and we propose to enrich the data representation in
VLMs.
Multimodal foundation models. Multimodal
Foundation Models, such as CLIP (Radford et al.,
2021) or BLIP (Li et al., 2022, 2023) have gained a
lot of popularity due to their outstanding zero-shot
capabilities, derived from their weak-supervised
training on web-crawled data. The most common
paradigm is to train on image-text pairs, which
can be easily obtained on the web (Changpinyo
et al., 2021; Schuhmann et al., 2022), but recent
approaches like ImageBind (Girdhar et al., 2023)
bridge several modalities, e.g. images, videos, au-
dio, text, and thermal. We focus in particular on
Vision-Language Models (VLM).

Adaptation of VLM to downstream tasks is per-
formed in several ways, e.g. full finetuning, or

Parameter-Efficient FineTuning (PEFT) methods,
e.g. LoRA (Hu et al., 2022), Prompt Tuning (Jia
et al., 2022), or Textual Prompt Tuning (Zhou et al.,
2022). These approaches are not suitable for the
rare domain setting as the amount of data is limited,
domain-specific, and extremely different from the
pre-training data of the original VLM.
VLM few-shot learning. Several works have
proved the effectiveness of few-shot learning when
adapting VLMs to downstream tasks. Some no-
table works include a combination of PEFT strategy
with VLMs, such as APoLLo (Chowdhury et al.,
2023) that synthetically augments both the visual
and textual branch of CLIP, or DISEF (da Costa
et al., 2023) that employs LoRA and synthetic im-
ages to fine-tune CLIP. We closely follow the work
of (Zhang et al., 2024), where the authors fine-tune
ImageBind (Girdhar et al., 2023) with an Adapt-
Former (Chen et al., 2022) module on a combi-
nation of real and synthetic data for low-resource
rare domains. Differently from these works, we do
not employ synthetic data and we do not fine-tune,
instead, we propose a training-free zero-shot solu-
tion through retrieval to adapt both the visual and
textual representation in CLIP.

3 Background

To establish a foundation in understanding our
method, we provide a brief introduction to Vision-
Language Models and web-scale databases, the two
essential elements in our method design.

3.1 Vision-Language Models

Vision-Language Models (VLM) (Radford et al.,
2021; Jia et al., 2021) learn a function fV LM :
V × L → R with the goal to maximize their rep-
resentation similarities R in order to map images
in visual space V and texts in language space L to
the same latent space. In particular, a VLM is com-
posed of a vision encoder fV

V LM : V → Rd that
maps images to a visual embedding and a language
encoder fL

V LM : L → Rd that maps the text in nat-
ural language (after converting into tokens) to an
embedding. VLMs learn to project the two modal-
ities to the same latent space Rd via contrastive
learning with millions of web-crawled image-text
pairs, enabling image classification using text by
evaluating their similarity in this shared space.

At inference, the VLM can be used to assess the
similarity between an image sample and a set of
prompt texts that are composed from a number of
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Figure 2: Our CORE enriches both the image embedding zq and the class prompts p with retrieved captions from a
large-scale web-crawled database D. We weight the retrieved captions T with their similarity scores ST , which we
skew with controllable temperatures τi2t and τt2t. By combining the retrieved captions embedding with the original
representations W and q through α and β, we obtain enriched representations W+ and z+q which we employ for
zero-shot classification.

N classes {cn}Nn=1 (Radford et al., 2021). Given
a query image q ∈ V , we can obtain its visual em-
bedding via the image encoder as zq = fV

V LM (q).
We can build the class prototypes W ∈ RN×d as
the textual embeddings using the VLM text en-
coder. Specifically, for each class cn, we build
the text prompt pn = “{prefix} [CLS]n”, where
{prefix} usually is “a photo of a” and [CLS]n
is the name of cn in text. Then the class prototypes
can be formed as W = fL

V LM ({p}n). Finally, we
can compute the cosine similarities between the
image embedding zq and the class prototypes W in
order to predict the class ĉ for the query image q:

ĉ = argmax
c

(zq ×W ⊺). (1)

3.2 Retrieval databases

Together with the VLMs, there is also the emer-
gence of large vision-language databases that can
be leveraged for VLM pre-training and retrieval.
The community has collected and released sev-
eral web-scale image-text pairs datasets, such as
LAION (Schuhmann et al., 2022), CC12M (Chang-
pinyo et al., 2021), and COYO (Byeon et al., 2022),
with respectively 400M/5B, 12M and 700M image-
text pairs. Formally, let D = {(i, t)m}Mm=1 be the

retrieval database that consists of M items, where
each item is paired with an image im and its asso-
ciated textual description tm. We are mostly inter-
ested in the textual content of D as it contains rich
language-induced semantics (Conti et al., 2023)
that might contributes to enriching the knowledge
that is specific low-resource domain.

