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Abstract

A key feature of neural models is that they
can produce semantic vector representations
of objects (texts, images, speech, etc.) en-
suring that similar objects are close to each
other in the vector space. While much work
has focused on learning representations for
other modalities, there are no aligned cross-
modal representations for text and knowledge
base (KB) elements. One challenge for learn-
ing such representations is the lack of paral-
lel data, which we use contrastive training on
heuristics-based datasets and data augmenta-
tion to overcome, training embedding models
on (KB graph, text) pairs. On WEBNLG, a
cleaner manually crafted dataset, we show that
they learn aligned representations suitable for
retrieval. We then fine-tune on annotated data
to create EREDAT (Ensembled Representations
for Evaluation of DAta-to-Text), a similarity
metric between English text and KB graphs.
EREDAT outperforms or matches state-of-the-
art metrics in terms of correlation with human
judgments on WEBNLG even though, unlike
them, it does not require a reference text to
compare against.

1 Introduction

Neural approaches have progressed in capturing
semantic relatedness between larger and larger text
units, from Word2Vec (Mikolov et al., 2013) to
SBERT (Reimers and Gurevych, 2019). Such mod-
els have shown to perform well on a wide array of
semantic similarity tasks, helped in part by retrieval
systems like DPR (Karpukhin et al., 2020a).
Other work has shown that deep representations
of knowledge bases (KBs) help improve such tasks
as few shot link prediction, analogical reasoning
(Pezeshkpour et al., 2018; Pahuja et al., 2021), en-
tity linking (Yu et al., 2020) or cross-lingual entity
alignment (Chen et al., 2018; Xu et al., 2019).
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In this work, we focus on learning cross-modal
representations for English text and KB graphs.
Our input graphs are in RDF (Resource Descrip-
tion Framework, (Miller, 1998)) format, a standard
where graphs are sets of (subject, predicate, object)
triples. We linearize those graphs and consider
them as text data so that the same model can take
text and graphs as input. Given some aligned RDF-
text data, our model learns fixed-length latent repre-
sentations for texts and RDF graphs such that texts
and RDF graphs that are semantically similar are
close in vector space. This enables retrieval across
modalities and allows us to create a cross-modality
similarity score which can be used to evaluate the
output of RDF-to-text generation models.

One challenge for learning cross-modal RDF-
text representations is the lack of parallel data. We
train on various RDF-text datasets created using
distant supervision techniques, either combining
these datasets or using them in isolation. We then
compare the performance of the resulting retrieval
models (i) on the WEBNLG dataset, a parallel
RDF-text dataset where texts are crowdsourced to
match the graph (texts and graphs are semantically
equivalent), and (ii) on WIKICHUNKS, a more chal-
lenging, less well aligned dataset which imitates
the conditions in which retrieval on Wikipedia is
usually executed. We use the difference in perfor-
mance between models to analyze the alignment
quality of training datasets.

Distance within embedding space can be used
to evaluate the output of RDF-to-text generation
models (Is the generated text similar to the input
graph?). In order to evaluate this metric, we com-
pute correlations between our model’s similarity
score for graph-text pairs and human judgments of
semantic adequacy (input/output semantic similar-
ity) using ratings from the 2020 WEBNLG Chal-
lenge. After fine-tuning on data from the 2017
WEBNLG challenge, as well as introducing new
classes of data augmentation at pre-training time,
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our best system, EREDAT, is better or on par than
existing metrics at correlating with human evalu-
ation, even though it does not require a reference
for comparison as do most NLG evaluation metrics
such as BLEU (Papineni et al., 2002), TER (Snover
et al., 2006), BLEURT (Sellam et al., 2020b), ME-
TEOR (Banerjee and Lavie, 2005) or BERT-Score
(Zhang* et al., 2020).

Our contributions can be summarised as follows.

