
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 8418–8443
December 6-10, 2023 ©2023 Association for Computational Linguistics

Generating Data for Symbolic Language
with Large Language Models

Jiacheng Ye♠, Chengzu Li♣, Lingpeng Kong♠, Tao Yu♠
♠The University of Hong Kong ♣University of Cambridge

{jcye2,lpk,tyu}@cs.hku.hk, cl917@cam.ac.uk

Abstract

While large language models (LLMs) bring
not only performance but also complexity, re-
cent work has started to turn LLMs into data
generators rather than task inferencers, where
another affordable task model is trained for
efficient deployment and inference. How-
ever, such an approach has primarily been
applied to natural language tasks, and has
not yet been explored for symbolic language
tasks with complex structured outputs (e.g.,
semantic parsing and code generation). In
this paper, we propose SYMGEN which uti-
lizes LLMs for generating various annotation-
expensive symbolic language data. SYMGEN
consists of an informative prompt to steer gen-
eration and an agreement-based verifier to im-
prove data correctness. We conduct exten-
sive experiments on six symbolic language
tasks across various settings. Compared with
the LLMs, we demonstrate the 1%-sized task
model can achieve comparable or better perfor-
mance, largely cutting inference and deploy-
ment costs. We also show that generated data
with only a few human demonstrations can
be as effective as over 10 times the amount
of human-annotated data when training the
task model, saving a considerable amount of
annotation effort. SYMGEN takes a step to-
ward data generation for annotation-expensive
complex tasks, and we release the code at
https://github.com/HKUNLP/SymGen.

1 Introduction

In the natural language processing (NLP) literature,
the march of scaling language models has been an
unending yet predictable trend, with new models
constantly surpassing previous ones in not only per-
formance but also complexity (Radford et al., 2019;
Brown et al., 2020; Chowdhery et al., 2022). Such
large language models (LLMs), however, incur
a large computational cost in practice, especially
when deployed in resource-restricted systems and
inference in low-latency applications (Bommasani

Spider [SQL Query]

GeoQuery [Prolog Command]

MTOP [TOP Representation]

Break [QDMR]

Input: what is the population of montana?
Output: answer(A,(population(B,A),
                               const(B,stateid(montana))))

Input: Resume the timer in 10 seconds
Output: [IN:RESUME_TIMER [SL:METHOD_TIMER 
timer ] [SL:DATE_TIME in 10 seconds ] ]

Input: List the type of bed and name of all traditional rooms.
Output: SELECT roomName,bedType FROM Rooms 
WHERE decor = “traditional”

Input: How many large metallic items are there?
Output: 1#) return items 2#) return #1 that are large 3#) 
return #2 that are metallic 4#) return number of #3

Figure 1: Sample symbolic language datasets with com-
plex structured outputs. The names of the symbolic
languages are shown in square brackets.

et al., 2021).
Instead of treating LLMs as edge task infer-

encers, a recent line of work leverage LLMs as
data generators, with the generated data being used
to train more affordable task-specific models for
efficient deployment and inference (Schick and
Schütze, 2021; Meng et al., 2022; Ye et al., 2022b,
inter alia). With only a few or even without demon-
stration examples, the LLMs can generate high-
quality data via in-context learning (Brown et al.,
2020) or prompting (Radford et al., 2019). The task
models trained on these generated data can achieve
comparable or even better performance than the
LLMs and enjoy a low inference cost at the same
time.

However, previous work mainly focuses on gen-
erating natural language data. To what extent this
approach works for complex structured data, such
as meaning representation and codes (Figure 1),
remains an open question. The investigation of
data generation via LLMs in the context of such
symbolic language tasks is also extremely intrigu-
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ing for two reasons: 1) the human annotation pro-
cedure for these tasks requires expensive domain
expert efforts (Clarke et al., 2010) and carefully-
designed strategies (Wang et al., 2015; Iyer et al.,
2017; Herzig and Berant, 2019, inter alia); 2) con-
ventional data augmentation methods aiming at en-
riching datasets for these tasks require handcrafted
rules, a considerable number of expert demonstra-
tion examples, and are mostly task-specific (Jia and
Liang, 2016; Yu et al., 2018a; Andreas, 2020, inter
alia).