With millions and billions of data items, it is criti-
cal performing retrieval efficiently. To this purpose,
we focus on embedding-based retrieval, whose goal
is to retrieve the most similar elements from a
database from a query embedding. Such retrieval is
supported by off-the-shelf tools, e.g. Faiss (Douze
et al., 2024), that enable similarity search and clus-
tering of dense vectors at scale. In particular, we
prepare the text-image database D by encoding data
items into embeddings using encoders of VLMs.
Given an embedding z corresponds to either visual
or textual modality, we can retrieve a set of k tex-
tual descriptions T that are most similar to the z
from the database D:

T = top-k
t

(⟨z, fL
V LM (t)⟩), ∀t ∈ D, (2)

where ⟨·⟩ computes the cosine similarity between
two embeddings, and top-k(·) returns k textual
descriptions with the highest cosine similarities.
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4 CORE

We focus on zero-shot low-resource image clas-
sification, following the paradigm of VLMs as
described in Sec 3.1. Low-resource domains
are generally not well represented by VLMs
given their limited availability in the pre-training
dataset (Udandarao et al., 2024). There is a need to
steer the original data representation towards more
specialized low-resource domains represented by
the query image q.

To this end, our training-free method CORE ex-
tracts domain-relevant information from a large
text-image database D, to enrich the representation
of both class prototypes and the query image.

For the class prototypes, i.e. textual represen-
tation of the classes {cn}Nn=1, we retrieve seman-
tically close captions for each class with the em-
bedding of prompt text regarding the c. On one
hand, the retrieved captions contain rich domain-
level information while being less specific to the
exact class. On the other hand, the class prompt is
only specific to the class of interest without much
prior of the domain information. Therefore, we
further join the retrieved captions with the prompt
class text to obtain the textual class prototypes W+

enriched with the domain context.
A similar rationale is applied to enrich the query

image representation via image-to-text retrieval,
implemented by the image encoder fV

V LM of a pre-
trained VLM. With the visual embedding zq of
the query image q, we retrieve the set of captions
that are the most aligned to zq in the shared latent
space, and use the retrieved captions to obtain an
enriched image representation z+q . The final class
is predicted using z+q and W+ similar to Eq. 1:

ĉ = argmax
c

(z+q ×W+⊺
). (3)

We describe each retrieval branch in detail in the
following sections and we show an overview of our
CORE in Fig. 2.

4.1 Class representation enrichment
We leverage text-to-text retrieval to enrich the class
prototypes of the set of predefined classes {cn}Nn=1.
For each class cn, we first build the text prompt
pn following the prompt format as described in
Sec. 3.1. Different prompt templates are also ex-
perimented in Sec. 5.2.

For the text-to-text retrieval, we leverage the
encoder of a LLM to obtain the textual embed-
dings for both the per-class text prompt, i.e. ln =

fLLM (pn) and all textual content in the database D.
For each ln, we then retrieve from D a set of k most
similar textual descriptions Tn with respect to class
cn. Each retrieved text ti ∈ Tn has an associated
cosine similarity in the range of [−1, 1] w.r.t. the
embedding of the prompt text ln, forming a set of
k scores ST

n .
As the retrieved texts contain rich domain-level

context, we further embed them and merge their
textual embeddings to obtain a domain-specialized
embedding. Since the eventual classification is
achieved in the latent space of VLMs, we lever-
age the text encoder of the VLM to embed the
retrieved texts, i.e. ZT

n = fL
V LM (Tn). As the re-

trieved captions are associated with different sim-
ilarity scores ST

n , we weigh their contribution to
form the domain-specialized embedding accord-
ingly. Specifically, we propose to build a probabil-
ity distribution out of the similarities scores as:

σT
n = softmax

( ST

τt2t

)
, (4)

where τt2t is the temperature parameter that con-
trols the skewness of the distribution.

For the class cn, the embedding from retrieved
texts ZT

n are then combined as a weighted sum
with the weight being σT

n , forming the domain-
specialized embeddings for all classes W T .

Finally, we build the retrieval-enriched class pro-
totypes by linearly interpolating prompt-text class
prototypes W as described in Sec 3.1 and the re-
trieved domain-specialized ones W T , with a inter-
polation factor α as:

W+ = αW T + (1− α)W, (5)

where α is a hyperparameter and we shows its im-
pact in Section 5.2.

4.2 Image query representation enrichment

Symmetrically, we want to enrich the query image
representation and exploit the rich web-scale se-
mantics of captions to build a more representative
image embedding.