* We train a cross-modal RDF-text model to
learn aligned (RDF graph, text) representa-
tions, making it suitable for cross-modal re-
trieval. We show that this retrieval model out-
performs a state-of-the-art text-only retrieval
model by a large margin, demonstrating the
effectiveness of our adaptation procedure. We
train on several datasets of RDF-text pairs, us-
ing the quality of the ensuing retrieval models
to analyze the quality of training datasets.

* We provide a novel evaluation metric for RDF-
to-text generation models by combining bi-
and cross-encoder training procedures and
adding adversarial data to address the models’
weaknesses. We show that this new metric
outperforms other existing RDF-to-text eval-
uation metrics in terms of correlation with
human judgments of semantic adequacy, even
though it does not require a costly human
reference to compare against. We release
our models on huggingface.co under the
Apache 2.0 license.

2 Related Work

We briefly review recent approaches to uni- and
cross-modal retrieval, representation learning mod-
els, and evaluation metrics for Natural Language
Generation (NLG) models.

Natural Language Retrieval Models. For nat-
ural language, a first class of retrieval models fo-
cuses on retrieving sentences that are similar to
some input sentence. BERT (Devlin et al., 2019)
has been used as a cross-encoder. Two sentences
are given with a separator token, cross-attention
applies to all input tokens and the resulting rep-
resentation is fed into a linear layer to score the
match. However, this is computationally ineffi-
cient as it is not possible to pre-compute and index
such representations. A pre-computable model was
proposed by (Reimers and Gurevych, 2019) who
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used twin encoders pre-trained on Natural Lan-
guage Inference data (Bowman et al., 2015) to set
new state-of-the-art performance on a large set of
sentence scoring tasks. Further work (Chen et al.,
2020; Humeau et al., 2019) combined cross- and
bi-encoders to reach a tradeoff between accuracy
and efficiency. We differ from those works in that
we focus on cross-modal representation learning.

Representation Learning for Knowledge-Bases.
Various KB embedding models have been proposed
to support downstream applications such as KB
completion or alignment of different bases. Com-
positional approaches (Nickel et al., 2011, 2016)
use tensor products to model relations as functions
of their argument entities. Translational approaches
model relations as translation operations from the
subject (head) to object (tail) entity (Bordes et al.,
2013; Yang et al., 2014; Trouillon et al., 2016).
Neural models have also leveraged 2-D convolu-
tions over entity embeddings to predict relations
(Dettmers et al., 2018) as well as graph convolu-
tional networks (Schlichtkrull et al., 2018). All
these approaches focus on representation learning
for Knowledge-Bases entities and relations. In con-
trast, we focus on cross-modal similarity between
a text and a KB graph.

Cross-Modal Representation Learning and Re-
trieval. Some work has focused on incorporating
natural language information to improve KB rep-
resentations. (Han et al., 2016; Toutanova et al.,
2015; Wu et al., 2016) encode words and KB enti-
ties into a single vector space, and (Wang and Li,
2016; Yamada et al., 2016) learn word and entity
embeddings separately then map them into a shared
space. Both approaches use text as additional train-
ing signal to improve KB representations, and limit
themselves to word-level information. Instead, we
focus on scoring the similarity between arbitrary-
length natural language text and a KB graph. We
are not aware of any extant such text-KB models.
The best-known cross-modal contrastive model is
Radford et al. (2021), which pre-trained an image-
text match scoring model.

Evaluation metrics for Natural Language Gen-
eration Models. Surface-based metrics such as
BLEU (Papineni et al., 2002), which measure to-
ken overlap between generated and reference text,
are commonly used. Methods such as BERT-Score
(Zhang* et al., 2020) or BLEURT (Sellam et al.,
2020a) which leverage neural representations are
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currently state-of-the-art. All these methods com-
pute a score by comparing the generated text with
human-produced references, rarely available and
costly to produce. Some metrics evaluate the gener-
ated output with respect to the input rather than to a
reference. Wiseman et al. (2017) use the precision
of input relations found in the output texts. (Dusek
and Kasner, 2020) use a natural language inference
pre-trained model to score input-output two-way
entailment. For data-to-text generation specifically,
(Rebuffel et al., 2021) introduce Data-QuestEval,
which uses question answering to compare input
graph and output text.