To address these issues, we propose Symbolic
data Generation (SYMGEN) for various annotation-
expensive symbolic language tasks. SYMGEN

works with an LLM trained on code (i.e., Codex-
175B; Chen et al. 2021) and optional task-specific
structure knowledge (e.g., database for SQL; Iyer
et al. 2017) through prompting or in-context learn-
ing. SYMGEN also comprises an agreement-based
verification module, in which the outputs are ver-
ified by execution (e.g., programs, logical forms)
or formatting (e.g., pseudo-logical forms), to en-
sure high-quality generations. With the generated
data, we train efficient task models with around 1%
size of Codex for task inference (e.g., T5 with size
770M and 3B; Raffel et al. 2020).

We experiment on six symbolic languages which
are SQL, Bash, Python, Prolog, Task Oriented Pars-
ing representation (TOP-representation; Gupta et al.
2018) and Question Decomposition Meaning Rep-
resentation (QDMR; Wolfson et al. 2020). We con-
sider generating data in zero-shot, few-shot, and
full data settings. Our key research findings include
the following:

• Compared with the gigantic LLM inferencer,
the approximately 1%-sized task inferencer
can achieve comparable or superior per-
formance, producing state-of-the-art perfor-
mance in some tasks (§3.4);

• Compared with human annotations, the per-
formance on few-shot generated data is com-
parable with that on more than 10x or 100x
human-annotated data, greatly reducing anno-
tation effort for complex tasks (§3.5);

• In a zero-shot setting, the small task model
can surpass the same model trained with full
human annotations as well as the larger Codex
on specific symbolic language such as SQL
(§3.6);

%geobase.pl
:- ensure_loaded(library('lists')).
:- ensure_loaded(library('ordsets')).
:- ensure_loaded(geobase).
country(countryid(usa)).
state(stateid(State)) :- state(State,_,_,_,_,_,_,_,_,_).
city(cityid(City,St)) :- city(_,St,City,_).
river(riverid(R)) :- river(R,_,_).
…

%Translate the natural language description to prolog commands.

%Natural Language: what state is the biggest?
answer(A,largest(A,state(A)))

%Natural Language: what is the population of montana?
answer(A,(population(B,A),const(B,stateid(montana))))
…

%Natural Language: name the states that the mississippi river 
flows through .
answer(A,(river(B),traverse(B,A),const(B,riverid(mississippi))))

Symbolic Knowledge

Natural Instruction

Demonstrations

Generated Example

Overall Prompt

Figure 2: An example of an overall prompt that consists
of symbolic knowledge, natural instruction and demon-
strations, and a newly generated example by Codex for
the GeoQuery dataset.

• During data generation for symbolic language,
symbolic knowledge and demonstrations have
a greater impact than natural language instruc-
tions, and verification is essential to ensure
data quality (§3.7, §4.2).

2 SYMGEN

To automatically curate numerous data for vari-
ous annotation-expensive symbolic language tasks,
we propose a unified pipeline, named SYMGEN.
SYMGEN comprises data generation by prompt-
ing LLMs and data verification by executing or
formatting.

2.1 Prompt-based Generation
Human annotators need to carefully review the an-
notation instructions to perform annotation, and
the same is true for LLMs. We include natural
language instructions, task-related symbolic knowl-
edge (i.e., database, ontology), and a few labeled
examples into prompt construction to steer the gen-
eration. An example of the prompt is shown in
Figure 2. We display prompts for each task in Ap-
pendix G.

Different from previous work in classifica-
tion (Schick and Schütze, 2021; Meng et al., 2022;
Ye et al., 2022b) where one of the limited label de-
scriptions is used to guide the generation of xi for
classification tasks, the output structures for sym-
bolic language is unenumerable and requires task-
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specific strategies to construct. Hence, we first gen-
erate input xi and then the output yi conditioned
on the generated xi. LLMs may generate erroneous
outputs due to not satisfying different grammatical
constraints defined in different symbolic languages.
Therefore, we over-generate multiple candidates
for further verification. After prompt-based gen-
eration, we have a dataset D = {(xi, {yi,j})} for
each task.