Starting from a query image q. For image-to-text
retrieval, we use the visual encoder of the VLM
to obtain the image embedding zq = fV

V LM (q),
while we use the text encoder fL

V LM to embed
the database D, in this way image and text are
mapped in the same space. We retrieve from D the
k most similar captions T , with their associated co-
sine similarities ST . Similar to the class prototype
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Method Circuits iNaturalist2021 (LT100) HAM10000
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

ImageBind (Zhang et al., 2024) 24.10 49.30 31.60† 60.50† 54.60† 96.56†

SigLIP@384px (Zhai et al., 2023) 19.53† 30.61† 34.50† 63.50† 54.60† 95.90†

CLIP ViT-L (Radford et al., 2021) 7.98 29.13 8.00 22.60 45.27 90.80
CLIP ViT-L@336px (Radford et al., 2021) 9.09 30.33 7.60 22.70 40.97 90.27

BLIP2-EVA (Li et al., 2023) 17.63 N/A 1.40 N/A 2.91 N/A
LlaVA 1.6 34B (Liu et al., 2023a) 29.59 N/A 0.60 N/A 10.59 N/A
ImageBind (Girdhar et al., 2023) 22.36 51.02 6.70 23.90 14.43 84.25

SigLIP@384px (Zhai et al., 2023) 35.81 58.63 19.10 45.70 57.64 96.16
CORE (Ours — CC12M) 42.94 7.13 67.71 9.08 21.40 2.30 42.59 3.11 61.54 3.90 95.70 0.46

CORE (Ours — COYO-700M) 43.88 8.07 71.99 13.36 22.10 3.00 44.10 1.60 62.21 4.57 94.51 1.65

Table 1: Top-1 and top-5 accuracy on the proposed benchmark. † indicates our re-implementation. denotes
fine-tuning. We highlight best and second best results. We report gain and loss w.r.t. the best training-free solution.

branch, we use the scores to build a probability
distribution:

σT = softmax

(ST

τi2t

)
, (6)

where τi2t controls the final distribution skew-
ness.

We then embed the retrieved captions with the
VLM text encoder ZT = fL

V LM (T ), and combine
them as a weighted sum using σT , obtaining zT .

Finally, the original query image embedding zq
and the retrieved captions embedding zT are lin-
early interpolated to build the final query represen-
tation as:

z+q = βzT + (1− β)zq, (7)

where the hyperparameter β controls the impor-
tance of the two components and we study the
effect of this parameter in Section 5.2.

5 Experiments

We evaluate our proposed method CORE in com-
parison with state-of-the-art Vision-Language ap-
proaches using three challenging low-resource
datasets. We describe the dataset used and the
evaluation protocol we follow. We discuss the re-
sults w.r.t. the baseline methods, and we ablate the
proposed components and architectural choices.
Datasets. We consider three datasets covering
different low-resource scenarios for our analy-
sis: we employ the Circuit Diagram Classifica-
tion dataset (Zhang et al., 2024)1 that comprises
1,332 circuit diagram images covering 32 differ-
ent classes, the images are scraped from the web

1The other released datasets relate to retrieval tasks.

and textbooks. The authors split the data into 154
images for training and the remaining for testing,
resulting in an average of ∼ 5 samples per class
available at training time.

The second dataset we consider is iNaturalist
2021 (Van Horn et al., 2018) which contains 10,000
species with a fine-grained classification. The
dataset features many visually similar species, cap-
tured in a wide variety of situations. In order to
remain in the rare domain setting, we restrict our
analysis to the rarest 100 species in terms of avail-
able training samples and set the maximum amount
of training shots to 5. We test on 10 images for each
class, therefore the test set contains 1,000 samples.

The last dataset we employ is
HAM10000 (Tschandl et al., 2018), which
comprises dermatoscopic images from different
populations. The dataset has 7 classes that
include a representative collection of all important
diagnostic categories in the realm of pigmented
lesions. The test set includes 1,511 images.
Database(s). We use CC12M (Changpinyo et al.,
2021) as our source dataset to build the database
D, following previous works (Conti et al., 2023).
We also use a subset (10%) of COYO-700M to
test the scaling laws of the retrieval database. We
focus on their textual corpus as we are interested in
retrieving the relevant pieces of text. The retrieval
databases are implemented using Faiss (Johnson
et al., 2019) on pre-extracted embeddings. We use
the SigLIP (Zhai et al., 2023) text encoder for the
image-to-text retrieval, while we employ a text-
only encoder to obtain a stronger textual semantic
in text-to-text retrieval. In particular, we use SFR-
Embedding-Mistral (Meng et al., 2024) as fLLM .
Evaluation protocol. As a common practice in
image classification tasks, we report the perfor-
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mance as the top-1 and top-5 accuracy. For VLMs,
we compare the index of the highest logit to the
ground truth, while for Large Multimodal Models
(LMM) we parse the LMM output to extract the
predicted class name and match it with the dataset
class names.
Implementation details. CORE leverages
an LLM encoder fLLM , implemented as SFR-
Embedding-Mistral (Meng et al., 2024), an image
encoder fV

V LM , implemented as the SigLIP (Zhai
et al., 2023) vision encoder, and a text encoder
fL
V LM , implemented as the SigLIP text encoder.