3 Learning Cross-Modal RDF-text
Representations

3.1 Model

Similar to (Schroff et al., 2015; Reimers and
Gurevych, 2019), we use twin Transformer en-
coders to create RDF and text representations such
that the embeddings of an RDF graph and of a
piece of text with similar content are close in the
vector space. A mean-pooling operation creates
fixed-sized embeddings embed(x) for x either an
RDF graph or a text. RDF graphs are linearized as:

[S]1 <subject;> [P]
<object;> ... [S]
<property,> [0] <object,>

<property;> [0]
<subject,> [P]

where "[S]", "[P]", "[O]" serve as special tokens
and are added to the tokenizer vocabulary. This
allows us to treat any knowledge base format.

We train this system using a contrastive loss with
in-batch negatives (Henderson et al., 2017). This
variant of contrastive loss computes the pairwise
similarities between every text and every RDF in
the batch. A softmax is then applied on the RDF
axis, which creates a multi-class classification prob-
lem: every text data point must be matched to the
parallel RDF. The loss can be written as :

I _ Zlog ( exp(sim(text;, rdf;)) )

= > jes exp(sim(text;, rdf;))

sim(text;, rdf;) = cos(embed(text;), embed(rdf;))

with [ the set of training instances in the batch.
Intuitively, this trains the encoder to learn repre-
sentations that map text items closer to their RDF
anchor than to other RDF graphs in the dataset.

In all our experiments, we start from
all-mpnet-base-v2, a pre-trained sentence-
MPNet (Song et al., 2020) model, in order to
leverage its strong pre-trained text representations.

3.2 Training Datasets

For training, we need (g, t) pairs where g is a Wiki-
data RDF graph and ¢ is a text in English whose
content is similar to g. We compare three datasets,
all created using distant supervision.

TeKGen. (Agarwal et al., 2021) use heuristics to
align triples from Wikidata to Wikipedia sentences.
The TEKGEN dataset covers 1,041 Wikidata prop-
erties and consists of about 6M (graph, text) pairs
where each text is a sentence.

KELM. The KELM corpus has 15M (graph,
text) pairs where graphs are created based on rela-
tion co-occurrence counts i.e. frequency of align-
ment of two properties to the same sentence in
the training data (Agarwal et al., 2021). Texts are
then generated from these graphs using a T5 model
fine-tuned on TEKGEN.

TREx. (Elsahar et al., 2018) use word- and
sentence-tokenization, coreference resolution, a
date-time and a predicate linker, plus various RDF-
text alignment methods to create TREX, a dataset
aligning 11 million Wikidata triples with 6 million
Wikipedia sentences.

3.3 Test Datasets

We use two datasets for evaluation: WEBNLG
(Gardent et al., 2017) and WIKICHUNKS, which
we create in this work. Appendix A shows some
statistics for all datasets.

WebNLG is a dataset of pairs where the texts
were crowdsourced to match the input graph. In
WEBNLG the RDF graph is from the DBpedia KB,
whereas our models were trained on the Wikidata
KB format. To assess the ability of our retrieval
model to generalize to different KBs, we evaluate
our model both on WEBNLG-DB, the original
DBpedia-based dataset, and WEBNLG-WD where
the DBpedia graphs have been mapped to Wikidata
(Han et al., 2022).

