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Abstract

One challenge in speech translation is that
plenty of spoken content is long-form, but short
units are necessary for obtaining high-quality
translations. To address this mismatch, we
adapt large language models (LLMs) to split
long ASR transcripts into segments that can be
independently translated so as to maximize the
overall translation quality. We overcome the
tendency of hallucination in LLMs by incorpo-
rating finite-state constraints during decoding;
these eliminate invalid outputs without requir-
ing additional training. We discover that LLMs
are adaptable to transcripts containing ASR er-
rors through prompt-tuning or fine-tuning. Rel-
ative to a state-of-the-art automatic punctua-
tion baseline, our best LLM improves the aver-
age BLEU by 2.9 points for English—-German,
English—Spanish, and English—Arabic TED talk
translation in 9 test sets, just by improving seg-
mentation.

1 Introduction

With the proliferation of long-form audiovisual
content online, translation and captioning become
paramount for accessibility. Cascade models re-
main the dominant approach for speech translation
(Arivazhagan et al., 2020; Li et al., 2021), decom-
posing the problem into automatic speech recogni-
tion (ASR), post-processing of the transcript, and
machine translation (MT).

The cascade’s MT component typically operates
on sentence-like units, with each sentence trans-
lated independently of the others. When asked to
translate long passages, models regularly fail or
degenerate (Cho et al., 2014; Pouget-Abadie et al.,
2014; Koehn and Knowles, 2017). This differs
considerably from the expectations for automatic
speech recognition models (e.g. Graves, 2012) that
can process inputs of unbounded lengths. MT mod-
els must either be able to cope with potentially
long, multi-sentence inputs or, alternatively, they
must be able to determine cutpoints at which the

transcript can be segmented into compact, indepen-
dently translatable units. This work introduces a
new, effective approach for the latter.

While numerous text segmentation techniques
have been proposed to improve spoken language
translation (§6), the problem remains hard and un-
solved. Indeed, Li et al. (Li et al., 2021) demon-
strate that poor sentence segmentation degrades
performance almost twice as much as transcript
lexical errors.

We cast sentence segmentation as a sequence-
to-sequence task, rather than a traditional struc-
tured prediction task that tags sentence-final tokens.
While this lets us leverage large language mod-
els, such models’ outputs can be ill-formed. Even
by using additional data for fine-tuning, residual
adapters (Tomanek et al., 2021; Chronopoulou et al.,
2022), or future discriminators (Yang and Klein,
2021), simple syntactic constraints can be difficult
to enforce. Moreover, all three require modifying
the model or storing additional learned parame-
ters. In light of these concerns, we introduce a
simple, flexible, and modular approach to generat-
ing well-formed task-specific strings at inference
time without any additional training. We compactly
express constraints on the output format as finite-
state machines, then efficiently enforce these via
composition. While the approach is simple, it re-
mains unexplored for large language models, and it
yields automatic gains on downstream performance,
advancing the state of the art for speech translation
and thereby applicable to existing systems. More-
over, the approach is sufficiently general that it
can be applied to other domains in a plug-and-play
manner.

We benchmark our approach as a component
in a speech translation cascade. Experiments in
three language pairs indicate that our approach out-
performs both a baseline cascade system that pre-
dicts punctuation marks before inferring sentence
boundaries and a strong neural structured prediction
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model. Overall, we improve the BLEU score on
the IWSLT test sets by 2.9 points, closing 3/4 of
the gap between the previous best and the oracle
system. Our contributions are three-fold:

1. We propose a novel LLM-based approach for
long-form speech translation, which can be
applied to any ASR-MT speech translation
cascade system and yield a significant increase
in translation quality.

2. To the best of our knowledge, we are the first
to investigate the use of finite-state decoding
constraints in combination with LLMs to pro-
duce consistent improvements.

3. We report additional small but consistent im-
provements by prompt-tuning or fine-tuning
LLMs on ASR transcripts containing lexical
and grammatical errors.