The number k of retrieved captions is set to 10 fol-
lowing previous works (Conti et al., 2023), never-
theless, the temperature parameters τt2t and τi2t
allow restricting the effect of the lower-ranked
retrieved captions by skewing the distribution to-
wards the most similar samples.

For our CORE, we empirically find that a high
temperature τi2t for image-retrieved captions leads
to more favorable results, therefore we set it to
100. For text-retrieved captions, a lower tempera-
ture is more beneficial and we set it to 1, skewing
the distribution more towards the high-confidence
samples. For the effect of α and β we refer to
Sec. 5.2.

For the zero-shot and retrieval prompting strate-
gies, we find that having a domain-specific prompt
for zero-shot and a generic prompt for retrieval
leads to favorably good results across all the
datasets, and we provide a complete study of this
in Sec. 5.2. For implementation details of the base-
lines we refer to Appendix A

5.1 Comparisons
Baselines. We compare against state-of-the-art
VLMs and LMMs in the training-free zero-shot sce-
nario. In particular, we compare with CLIP (Rad-
ford et al., 2021), using the ViT-L/14 and ViT-
L/14@336px vision encoder variants, BLIP-2 (Li
et al., 2023) using the ViT-g/14 vision encoder from
EVA-CLIP (Fang et al., 2023), LLaVA-NeXT (Liu
et al., 2023a) with a 34B LLM, ImageBind (Gird-
har et al., 2023) as in (Zhang et al., 2024), and
SigLIP (Zhai et al., 2023). For the last two mod-
els, we also implement a training-based variant
as in (Zhang et al., 2024), which trains an Adapt-
Former (Chen et al., 2022) and a linear classifica-
tion head.
Discussion. We present a quantitative evaluation of
CORE and the baselines in Tab. 1. We can see that
among the training-free approaches, CORE out-

performs the others by a substantial margin (up
to 8.07% in top-1 accuracy on Circuits). When
comparing to fine-tuned solutions ( ), CORE still
outperforms them, even given the substantial gain
between zero-shot and fine-tuned ImageBind (up
to 40% in HAM10000).

Fine-tuning SigLIP seems detrimental to per-
formance, except for iNaturalist, and we deem
the lower performance w.r.t. fine-tuned ImageBind
to the higher number of trainable parameters, as
SigLIP embeddings are bigger than ImageBind
ones (1152 vs 1024). We study this behavior fur-
ther in Section 5.2.

LMMs reach satisfactory results on Circuits,
while the low performance on iNaturalist and
HAM10000 is due to these models answering con-
sistently with the same class name for almost all
the samples.

On iNaturalist, supervised fine-tuning represents
a stronger solution w.r.t. our CORE, and we deem
this results to two factors: the nature of the dataset
and the availability of the concepts in the retrieval
database. Being the images of different plants and
animals, the visual overlap is less prominent than
in the other two datasets, therefore supervised fine-
tuning can effectively separate different classes
with a small amount of training data. Secondly,
as in iNaturalist class names are provided with
their Greek or Latin scientific name, this limits
the amount of relevant data that can be retrieved
from the database as even in large-scale image-text
datasets, such as LAION 400M, this type of data
is under-represented (Parashar et al., 2023). We
mitigate this effect by using both scientific and
common names when retrieving and building the
zero-shot weights.

This benchmark allows us to show the training-
free strength of our method, but also showcase
the viability of training-based solutions given the
right assumptions. Nevertheless, CORE remains
the strongest training-free solution. We can also
observe that employing a bigger retrieval database
improves the top-1 accuracy across all the datasets.

5.2 Ablation
Various embedding fusion strategies. We ablate
the contribution of each of our proposed compo-
nents in Tab. 2, starting from the zero-shot only and
reaching the full CORE. We first add the weighting
between zero-shot weights and retrieved weights
without the temperature on the similarities, effec-
tively having a naïve average of retrieved embed-
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α τt2t β τi2t
Circuits iNaturalist HAM10000

Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

✗ ✗ ✗ ✗ 35.81 58.63 19.10 45.70 57.64 96.16
✓ ✗ ✗ ✗ 36.46 64.01 20.90 43.99 60.75 95.76
✓ ✓ ✗ ✗ 37.66 65.88 21.09 43.90 61.02 95.57
✓ ✓ ✓ ✗ 42.39 69.85 20.80 42.39 61.55 95.43
✓ ✓ ✓ ✓ 42.94 67.71 21.40 42.59 61.55 95.70

Table 2: Ablation of proposed components of
CORE CC12M, starting from the zero-shot only to the
full CORE . As shown in the table, each of the com-
ponents can bring performance improvement across all
the datasets, proving the effectiveness of the designed
retrieval strategy.
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Figure 3: Top-1 accuracy of CORE CC12M on Cir-
cuits with varying α and β. CORE achieves the best
performance with a balanced merge of image-retrieved
captions (β ∼ 0.5), while for class-relevant captions the
best weighting is slightly lower (α ∼ 0.2).

dings. We then introduce τt2t to skew the distribu-
tion. We thus move to the image retrieval part,
where we first add a naïve average embedding
weighted by β, and finally the weighting on the
similarities τi2t. We can see how each of the com-
ponents brings an improvement in performance
across all the datasets, proving the effectiveness of
our retrieval strategies.