WikiChunks consists of 7.3M graph-text pairs
where the text is a 100-word passage from a
Wikipedia dump and the graphs are matching Wiki-
data graphs. We create matching graphs by aligning
all Wikidata (s, p, o) triples with a Wikipedia pas-
sage such that the subject s of that triple matches
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Figure 1: Retrieval Accuracy for a variety of training datasets and objectives. Our models outperform the base
model (leftmost grey bar) by a large margin. Hard negatives help across the board. Training on an equal mix of
datasets yields consistently high performance on aligned (WEBNLG) and noisy (WIKICHUNKS) data.

the entity described by the Wikipedia page from
which the passage was extracted and the object o,
or one of its aliases, is mentioned in that passage.
Retrieving on this dataset imitates the conditions
in which retrieval on Wikipedia is usually executed
(Karpukhin et al., 2020b; Lewis et al., 2020). This
is a challenging task as, contrary to WEBNLG,
WIKICHUNKS matches are not aligned: the Wiki-
data graph information is strictly included in the
passage, which may contain much more. Several
passages may also contain very similar information.
We use a subset of 30000 pairs, the same size as
WEBNLG, to make results comparable.

We evaluate our representations using a retrieval
reformulation of the data-to-text NLG task: Given
the embedding of a graph, how well can we identify
the most similar text in the corpus? As our evalu-
ation sets have 1-to-1 mappings between sources
(the graphs) and targets (the texts), the retrieval
performance in the opposite direction does not vary
by more than 2%. We consider top-result accuracy.

4 Results

4.1 General Results

We use all-mpnet-base-v2, the state-of-the-
art dense sentence embedding model that
our models are training from, as a baseline.
all-mpnet-base-v2 can estimate semantic sim-
ilarity, as our models do, but was only trained on
text. It can still process the linearized RDF data,
however, as it is in the form of natural text. The
baseline is reasonable, but training yields strong
improvements with a top accuracy of 80% for all
settings against 38% for the base model (Figure 1)

and 0.003% for random-chance performance.

4.2 Generalization to other KB formats

Encoding the RDF data as natural language allows
for flexibility in the RDF format, as opposed to
earlier graph approaches that encode relations and
entities as integers. After fine-tuning on Wikidata
graphs, which include relations like place served
by transport hub, we might be able to general-
ize to DBPedia, which would use cityServed in-
stead, as the base pre-trained model knows all these
words. Indeed, we find that retrieval performance
is similar on WEBNLG-WD and WEBNLG-DB.

4.3 Batch Size and Negatives

We experiment with adding artificial hard negatives
to the batch, and with different batch sizes. Con-
founders are constructed from the correct graph by
corrupting a triple inside that graph, replacing a
subject, object or predicate at random with another
subject, object or predicate in the dataset. This
form of data augmentation is made possible by
the formalized nature of RDF graphs: it would be
much harder to create confounders on the text side.

Hard vs. In-batch negatives Figure 1 shows
retrieval accuracy when using only in-batch vs. us-
ing in-batch and hard negatives. We see that hard
negatives mostly help when retrieving parallel data
(WEBNLG) i.e. when small graph-text mismatches
strongly impact accuracy. We also see that hard
negatives have the strongest impact on the model
trained on TEKGEN, which is also the one with the
lowest retrieval accuracy. This suggests that hard
negatives are most helpful when the training data
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is noisier than the evaluation data.

Batch size. As previous work has found that
larger batch sizes improve contrastive training (Qu
et al., 2021), we experiment with two batch size
set-ups: 192! and 2560%. We do not find that larger
batch sizes consistently improve retrieval accuracy,
and keep the smaller ones for practical reasons.
Figure 8 in appendix B shows detailed results.

4.4 Training Data Quality

The quality of training data has a strong impact on
retrieval accuracy. We see that performance varies
with the training data used: on WEBNLG retrieval,
KELM yields by far the best results followed
successively by TREX and TEKGEN. On WI-
KICHUNKS, which is more loosely aligned, TREX
is the best dataset and KELM is slightly behind.
We create an equal-mixture dataset by concatenat-
ing subsets of equal sizes of each dataset®. As
the rightmost column in Figure 1 shows, this al-
lows us to capture the best of both worlds. We dub
the model trained on this data with hard negatives
all_datasets_hard_negatives.