2 Windowing Approach

One major challenge in modeling and inference of
long-form transcript segmentation is that the input
sequences can be very long. For example, a TED
talk can contain more than one thousand words
(Li et al., 2021). We take a divide-and-conquer
approach that operationalizes two straightforward
principles in modeling. First, words on the left
and right are both useful for deciding if a sentence
delimiter should be present at the current word po-
sition. Second, distant words are less useful than
nearby words. From these two principles, we design
a top-level sliding window algorithm to balance the
need for bidirectional modeling and efficiency of
computation. We divide the passage into windows
at both training and test time, with a small context
window on each side to inform decisions at window
edges (Figure 1). With this top-level inference algo-
rithm, the sequence-to-sequence machine learning
problem is now reduced to the window-level. The
problem is now to predict a sequence of segmenta-
tion decisions y = y1, . . . , Yy for each text window
of size at most w tokens: X = x1,..., Ty.

3 Modeling Approaches

A classic approach to discriminative sequence mod-
eling is the conditional random field (CRF) (Laf-
ferty et al., 2001; Liu et al., 2005). This conditional
graphical model allows incorporating arbitrary fea-
tures of the transcript, including linguistic variables
and word embeddings.

3.1 Structured Prediction Baseline:
Bidirectional RNN Model

The limitation of the CRF is in the Markov as-
sumption it makes, considering only the immedi-
ately previous word’s segmentation decision. Even
higher-order CRFs can only consider a fixed-size
history within y. Instead, we introduce a neural
autoregressive segmenter. It is an encoder—decoder
neural network with monotonic hard attention to the
bidirectionally encoded input at the current word
position, admitting the same rich featurization of x
as the CREF; its likelihood is

s

po(y | x) =] | pro(we | y<t,%) (1)

t=1

po(yt | y<i, BIRNN(x),) (2)

=

t=1

where py is parameterized by a recurrent neural
network followed by a linear projection layer and a
softmax to obtain a locally normalized distribution.
Exact inference here is intractable (unlike a CRF);
we approximate it with beam search. This model
and a QRNN-based (Bradbury et al., 2017) auto-
matic punctuation model will serve as baselines.

3.2 Large Language Models for Segmentation

More recently, the paradigm of pre-training fol-
lowed by fine-tuning or few-shot learning has
achieved great successes across many NLP tasks.
The pre-training task is typically a variant of a lan-
guage model (Brown et al., 2020; Chowdhery et al.,
2022) or an autoencoder (Raffel et al., 2020) where
a corrupted version of a sentence is mapped to its
uncorrupted counterpart. We can encode segmen-
tation as such a task: reproducing the input with
inserted sentence delimiters. Concretely, we encode
y as z1,...,2y, Where z; = Concat(dy, z¢) and
d; € {e¢,B}. For example, we feed i am hungry
i am sleepy to the model, and it produces the
sentence-delimited string i am hungry B i am
sleepy. We use the publicly available T5 (Text-
to-Text Transfer Transformer) model (Raffel et al.,
2020) and the GPT-style (Brown et al., 2020) PaLM
model (Chowdhery et al., 2022) as the foundation
for our text-based segmenters.

3.2.1 Prompting and Fine-tuning

Training examples for this task look like the input
output pairs in Figure 2. In fine-tuning, we update
the full set of parameters for a given model on
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Figure 1: Processing overlapping windows instead of entire transcript passages. w is the window size used in both
training and inference. b is the total context window size. r (< b) is the right context window size. The underlines
below the windows indicate which local segmentation decisions are taken as global decisions. Portions not underlined
(i.e., the context window) are still provided to the segmentation model to inform segmentation of underlined portions.