We further isolate the effect of the two merging
weights α and β on the Circuits dataset in Fig. 3,
where we can see that CORE achieves the best per-
formance with a balanced merge of image-retrieved
captions (β ∼ 0.5), while for class-relevant cap-
tions the best weighting is slightly lower (α ∼ 0.2).
This indicates that the branch that obtains the most
improvement from retrieval is the image one, while
the zero-shot weights obtained from the classes
are already representative, but they can still benefit
from retrieved captions.
On the use of LLM for embedding. We ablate
the choice of using an LLM to encode the text for

Encoder Circuits iNaturalist HAM10000
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

SigLIP 41.46 64.56 20.90 43.20 60.02 90.53
Mistral 42.94 67.71 21.40 42.59 61.54 95.70

Table 3: Accuracy of CORE CC12M using different
models for text-to-text retrieval. The LLM (Mistral)
embedding is stronger than vision-language aligned em-
bedding in terms of the unimodal text-to-text retrieval.

the textual branch and compare this choice to us-
ing the VLM textual encoder fL

V LM . In particular,
we use the SigLIP@384px text encoder and per-
form both image-to-text and text-to-text retrieval in
the SigLIP latent space. From Tab. 3, we see that
LLM embeddings are stronger in the unimodal text-
to-text retrieval. While SigLIP embedding is less
performing than the LLM embeddings at text-to-
text retrieval, the final classification performance is
still better than all the other training-free baselines.
Therefore SigLIP text embeddings remain a viable
solution in case deploying the LLM (7B parame-
ters) is infeasible due to computational constraints.

(1) (2) (3) (4) (5) (6) (7)

Zeroshot 30.80 28.48 25.32 31.26 27.83 32.47 35.81
Retrieved 26.07 23.75 27.64 18.00 13.27 19.76 22.73

Table 4: Zeroshot results on Circuits with different pre-
fixes. Numbers denote: (1) a circuit diagram of. (2) a
circuit of. (3) an electronic schematic of. (4) a photo of
a circuit diagram: a. (5) a picture of a {} circuit. (6) a
photo of an electronic circuit: a. (7) a photo of a.

Prompting strategy. We study the role of the
“prefix” part of the queries when performing re-
trieval and when building the zero-shot weights.
In Tab. 4 we show the effect of using only the
zero-shot weights W or only the retrieved captions
weights W T for zero-shot classification. We can
see that the best prefix to build zero-shot weights
is not the best prefix to retrieve information from
the database, where constraining the domain in the
prompt becomes fundamental to obtaining good
performance. Additionally, using only retrieved
captions as class prototypes leads to unsatisfactory
results. We then restrict the study to two styles
of the prefix: a generic “a photo of a” and a
domain-specific “a {domain} of a”.

We study the effect of these two prefixes in
Table 5. For iNaturalist, since the images cover
very different natural domains, e.g. animals, plants,
fungi, etc. we cannot design a domain-specific
prompt, and we can only use the domain-agnostic
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Zeroshot Retrieval Circuits iNaturalist HAM10000

Domain Generic 42.94 N/A 61.55
Domain Domain 41.84 N/A 54.40
Generic Domain 41.75 N/A 56.78
Generic Generic 39.05 21.40 59.30

Table 5: Accuracy of our CORE CC12M with differ-
ent prompting strategies for zero-shot weights and text-
to-text retrieval. Employing a domain-specific prefix
for zero-shot and a domain-agnostic prefix for retrieval
leads to generally better results across all the bench-
marks.

one. We can observe that employing a domain-
specific prefix for zero-shot and a domain-agnostic
prefix for retrieval leads to generally better results
across all the benchmarks.

6 Conclusion

We presented CORE, a training-free retrieval-based
zero-shot solution for low-resource image classifi-
cation. Through the retrieval of semantically rele-
vant textual information for both image represen-
tations and class prototypes, CORE is able to en-
hance the richness of feature representations and
achieves state-of-the-art performance. Remarkably,
it does so without the need for additional training
or labeled data, outperforming existing training-
based methods under extremely low-resource con-
ditions. Moreover, we established a comprehensive
benchmark using representative datasets and base-
line models, providing a robust testing ground for
the low-resource image classification task. The re-
sults demonstrate the efficacy and generalization
capability of CORE across various low-resource
domains, representing a significant step forward in
low-resource image classification.

7 Limitations

While we prove text retrieval to be a strong training-
free solution on the proposed benchmark, the per-
formance is still limited by the representation of a
domain in the external database. An example of
this low coverage is provided by (Liu et al., 2023b),
where Patch-Camelyon, a medical dataset, has a
limited presence even in LAION 400M. We face
the same problem when trying to apply CORE to
Parasitic Egg Classification (Anantrasirichai et al.,
2022), where retrieved captions from CC12M only
contain the most common egg parasite name, and
where supervised fine-tuning becomes the strongest
way to adapt VLMs for the setting.