The similarity distributions according to
all_datasets_hard_negatives is shown in
Figure 2, which matches those results: KELM is
much better aligned. This is in line with intuition
as KELM text is generated from the input graphs
while TREX and TEKGEN are created using
distant supervision. We attempted to bootstrap
dataset quality by re-training models on the 50%
of the data identified as highest-similarity. We find
that this does not increase performance and can
even decrease it, probably due to loss of diversity.

4.5 Training Data Quantity

As shown in Figure 3, performance plateaus early
in training. The advantage of KELM or the con-
catenated dataset is not due to their larger size.

5 Building a Referenceless Metric for
Data-to-text Generation

Commonly-used metrics for Natural Language
Generation require references to compare the out-
put against, which must be produced by human
annotators. Can we leverage our joint embeddings
to compare the output text to the input RDF directly,
reducing the necessary resources?

'The maximum we could fit on an 8-A100 cloud instance.
>The maximum we could fit on a larger cluster.
3In total, thrice the size of the smallest dataset, TREX.

5.1 Fine-tuning on Human Judgments of
Semantic Adequacy

Our retrieval models can be used to provide a
similarity metric between text and formal data
in the form of the scalar product or cosine dis-
tance in embedding space. We can further im-
prove this metric by fine-tuning on human judg-
ments of RDF-text adequacy. In order to show the
generalization strength of this approach, we fine-
tune our all_datasets_hard_negatives model
on human-rated WEBNLG-2017 items, and evalu-
ate on human-rated WEBNLG-2020 items, which
uses different test data and different criteria for the
assessment of semantic adequacy by human judges.

(Shimorina et al., 2018) provides human judg-
ments for the output of 10 NLG systems from
WEBNLG challenge 2017. Each model was eval-
uated on a sample of 223 texts yielding a total of
2230 generated texts annotated with human judg-
ments for the following three criteria.

* Semantic adequacy: Does the text correctly
represent the meaning in the data?

* Grammaticality: Is the text grammatical (no
spelling or grammatical errors)?

* Fluency: Does the text sound natural?

(Castro Ferreira et al., 2020) provides human
judgments for the output of 16 NLG systems from
WEBNLG Challenge 2020. Each model was eval-
uated on a sample of 178 texts yielding a total of
2,848 generated texts annotated with human judg-
ments for the following five criteria.

e Data Coverage: Does the text include de-
scriptions of all predicates in the input?

* Relevance: Does the text describe only triples
present in the graph?

* Correctness: For graph predicates, does the
text correctly describe their arguments?

* Text Structure: Is the text grammatical, well-
structured, written in acceptable English?

* Fluency: Does the text progress naturally and
form a coherent, easy-to-understand whole?

We train on the 2017 semantic adequacy metric.
To assess how well our similarity metric reflects hu-
man judgments of similarity between an RDF graph
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Figure 2: Pair similarity distributions according to all_datasets_hard_negatives for all datasets.
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Figure 3: Performance throughout training evaluated by WEBNLG-WD accuracy. Training for longer than the
size of the smallest datasets does not change performance meaningfully.

Inference

_r

Mean

e

RDF [ Text | [ RDF |

Training
[ Vector ] i [ Vector ] T
Cos ‘ Linear
1 ) i
Transformer Transformer Transformer
| | |
[ Text ] [ ROF ] [ Text <sEp> I
Bi-encoder Cross-encoder

Ensemble

Figure 4: Fine-tuning setup. We fine-tune both bi-encoders and cross-encoders on human-rated data. At inference
time, we use the mean of a bi-encoder and a cross-encoder as the final metric.

and a Natural Language Text, we compute corre-
lations between our system’s scores and the 2020
human judgments of semantic adequacy, namely

data coverage, relevance, and correctness®.