>>> Segment a sequence of words into sentences separated by the delimiter
<SENT>

Input: well first of all thank you so much that is a beautiful
compliment i do think he is the best interviewer alive

Segmented Output: well first of all thank you so much <SENT> that

is a beautiful compliment <SENT> i do think he is the best interviewer alive

Input: i remember when my dad had to leave our home in
scranton pennsylvania to find work i grew up in a family where if the
price of food went up you felt it that’s why one of the first things i did as
president was fight to pass the american rescue plan

Segmented Output: i remember when my dad had to leave our home
in scranton pennsylvania to find work <SENT> i grew up in a family
where if the price of food went up you felt it <SENT> that’s why one
of the first things i did as president was fight to pass the american rescue plan

Input: we’re done talking about infrastructure weeks we’re go-
ing to have an infrastructure decade

Segmented Output: we’re done talking about infrastructure weeks <SENT>
we’re going to have an infrastructure decade

Input: it is going to rain today remember to bring an umbrella

Segmented Output:

Figure 2: Prompting PaLLM to segment a text window
(red) based on three examples.

such examples to minimize the cross entropy on
the output. For T5 models, the input sequence will
be fed to the encoder, and the output sequence will
be fed to the decoder through teacher forcing. For
PalLM models, the input sequence and the output
sequence are concatenated and fed to the decoder
with an optional prompt as the prefix. For decoder-
only PaLM models, a text prompt like the one in
Figure 2 or a fine-tuned soft prompt (Lester et al.,
2021) in the embedding space prompts the decoder
to enter the state for the segmentation task. When
we fine-tune PalLM, the entire model is updated for
this task so that no prompting is necessary.

3.2.2 Decoding Constraints

A deficiency of generation with LLM is that the
output might not only fail to correctly segment the
passage; it might not even contain the same tokens
as the passage. We shall say that an output is well-
formed if it contains the same token sequence as the

input, with zero or one sentence delimiters before
each token. While the rich parameterization of such
large Transformer models might learn the inherent
structure of the output, we provide two solutions to
enforce well-formedness.

Both approaches share the attractive quality of
being plug-and-play: they require no additional
parameter-learning, and they can be coupled with
an already-trained language model.

Levenshtein Alignment for Post-processing
The generation models’ ability to produce arbitrary
outputs may be seen as a strength: the model could
correct transcription errors and remove disfluencies,
if so trained. Therefore, we can let the model gener-
ate freely without enforcing structural constraints,
then enforce well-formedness post-hoc. Kumar and
Byrne (2002) describe a WEST for Levenshtein
alignment between two strings. We use it to align
the generated string with x. We then project seg-
ment boundaries across alignment links from the
generated string onto x to determine y. In this way,
annotations can be salvaged when LLM does not
precisely recreate the input.

Finite-State Constraints in Decoding A natural
strategy to force well-formed outputs is constrained
decoding (e.g. Zhang et al., 2019). In it, we com-
pose the input FSA x and a special FST 7 encoding
all possible segmentation decisions, then project
the FST to the output tape to obtain a determinized
FSA for the output space. The FST x o T is shown
in Figure 3.

An advantage of the finite-state approach is that
any constraint expressible as a regular language is
possible. Consequently, our implemented system
is applicable a large class of tagging and parsing
problems in NLP, not just sentence segmentation.
For instance, NP chunking (Ramshaw and Mar-
cus, 1995) and BIO tagging, truecasing (Lita et al.,
2003), retokenization, tetra-tagging for syntactic
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Figure 3: FST representing all possible segmentations for the transcript “i came i saw i conquered”.

parsing (Kitaev and Klein, 2020), and lexically con-
strained decoding (Hasler et al., 2018) can all be
framed as finite-state transformations of an input
sequence.

4 Experiments

We evaluate our proposed method for using large
language models for long-form speech translation
with three sets of experiments: (1) analysis of hyper-
parameters, (2) comparison with competing meth-
ods, and (3) robustness to speech recognition er-
rors. In each case, we are concerned with transla-
tion quality as measured by BLEU. We also assess
the LLM output directly by qualitative analysis,
well-formedness percentage, and (for diagnostic
purposes, following Goldwater et al., 2009) seg-
mentation F score against the sentence-segmented
reference.