8 Ethical considerations

We employ large-scale web-crawled data to en-
rich our representations, and this type of data is
by definition mostly uncurated, and it may reflect
bias from the real world. This data might contain
harmful or Not Safe For Work (NSFW) content, as
demonstrated in previous studies (Thiel, 2023).

The scientific community has acted to mitigate
these risks, e.g. employing NSFW filters before
releasing the image-text pairs (Byeon et al., 2022).
Nevertheless, we do not employ the image content
of these datasets, and we use the textual part only
at the semantic level to enhance the image classi-
fication performance. Therefore we never expose
users to harmful or undesired content.
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A Baselines implementation details

For VLMs (i.e. CLIP, ImageBind, and SigLIP) we
report the zero-shot results with zero-shot weights
built starting from the prompt “{prefix} [CLS]".
As {prefix} we test both domain-specific (e.g. “a
circuit diagram of a" for Circuits dataset) and
domain-agnostic sentences (“a photo of a" as
standard practice in CLIP), and we report the best
result for each model. For iNaturalist we follow
the insights of (Parashar et al., 2023) and try using
common names of animals and plants instead of
their scientific names. We find that merging the
zero-shot weights of common and scientific names
improves the overall accuracy, therefore we report
these results for this dataset.

For LMM (i.e. BLIP2 and LLaVA) we feed the
query image with the textual prompt “Question:
what’s the name of the object in the image
out of [class names]? Answer with the
name only. Answer: ", then parse the answer
and match the name with the dataset classes.

For ImageBind and SigLIP we fol-
low (Zhang et al., 2024) recipe for fine-tuning,
and generate synthetic images using their pipeline.
The generation involves using a Stable Diffusion
model (Rombach et al., 2021) on top of noised im-
ages, and feeding the model with a domain-specific
prompt, e.g. “a circuit diagram of a [CLS]."
to re-generate the missing part. The amount of
noise added from the diffusion schedule depends
on the role of the synthetic image, i.e. it is set to
30% of the schedule for samples used as positive
in the contrastive loss, and 60% for the negative
samples. We maintain the original training hyper-
parameters (including batch size and learning rate),
and we train an AdaptFormer (Chen et al., 2022)
module with rank 2 and a linear classification head.

B On synthetic data augmentation

We extend the discussion from Sec. 1 on using
synthetic data augmentation to address low-data
scenarios. We argue that while synthetic data gen-
eration can effectively enhance recognition perfor-
mance, it introduces training images that are either
overly similar to the original samples or incorrect,
violating domain rules, one example being the case
of (Zhang et al., 2024). We showcase examples of
both “positive” and “negative” types of synthetic
augmentation in Fig. 7. We can see that “positive”
samples do not differ significantly from the original
sample and do not bring meaningful variation to the

original sample. On the other hand, the “negative”
samples differ to the point of changing semantics
(first row) or breaking the reference domain rules
(third row).

C On having an image-to-image retrieval

Initially, we also implemented an image-to-image
retrieval system leveraging DINOv2 embeddings.
We hypothesized that enhancing the original im-
age embedding with features from retrieved images
would improve its capability to retrieve relevant
textual information. However, this approach did
not yield the desired results. Although the retrieved
images were from the correct domain, they often
lacked the appropriate semantic class. This mis-
match caused the embeddings to deviate signif-
icantly from the target class, resulting in a text-
retrieval performance decline. Quantitative results
supporting this observation are presented in Tab. 8.

D Interesting failure cases

We extend the discussion started in Section 7 re-
garding the failure cases of retrieval-based solu-
tions w.r.t. to training-based ones. We include the
quantitative results on the Parasitic Egg Recog-
nition challenge (Anantrasirichai et al., 2022) in
Tab. 9. We can see that in this case, the training-
based solutions outperform the training-free solu-
tions by a large margin. We deem this for two
reasons: i) the classes differ visually, making a
training approach powerful in telling the differ-
ent classes, and ii) this type of data is under-
represented in large-scale datasets (Liu et al.,
2023b), making the retrieval less effective which,
nevertheless, outperforms the other training-free
solutions.

E Additional analyses

Dependency on sample quantity. The exper-
iments in Tab. 1 are conducted with ∼ 5 anno-
tated samples per class as in the Circuits dataset
of (Zhang et al., 2024), where only 154 images are
available for training on 32 classes. We comple-
ment this analysis by showing in Tab. 6 the effect
of having access to more training data for training-
based solutions on HAM10000.