5.2 Fine-tuning Procedure

Bi- and Cross-encoder ensembling We can fine-
tune our pre-trained model as a cross-encoder,
where there is only one instance of the model,
which can attend to both items simultaneously and

*We train on WEBNLG-2017 and evaluate on WEBNLG-
2020 as semantic adequacy is a more global criterion encom-
passing coverage, relevance and correctness while the reverse
is not true.

feed into a linear layer, rather than a bi-encoder
as previously, where two instances of the model
embed the two items separately and the dot product
or cosine distance serves as the output. The cross-
attention feature allows for higher performance at
the cost of making retrieval expensive as all n?
distances must be computed separately (Humeau
et al., 2019). However, bi- and cross-encoders per-
form well on different data points. The scores they
give WEBNLG-2020 candidates have surprisingly
low Pearson correlation, 0.66. This makes them
good candidates for ensembling, and indeed, taking
the mean of the bi- and cross-encoder scores yields
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Figure 5: Difference in similarity between correct and corrupted graph-text pairs.

On the left,

all_datasets_hard_negatives and all_datasets_hardinv_negatives just after pre-training, and on the right,
both models after fine-tuning and ensembling on WEBNLG-2017. The system we used as a final metric is the last
plot on the right. Models that have seen inverted negatives at pre-training identify correct and corrupted pairs better.

higher correlations with all human judgments. Both
architectures and the ensembling method are repre-
sented in diagram 4.

Robustness to inversion Transformer-based
models can sometimes behave as advanced bag-
of-word models (Sinha et al., 2021), which would
not see a difference if the subject and object are
reversed in a triple. In order to examine the ro-
bustness, we create an adversarial dataset from all
the 1-triple graphs in WEBNLG 2020 with non-
symmetrical® relationships. In this dataset, for
each text, there is a pair with the correct triple
and a pair in which the triple’s predicate arguments
(subject and object) have been inverted e.g., (An-
dré the Giant, larger than, Samuel Beckett) vs.
(Samuel Beckett, larger than, André the Giant).
This dataset (WEBNLG-INV) consists of 2793
(g,t), and (g_inv,t) pairs where (g, t) is a graph
of size one with a non-symmetrical relationship in
WEBNLG-WD, t is the corresponding text and
g_inv is the corrupted triple.

We report the difference sim(g, t) — sim(giny, t)
in the similarity between text and correct graph
on the one hand and text and corrupted graph
on the other in Figure 5. The higher, the bet-
ter the model is at recognizing predicate inver-
sion. all_datasets_hard_negatives, the re-
trieval model presented in Section 3.1, does not do
well at this task, with 38% of the inverted triplets
estimated more similar to the text than the origi-
nal ones. (After fine-tuning on WEBNLG-2017
judgments, 30%)

SManually defined. The list is in appendix D.

In order to make our models robust to in-
version, at pre-training time, we add inverted
negatives to the mix of artificial negatives in
the batches: confounding graphs where a ran-
dom triplet has been inverted. The resulting
model, all_datasets_hardinv_negatives has
the same retrieval accuracy but gains inversion de-
tection abilities. This ability is conserved through
fine-tuning, as Figure 5 shows: only 14% of triplets
are misclassified.

The final system we choose as a metric is the
ensemble of a bi- and cross-encoder pre-trained on
the concatenation of KELM, TEKGEN and TREX
with our two types of data augmentation, then fine-
tuned on WEBNLG-2017 human judgments. We
call it EREDAT, for Ensembled Representations for
Evaluation of DAta-to-Text.

5.3 Comparison with other Evaluation
Metrics

Correlations with human judgments are shown in
Figure 6 for a variety of automated evaluation met-
rics: three metrics that require a reference (BLEU,
BERTSscore-F1, and BLEURT, the previous state
of the art) and two referenceless metrics (Data-
QuestEval and EREDAT). Our metric is the best cor-
related with all human judgment categories, even
including metrics with references. As shown in
7, this advantage is mostly explainable by ERE-
DAT’s improved robustness to longer, more com-
plex graphs, which tend to degrade correlation with
human judgment. Scatter plots of the underlying
distributions are given in appendix C.