Our experiments are carried out on the IWSLT
speech translation data sets, subjected to the same
pre-processing as described in Li et al. (2021). We
use the 2014 data for dev and 2015 and 2018 for
test. The fourteen reference transcripts in our dev
set range from 861 to 1234 words; by contrast,
the median length of a sentence in written En-
glish is close to 17 words (Kucera and Francis,
1970). We use the publicly available Speech-to-
Text Google API! to generate ASR transcripts. We
remove the automatically predicted punctuation
and lowercase the ASR transcripts and use English—
{ German,Spanish,Arabic} MT models trained with
the same preprocessing on the source side as Li
et al., 2021. The MT model is a Transformer with
a model dimension of 1024, hidden size of 8192,
16 attention heads, 6 encoder layers, and 8 decoder
layers. We decode with a beam size of 4. In our
experiments, the three MT model instances and the
ASR model (and thereby its transcripts) are fixed
while we vary the sentence segmentation policies.

4.1 Context Window Size

In §2, we introduced the top-level sliding window
inference algorithm above all modeling choices. To
compare different models fairly, we fix the hyperpa-
rameters (w, b,r) = (40, 10, 5) for the algorithm

! https://cloud.google.com/speech-to-text
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Figure 4: BLEU for English—German as context window
size for segmentation increases. Each dot represents a
TS5 segmentation model trained with the same window
size for inference time.

throughout the experiments. This choice is guided
by a linear search over the window lengths w in the
range of [20, 100]. The overlapping buffer size for
both ends is set to 5 based on findings of segmen-
tation for punctuated text (Wicks and Post, 2021).
According to Figure 4, translation quality degrades
slightly as window size approaches 20. But very
large windows do not appear to be beneficial. The
observation validates the two guiding principles of
our sliding window approach.

4.2 Choice of Prompt

The manual prompt in Figure 2 is the one we se-
lected from a few variants for the decoder-only
PalLM models. Instead of exploring the unbounded
space of prompts, we resorted to the more princi-
pled method of prompt tuning (Lester et al., 2021)
to optimize the prompt in the embedding space
for the segmentation task. For prompt tuning, the
only hyperparameter is the length of the embedding
prompt (the embedding size is tied to the corre-
sponding model). In Figure 5, we show that for
the PaLM models of 62B and 540B, an embedded
prompt as short as 10 can achieve much higher
F than our hand-written prompt. But it is also
notable that the gap between prompt tuning and
manual prompting shrank from 25 percent to 10
percent as the model size increased from 62B to
540B, indicating the increasingly stronger gener-
alization capability of extremely large language
models. Based on Figure 5, we use 30-token soft
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Figure 5: Segmentation F; on the dev set as prompt size
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prompts in the main results.

4.3 Effect of Finite-State Constraints

We make a contrast between greedy search and
beam search, with either the segmentation FST con-
straint §3.2.2 inside the decoder or post-hoc Leven-
shtein alignment §3.2.2 for repairing invalid output.
We also vary the model types and model sizes to
analyze the impact of constrained decoding in dif-
ferent situations. Table 1 shows that constraints
are crucial for smaller models in prompt-tuned sce-
narios. For example, the rate of output being well-
formed is only 14.5% using greedy search for the
PalLM 8B model. Even when the model size is
increased to 62B, the wellformedness rate is still
below 90%. The Levenshtein post-alignment algo-
rithm is effective. But the more general finite-state
constraint is even more effective. For the 8B model,
the improvement in I is 1-2% absolute. For the
62B model, the improvement is nearly 3% abso-
lute. On the other hand, if the cost of fine-tuning is
acceptable, LLMs can adapt to this task very well.
The fine-tuned TS base model has a wellformedness
rate of 99.4% (the rate is even higher for the TS
11B model: 99.8%). But we shall point out that for
the results to be useful to downstream applications,
either of the two types of constraints is necessary
to completely eliminate hallucinations from LLM:s.
And the FST constraints are more general and more
effective as they affect beam search by rejecting
non-wellformed hypotheses during search.