We can see that the model performance scales
with the amount of annotated samples per class.
SigLIP trained with 15 samples achieves better re-
sults than CORE. The low amount of training and
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Number of shots per class 1 5 10 15 20
Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

ImageBind (Zhang et al., 2024) 10.85 68.70 54.60 96.56 55.59 96.10 46.72 97.88 57.84 98.81
SigLIP (Zhai et al., 2023) 25.74 90.73 54.60 95.90 46.72 95.90 62.21 98.15 61.42 98.21

Table 6: Accuracy of training-based solutions with increasing number of training shots per class on HAM10000.

Original Positive Negative Original Positive Negative

Table 7: Synthetic image from the baseline of (Zhang et al., 2024). We show original samples, the “positive”
augmentation and the “negative” augmentation.

Method Circuits iNaturalist HAM10000

DINOv2 img2img 23.28 7.78 59.96
CORE (Ours — CC12M) 42.94 21.40 61.54

Table 8: Top-1 accuracy on the proposed benchmark
using DINOv2 features to retrieve relevant images com-
pared to our CORECC12M.

validation data, on the other hand, makes the selec-
tion of the best-trained model noisy, therefore the
improvement with more samples is not straightfor-
ward to assess.

F Accuracy@1 vs Accuracy@5 tradeoff

In our investigation, we observed that modifying
the hyperparameters α, β, and τ resulted in a trade-
off between Accuracy@1 and Accuracy@5. We
prioritized Accuracy@1, which is widely regarded
as the primary classification metric. This sensitiv-
ity was particularly pronounced in the HAM10000
dataset, where we identified several data points that
constitute the Pareto frontier when plotting Accu-

Method Acc@1

ImageBind (Zhang et al., 2024) 33.27
SigLIP (Zhai et al., 2023) 17.59

ImageBind (Girdhar et al., 2023) 9.18
SigLIP (Zhai et al., 2023) 12.72
CORE (Ours — CC12M) 15.14

Table 9: Top-1 accuracy on the Parasitic Egg Classifica-
tion.

racy@1 against Accuracy@5. Some notable exam-
ples from this frontier are presented in Table 10.

G Retrieval Efficiency

Our method CORE leverages an efficient index-
ing and retrieval mechanism, implemented with
FAISS (Douze et al., 2024), achieving 57.54 ms
per image-text retrieval on a CPU. As text-to-text
retrieval is performed offline, we do not include
it in the runtime analysis. As shown in Table 11,

21299



Acc@1 Acc@5

27.73 96.10
39.58 95.96
54.80 95.63
57.97 95.50
61.95 95.30
62.21 94.51

Table 10: Acc@1 vs Acc@5 tradeoff on HAM10000.

per image inference at runtime, CORE requires on
average 110 ms (the sum of SigLIP inference time
and retrieval time), while the competitor with the
best performance (SigLIP@384px) requires 53 ms.
CORE requires 110 ms, which is about one-third
of other VLMs (e.g. CLIP ViT-L@336px, BLIP2-
EVA) and is of one magnitude less than LLaVA 1.6
(34B).

In terms of memory/storage, in addition to the
models, CORE requires the storage of both the
metadata (i.e., the filenames and original captions),
and the indexes (i.e., the embeddings). For CC12M,
the metadata is of 2.7 GB and the index is of 3.4 GB
by SigLIP (3.1 GB by SFR-Embedding-Mistral).
For our COYO-700M subset, the metadata is of
6.0 GB, and the indices are of 22 GB by SigLIP
(23 GB by SFR-Embedding-Mistral). In compar-
ison, other competitors do not require the storage
of a database, but the models themselves could be
storage-demanding, e.g. LLaVA 1.6 (34B) occu-
pies about 65GB of storage, while CoRE (COYO-
700M) in total occupies as little as 9.4GB, as the
LLM is optional as shown in the ablation “On the
use of LLM for embedding”.

H Examples of retrieved captions

We provide a qualitative showcase of retrieved cap-
tions by out CORE for both text-to-text and image-
to-text in Tab. 12 and Tab. 13. We use the 10%
subset of COYO-700M as the database, and we
also show some failure cases (e.g. sixth row of
Tab. 13).

I Computational requirements

Synthetic data generation for trained baselines, as
the amount of training data is low, has an upper
bound of 12 GPU/hours on an NVIDIA A100 for
iNaturalist. The subsequent model training has an

upper bound of 4 GPU/hours on an NVIDIA A100
for SigLIP.

For our CORE, the most time-consuming task
is represented by the external database embedding.
The upper bound is 16 GPU/days for the COYO-
700M subset. CC12M has been embedded in 3
GPU/days. Retrieval can then be performed with-
out access to any GPU and on any consumer hard-
ware in ∼ 58ms.

J Licenses

Most of the datasets used (Circuits (Zhang
et al., 2024), iNaturalist (Van Horn et al., 2018),
HAM10000 (Tschandl et al., 2018), and Parasitic
Egg Classification (Anantrasirichai et al., 2022))
are released under Creative Commons Attribution
Non-Commercial 4.0. COYO-700M (Byeon et al.,
2022) is released under Creative Commons Attribu-
tion 4.0, while CC12M (Changpinyo et al., 2021)
is released “as is”.