As human references are rarely available and
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Figure 7: Correlation with human judgment by
graph size for EREDAT, DQE and BLEURT. Our met-
ric is more robust than BLEURT to longer graphs, and
generally much more correlated than DQE, the existing
referenceless metric.

costly to produce, and EREDAT attains higher cor-
relation with human judgments without relying on
them, it is the most practical choice to evaluate
data-to-text generation. In this case, it was not
fine-tuned to the same kind of data it was applied
to, showing it generalizes to new datasets. If one
has a specific dataset or task in mind, even better
performance could be attained by training on a set
of problem-specific human judgments.

6 Conclusion

We presented an architecture and pre-training strat-
egy to measure the similarity between RDF graphs
and English texts, introducing novel data augmenta-
tion strategies made possible by the RDF structure.

Specifically, we introduced a bi-encoder retrieval
model trained on unlabeled RDF-text data which
achieves high retrieval accuracy on both parallel
and real-life, less well aligned datasets. Building
from this pre-trained model, we further provided
a novel evaluation metric for RDF-to-text genera-
tion models which matches state-of-the art metrics
in terms of correlation with human judgments of
semantic adequacy without needing costly human-
written references. This metric can also be used to
filter existing text/RDF datasets.

7 Limitations and compute statement

This study focuses on English text. Reproducing
the proposed approach for use on other languages
would require dedicated datasets of similar scale,
along with graph/text alignments. Further, the other
languages differ quite a lot from English-centric
RDF graphs, potentially reducing the suitability of
the proposed framework and requiring more ad-
vanced multilingual methods. We release our mod-
els with the intended use of representation learning
and automated RDF-to-text evaluation. Other uses
may not be appropriate.

We trained over 2000 models for a total of ap-
proximately 2400 GPU-hours (NVIDIA V100s and
A100s) of compute on public infrastructure and
Google Compute Engine. Most of them were based
on all-mpnet-base-v2, with 109M parameters.
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A Dataset statistics

# (t,2) #P #E
TEKGEN 6,310,061 1041 3,939,696
TREX 6,000,336 675 3,188,309
KELM 15,616,551 261405 5,073,603
WEBNLG-DB 13,212 372 3210
WEBNLG-WD 10,384 188 2783
WIKICHUNKS 30,000 468 20,318

Table 1: Training and test data for retrieval. # (t,g):
Number of graph-text pairs, # T: Number of texts, # G:
Number of graphs, # P: Number of distinct properties,
# E: Number of distinct entities.

B Impact of Batch Size

C Scatter Plot Comparison of BLEURT
and EREDAT
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D Symmetrical Relationships in WebNLG

We manually inspected all relationships in
WEBNLG and deemed the following to be sym-
metrical in nature:

"taxon synonym", "partner in business or sport",
"opposite of", "partially coincident with", "physi-
cally interacts with", "partner", "relative", "related
category", "connects with", "twinned administra-
tive body", "different from", "said to be the same
as", "sibling", "adjacent station", "shares border

with"

"non
>
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Figure 8: Small vs. Large Batch Size. Large batch sizes help a little on data with lower alignement quality
(WIKICHUNKS). Overall, the improvement is inconsistent.

10 10 A 10
0.5 0.5 0.5 1
+ 0.0 1 0.0 1 0.0 1
=1
L)
=
-0.5 -0.5 —0.5
-1.0 -1.01 —1.011
-15 1 ; , -15 ; T -15 , ; ; ; T
o 40 60 40 60 20 40 60 80 100
0.8 4 0.8 0.8
0.6 4 0.6 4 0.6 4
(%]
3
0.4 4 0.4 0.4
021 0.2 0.2 1
00 E T T T 00 b T T DO E T T T T T
o 40 60 40 60 20 40 60 80 100
correctness data coverage relevance

Automatic metrics vs. function of human judgments in WebNLG 2020

Figure 9: Human judgment and automated evaluation values for every point in WEBNLG 2020.
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