4.4 Main Results: LL.Ms against Structured
Prediction Models

Using the IWSLT TED datasets as preprocessed by
Li et al. (2021), we compare LLM models against
their approach, two strong custom structured pre-
diction baselines. We also report the performance

MODEL ‘ CONSTRAINT SEARCH  WELLFORMED F1
UNCONSTRAINED  GREEDY 99.4% -

BEAM=4 99.4% -

T5 BASE LEVENSHTEIN  GREEDY 100.0% 0.786
FINE TUNED BEAM=4 100.0% 0.788
EST GREEDY 100.0% 0.786

BEAM=4 100.0% 0.788

UNCONSTRAINED GREEDY 14.5% -

BEAM=4 52.7% -

PALM 8B LEVENSHTEIN  GREEDY 100.0% 0.715
PROMPT TUNED BEAM=4 100.0% 0.689
FST GREEDY 100.0% 0.717

BEAM=4 100.0% 0.727

UNCONSTRAINED GREEDY 85.9% -

BEAM=4 89.0% -

PALM 62B LEVENSHTEIN GREEDY 100.0% 0.735
PROMPT TUNED BEAM=4 100.0% 0.737
EST GREEDY 100.0% 0.761

BEAM=4 100.0% 0.764

Table 1: Effect of finite-state decoding constraints and
Levenshtein post alignment on segmentation F;.

of an oracle segmenter.

FIXEDLENGTH Separates the transcript into dis-
joint segments with the same number of to-
kens. While this requires no external segmen-
tation model, the resulting segments are non-
sentential (Tsiamas et al., 2022).

ORACLE Uses punctuation from the reference
transcripts to segment. The segmentation is
projected onto Levenshtein-aligned words in
the noisy ASR transcripts (§3.2.2).2

PUNCTUATE An interpretable two-pass segmen-
tation that first infers punctuation (Soboleva
et al., 2021), then uses a fixed set of inference
rules to differentiate sentence-terminal punc-
tuation marks from sentence-internal ones as
in “St. John” and “The end.”

BIGRU F.T. On the IWSTL data, fine-tunes a shal-
low biGRU model (§3.1) trained on the C4
data set (Raffel et al., 2020) using the same
rules in PUNCTUATE to derive sentence bound-
aries as supervision. The model has 1 left-to-
right GRU layer, 1 right-to-left GRU layer, and
1 GRU layer in the decoder. It uses embed-
dings of character n-gram projections (Zhang
et al., 2019).

T5-{BASE,11B} Fine-tunes the base or 11B (xxI)
T5 model (Raffel et al., 2020) on the IWSLT
data.

%A true oracle would optimize corpus-level BLEU over all
2" segmentations, but this is intractable.
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F1 EN-DE EN-ES EN—AR
Policy TED 2014 2014 2015 2018 2014 2015 2018 2014 2015 2018 Avg
Baselines and Oracle:
ORACLE 1.000 26.66 30.24 25.21 4038 41.72 4184 1566 18.18 17.59 29.62
FIXEDLENGTH 0.041 20.82 2345 19.66 3276 34.03 34.01 12.64 1479 1392 23.66
LIET AL. (2021) - - 27.00 22.00 - - - - - - -
Small Structured Prediction Models:
PUNCTUATE - 2280 2630 21.60 3570 3690 36.70 13.70 1580 1540 25.81
BIGRU E.T. 0.697 2455 28.10 23.14 3731 39.08 38.64 1441 16.77 16.19 27.39
LLMs:
T5-BASE 0.788 2528 29.14 24.05 38.75 4023 3996 1494 1732 16.57 2833
T5-11B 0.821 25.63 29.63 24.27 39.16 40.64 40.05 1531 17.60 16.48 28.66
T5-11B-ASR 0.836 25.71 29.28 2422 39.11 4047 40.02 1524 17.58 16.66 28.59
PALM-PROMPTTUNED-62B 0.764 25.10 28.69 2392 3852 40.01 39.22 15.03 17.13 16.58 28.08
PALM-PROMPTTUNED-62B-ASR 0.781 25.15 29.09 23.71 38.69 40.07 3931 15.13 17.21 16.76 28.17
PALM-FINETUNED-62B 0.820 25.71 29.19 2397 3896 40.56 39.74 15.07 17.66 1690 28.51
PALM-FINETUNED-62B-ASR 0.832 25.84 29.37 24.13 39.02 4046 39.89 15.17 17.80 16.65 28.61
PALM-PROMPTTUNED-540B 0.816 2544 2929 2423 3895 40.70 39.74 15.03 17.61 16.86 28.49
PALM-PROMPTTUNED-540B-ASR 0.835 2552 2937 24.15 39.08 40.67 39.98 15.11 17.64 16.61 28.56

Table 2: Segmentation F1 scores on dev set and BLEU scores on dev and test sets, translating into German, Spanish,

and Arabic.