LLaVA (Liu et al., 2023a) and SigLIP (Zhai
et al., 2023) are released under Apache 2.0. Im-
ageBind (Girdhar et al., 2023) is released under
Creative Commons Attribution Non-Commercial
ShareAlike 4.0. CLIP (Radford et al., 2021) is
released under MIT. BLIP (Li et al., 2023) is
released under BSD-3-Clause. SFR-Embedding-
Mistral (Meng et al., 2024) is released under Cre-
ative Commons Attribution Non-Commercial 4.0.

PyTorch (Ansel et al., 2024) is released “as is”.
Faiss (Douze et al., 2024) is released under MIT.
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Method Inference (ms) Params Storage (GB)

CLIP ViT-L 55 123M fT
V LM + 303M f I

V LM 1.6
CLIP ViT-L@336px 368 123M fT

V LM + 304M f I
V LM 1.6

BLIP2-EVA 397 2.9B fLLM + 986M f I
V LM 2.3

LLaVA 1.6 (34B) 4970 34B fLLM + 303M f I
V LM 65

ImageBind 52 302M fT
V LM + 632M f I

V LM 3.7
SigLIP@384px 53 449M fT

V LM + 428M f I
V LM 3.3

CORE 110 449M fT
V LM + 428M f I

V LM + 7B fLLM* 17.3 + 6.1 (CC12M)

Table 11: Retrieval efficiency of our CORE and all the baselines in terms of inference time, parameter count, and
storage requirements.

Input Retrieved captions

A circuit diagram of
an amplifier.

Electrical Diagram
Amplifier

Audio amplifier circuit
diagram with layout

Circuit diagram for transistor
as audio amplifier

A circuit diagram
of a LED.

Technical Drawing
of an LED

The symbol for a
light emitting diode.

One LED with leads
all bent out

A circuit diagram of
an audio mixer.

Photo of an
audio mixer board

8-Channel Audio
Mixer picture 1

Mixer with volume
faders and pan knobs

A skin lesion of
Bowen’s disease.

Pre-Cancerous
Actinic Keratosis

A biopsy specimen
showing hyperkeratosis, papillom

Looking for
premalignant skin cancer

A skin lesion
of melanoma.

Melanoma of
the Skin, Cut-section

This picture shows
a melanoma lesion

with varying colors.

A mole that
turned out to be

melanoma skin cancer

A skin lesion of
melanocytic nevi.

This picture shows
a melanoma lesion

with varying colors.

Recurrence of
melanocytic naevus

Graphic of
a melanoma

A photo of a
Lygodium japonicum.

A picture of a
Japanese holly fern

japanese painted fern
has silver metallic fronds

Pyrrosia Ferns on
moss covered trunk

A photo of a
Salvinia minima.

12 Water Spangles(Salvinia
Minima), Live Aquarium/Aquatic

Salvinia Minima (Water
Spangles) floating aquarium plant

water drop salvinia
sp trichomes stock image

A photo of a
Azolla filiculoides.

The Azolla fern
has leaves floating

on the water surface

Image of Azolla
filiculoides(). Click

to enlarge parts of image.
Picture of Fern

Table 12: Examples of retrieved captions in text-to-text using the COYO-700M subset.
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Input Retrieved captions

Hobby Electronics
Circuits: AC Powered 220V

Led Circuit

Transformerless Led
Lighting Led Lamp
Circuit Electronics

Astonishing
Christmas Lights

PIEZO SOUNDER
WITH BUILT-IN CIRCUIT

How To Build
A Speaker Circuit

With Adjustable Volume

What all do I
need for a simple
speaker circuit?

IC 555 dry
run protection

Wireless Remote
Control Switch

230V AC Mains Over
Voltage Protection Circuit

Skin coloured papules
centred around
hair follicles.

Dermoscopic image of
a porokeratosis of Mibelli lesion

Pigmented basal cell
carcinoma dermoscopy

Dermoscopy. Brown
and blue-grey dots/clods.

Dermoscopic image of a
porokeratosis of Mibelli lesion

Dermoscopy. Chaos
and clues

brown blotches
are formed Oil Red Staining.

pigment used as
normal pigment pattern

Notogrammitis billardierei
(Finger fern) at Wingecarribee

Asplenium polyodon (East Maui)
This image is licensed

Not sure what this fern is
I thought maybe Buckler

fern. Any ideas?

A seed fern f rond
is prepared for analysis.

A tiny plant on
a tree fern’s trunk

Asplenium polypodon
(West Maui)

Astrolepis cochisensis
Cochise Scaly Cloakfern

Notogrammitis billardierei
(Finger fern)

Ferns emerging
from charred earth

Table 13: Examples of retrieved captions in image-to-text using the COYO-700M subset.
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