T5-11B-ASR Fine-tunes the 11B T5 model on
the ASR output of IWSLT train and dev set.
Sentence boundaries are projected from refer-
ence transcripts in the same way as ORACLE.

PALM-PROMPTTUNED-{62B,540B}{,-ASR}
Prompt-tunes the PaLM model (Chowdhery
et al., 2022) on the IWSLT data.

PALM-FINETUNED-62B{,-ASR} Fine-tunes
the 62B PaLM model.

The peer-reviewed state of the art for long-form
speech translation is Li et al. (2021) on the IWSLT
data set for EN—DE. Compared to ORACLE, there
is still a large gap of 3 BLEU points which can be
closed by improving segmentation alone.

Table 2 lists the complete set of results. BIGRU
F.T. already beats Li et al. (2021) by more than 1
BLEU point for EN—DE, proving itself as a strong
structured prediction baseline. T5 and PaLM mod-
els improve the results furthermore. Within the T5
group, T5-11B improves over T5-BASE by 3%
in segmentation F which translates to consistent
BLEU score improvement in almost all data sets.
Within the PaLLM group, the prompt-tuned 540B
model is about 5% more accurate than the 62B
counterpart. Given the large number of parameters,
fine-tuning PalLM models is very expensive. For
the completeness of comparison, we include the
fine-tune result for PaLM 62B. Its result is on-par
with the T5 11B model. This fact indicates that

T5’s encoder—decoder architecture has an induc-
tive bias advantage over the PaLM model’s decoder
only architecture for this task, from a parameter
efficiency point of view. But the strength of the
PalLM family lies in its largest member. The 540B
model with a tiny tuned prompt is as effective as
the fully fine-tuned TS5 11B or PaLM 62B.

4.5 Robustness to Speech Recognition Errors

One key difference between cascade speech transla-
tion and typical document-level translation is that
transcription errors can be introduced, which propa-
gate into the translation. When the input to segmen-
tation models contains speech recognition errors,
can such models still predict sentence boundaries
accurately? The answer is yes, to a certain extent.
To test this, we replace the tuning data from ground-
truth transcripts with punctuation-derived sentence
boundaries to ASR transcripts that have sentence
boundaries projected from their parallel ground-
truth transcript counterparts. For example, we will
tune the models to predict the segmentation for the
passage: this train leaves at for <SENT> the next
train will arrive in ten minutes, even though there
is a lexical error (for versus four).

Table 2 shows that training on the ASR tran-
scripts is indeed beneficial. On top of the strong
results of the TS 11B model trained on ground-truth
transcripts, the ASR version obtains another 1% F
improvement. The same is true for the PaLM 62B
prompt-tuned and fine-tuned models. The relative
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Figure 6: Contrast of segmentation F} on the dev set
between models trained on gold and ASR transcripts.

improvement is consistent across different prompt
sizes and fine-tuning methods (Figure 6). Still, the
small segmentation improvement does not translate
into significant BLEU score improvements.

5 Error Analysis

5.1 Segment Length Histogram Analysis

To understand the improvements and the remaining
errors, we first compare the length distribution of
the ORACLE, the small model BIGRU, T5-11B,
and PALM-540B. Figure 7 indicates that the more
very long (> 50) segments a model has, the lower
its F1 and BLEU scores tend to be. Both LLM
models were able to reduce the number of very
long segments, bringing it closer to the oracle.

5.2 Qualitative Analysis

Table 3 shows examples where the T5-11B-ASR
model outperforms competing models. In the first
two examples, the LLM model is able to capture
the larger context and therefore make the correct
prediction. The third example typifies the cases
where T5-11B, which is fine-tuned on ground-truth
transcripts without ASR errors, tends to make more
wrong predictions when the input text is not fluent.

Table 4 shows typical errors the T5-11B-ASR
model makes. In the first two, ASR errors make
the transcript difficult to parse. The third one is lin-
guistically ambiguous. In the last one, the model’s
prediction is actually closer to the ground-truth seg-
mentation than the Levenshtein-(mis)aligned ASR
transcript.

Overall, LLMs such as T5-11B-ASR made real
progress in predictions requiring longer context.
However, even though fine-tuning on ASR tran-
scripts improved robustness to disfluent input, over-
coming ASR errors remains challenging.

500 T T T T Oracl T

- racle mmm—m
450 - M BiGRU =
400 | PaLM-540B === -
350 |- T5-11B === |
300 B

250 b
200
150 -
100
50

10 20 30 40 50+

Figure 7: Histograms of segment lengths for ORACLE,
BIGRU, PALM PROMPTTUNED 540B ASR, and T5
11B ASR.

6 Related Work

Speech translation. While end-to-end systems
for speech translation have exceeded the perfor-
mance of cascade models on short sequences (Weiss
et al., 2017) even on public data (McCarthy et al.,
2020), long-form audio is typically translated with
cascades. Previous work uses tagging approaches to
separate text into independently translatable units.
Segmenting long texts into units suitable for trans-
lation has been a recurring topic in MT research
(Li et al., 2021; Tien and Thi Minh, 2019; Pouget-
Abadie et al., 2014; Doi and Sumita, 2003; Goh
and Sumita, 2011). To bridge the gap between ASR
and MT, Li et al. (2021) address long-form speech
translation. Claiming that segmentation is the bot-
tleneck, they adapt their MT model to work with
automatic segmentations, however inaccurate they
may be.

We are training our models to minimize the loss
of source sentence segmentation. The ultimate ob-
jective is improving the downstream translation
quality. It is interesting to explore reinforcement
learning for segmentation (Srinivasan and Dyer,
2021), but the state space is vast for the long-form
segmentation problem compared to prior work on
RL-based segmentation.

Finally, one may consider additional sources of
data or training examples to improve modeling.
Using prosodic features when they are available is
viable (Tsiamas et al., 2022); however, we show that
LLMs close most of the accuracy gap without these.
As a contrasting approach, Kumar and Byrne (2002)
focus on segmenting an ASR lattice, rather than
the decoded transcript. Finally, data augmentation
(Pino et al., 2019; McCarthy et al., 2020; Li et al.,
2021) can complement our approach.
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Reference: this great renaissance for ancient egyptian art architecture and religion<SENT>egyptologists have always known the site
ASR: this great renaissance for ancient egyptian art architecture and religion<SENT>egyptologists have always known the site
BIGRU: this great renaissance for ancient egyptian art architecture and religion egyptologists have always known the site
T5-11B-ASR:this great renaissance for ancient egyptian art architecture and religion<SENT>egyptologists have always known the site

Reference: looking for layers of human occupation<SENT>and five meters down underneath a thick layer of mud we found a dense layer of pottery
ASR: looking for layers of human occupation<SENT>and five meters down underneath a thick layer of mud we found a dense layer of pottery

BIGRU: looking for layers of human occupation and five meters down underneath a thick layer of mud<SENT>we found a dense layer of pottery
T5-11B-ASR: looking for layers of human occupation<SENT>and five meters down underneath a thick layer of mud we found a dense layer of pottery

Reference:actually started in 1984 bce at a not-lost-for-long city found from above

ASR: how actually actually started in 1984 bc at a not lost for long city found from above

T5-11B: how<SENT>actually actually started in 1984 bc at a not lost for long city found from above
T5-11B-ASR: how actually actually started in 1984 bc at a not lost for long city found from above

Table 3: Cases where the T5-11B-ASR model is more accurate.

Reference: designers can materialize their ideas directly in 3d and surgeons can practice on virtual organs underneath the screen
ASR: designers can materialize their ideas directly in 3d sturgeons can practice a virtual audience underneath the screen
T5-11B-ASR: designers can materialize their idesas directly in 3d<SENT>sturgeons can practice a virtual audience underneath the screen.

Reference: But our two hands still remain outside the screen <SENT> how can you reach inside and interact with the digital information
ASR: what are two hands still we made outside the screen that <SENT> how can you reach inside and interact with the digital information
T5-11B-ASR: what are two hands still we made outside the screen that how can you reach inside and interact with the digital information

Reference: this is really what brought me to using satellite imagery<SENT>for trying to map the past i knew that i had to see differently
ASR: this is really what brought me to using satellite imagery<SENT>for trying to map the past i knew that i had to see differently
T5-11B-ASR: this is really what brought me to using satellite imagery for trying to map the past<SENT>i knew that i had to see differently

Reference: the equivalent of locating a needle in a haystack blindfolded wearing baseball mitts<SENT>so what we did i
ASR: the equivalent of locating a needle in a haystack blindfolded wearing baseball<SENT>minutes so what
T5-11B-ASR: the equivalent of locating a needle in a haystack blindfolded wearing baseball minutes<SENT>so what we did is

Table 4: Cases where the T5-11B-ASR model’s prediction is wrong.

Text normalization and segmentation. Mans-
field et al. (2019) model text normalization as a
sequence-to-sequence problem, using <self> tags
to bias toward copying, but they place no search
constraints to ensure well-formedness. Zhang et al.
(2019) also use finite automata intersected with a
neurally generated lattice during decoding.

Wicks and Post (2021) provide a unified solution
for segmenting punctuated text in many languages;
however, ground-truth punctuation is not present in
speech recognition output.

Structured prediction as sequence-to-sequence.
Vinyals et al. (2015) show that attention-enhanced
sequence-to-sequence models can be trained for
complex structured prediction tasks such as syn-
tactic parsing. Raffel et al. (2020) takes a step
further to model all text-based language problems
in a text-to-text format. Paolini et al. (2021) framed
many NLP tasks as translation between augmented
natural languages.

Constrained decoding. Hokamp and Liu (2017)
and Post and Vilar (2018) introduced lexical con-
straints in neural machine translation beam search.
Anderson et al. (2017) formulated lexical con-
straints as finite-state machines. Deutsch et al.
(2019) used an active set method to efficiently com-

pose many automata with beam search.

7 Conclusion

We have presented new methods for long-form
speech translation by coupling source-side large
language models with finite-state decoding con-
straints, allowing large language models to be used
for structured prediction with a guarantee for well-
formedness in the output space. Finite-state con-
straints are especially effective when the model
is decoder-only, relatively small, or has not been
completely fine-tuned (only prompt-tuned, or few-
shot-learned) for the structured prediction task. We
also observe that even though complete fine-tuning
and enlarging model size can reduced the rate of
invalid output, models alone are not capable of
completely eliminate invalid output.

Fine-tuning on in-domain ASR transcripts con-
taining recognition errors and disfluency improves
segmentation accuracy over training on clean tran-
scripts. Our qualitative analysis shows the largest
category of remaining errors is ASR errors which
make transcripts difficult to parse and segment. The
fact that LLMs are capable of adapting to ASR
errors points to future research directions of contex-
tualized ASR error recovery.
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Limitations

Large language models are more expensive and
slower compared to dedicated smaller models for
sentence segmentation. The additional latency intro-
duced in the speech-to-text cascade by such models
can be too high for online processing.

We use a sliding window algorithm to combine
segmentation outputs from adjacent fixed-size text
windows. The choice is a sub-optimal heuristic
efficiency-accuracy tradeoff. Recently, large lan-
guage models have become increasingly capable
of handling long paragraphs. We can simplify the
system by applying large language models directly
on long paragraphs. However, as the output length
increases, the likelihood of hallucinations increases,
making decoding constraints more important. More-
over, there may always be long-form audio whose
transcriptions exceed the context length of even the
largest language models.

Finally, adhering to the cascade architecture—
speech-recognition followed by text-to-text
translation—introduces the problem of error
propagation.  Our error analysis has shown
that speech recognition errors form the main
category within the remaining errors made by our
systems. Can text-only large language models
systematically correct speech recognition errors
without introducing hallucinations? Furthermore,
can a speech recognition model that incorporates
a large language model jointly recognize and
segment the transcription better than a cascade
system?
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