2.2 Agreement-based Verification
In this work, we adopt an over-generation and ver-
ification approach to improve generation quality.
Formally, given a set of sampled output answers
{yi,j} for input xi, we verify each answer yi,j by
calculating:

wi,j =
∑

k

sim(exec(yi,j), exec(yi,k)), (1)

where exec = (·) is a task-specific execution or
formatting function (e.g., executing python pro-
gram, formatting QDMR into graph representa-
tion), sim = (·, ·) ∈ [0, 1] is a similarity function
to compare the two results after running function
exec. A large value of wi,j indicates the j-th an-
swer is highly similar to others, and is thus less
prone to be mistakenly labeled. The value of the
most confident answer wi = maxwi,j is used to
measure the quality of the input-output pair, and
we only keep those with wi larger than a certain
threshold T , indicating the input-output pair is suf-
ficiently confident.

In practice, when performing exec, we discard
yi,j that fails in exec, which means it contains
grammatical errors. When using Exact-Match
(EM) as the similarity function, the similarity score
ranges in {0, 1}, with 1 indicating that the two ex-
ecution results are exactly the same. If multiple
answers have the same value, we choose the an-
swer that has the maximum log-likelihood during
generation.

3 Experiments

3.1 Datasets and Evaluation Metrics
We consider five datasets that cover a range of
programming languages and symbolic meaning
representations: Spider (SQL; Yu et al. 2018b),
NL2Bash (Bash; Lin et al. 2018), MBPP (Python;
Austin et al. 2021), MTOP (TOP-representation;
Li et al. 2021) and Break (QDMR; Wolfson et al.
2020). We summarize the choice of the execution

Dataset exec(·) sim(·, ·) Evaluation
Spider Execution EM EM, EX
NL2Bash Bashlex BLEU BLEU
MBPP Execution EM EX
GeoQuery Execution EM EM, EX
MTOP TOP Tree EM EM, Template
Break QDMR Graph EM LF-EM

Table 1: Summary of evaluation metric(s), execution
function exec(·) and similarity function sim(·, ·) used
in verification module for each task. EM and EX refers
to Exact-Match and Execution accuracy.

or execution function exec, similarity function sim,
and evaluation metrics for each dataset in Table 1.
Details of the datasets and evaluation metrics are
illustrated in Appendix A.

3.2 Comparison Methods

We generate data under various settings such as
zero-shot and few-shot, and then train task models,
e.g., T5-large and T5-3B, for inference. We com-
pare the performance of the task models with both
LLM inferencers and the task models that are di-
rectly finetuned with human-annotated data rather
than LLM-generated data:

• Codex (Chen et al., 2021). The tuning-
free method that performs prompt-based in-
context learning with Codex. Due to the
length restriction, we perform prompt retrieval
to include as many similar examples as possi-
ble in the full data setting.

• Codex + Verification. The method is similar
to the above but further includes the answer
verification module as discussed in § 2.2.

• T5-Large (Raffel et al., 2020). The tuning-
based method that directly fine-tunes T5-large
model with few or full human-annotated data
instead of generated data.

• T5-3B (Raffel et al., 2020). The same method
as the one above, but using a T5-3B model.

• SOTA. The state-of-the-art models for each
dataset. The models and the corresponding
number of parameters are Spider (Scholak
et al. 2021; 3B), NL2Bash (Shi et al. 2022;
175B), MBPP (Chen et al. 2022; 175B),
MTOP (Xie et al. 2022; 3B), Break (Has-
son and Berant 2021; ∼300M) and GeoQuery
(Qiu et al. 2022b; 11B).
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Model Spider NL2Bash MBPP GeoQuery MTOP Break
∆EM EX Char-BLEU EX EM EX Templete EM LF-EM

Full data setting
#Human annotations 7,000 8,090 374 600 15,667 44,321
#SYMGEN 75,845 47,803 36,367 44,266 36,085 46,839
SOTA 75.50 71.90 58.50 67.90 93.60 - 87.74 83.76 46.90
Codex 58.03 64.41 67.68 60.00 79.64 94.29 85.77 78.61 47.40
Codex + Verification 60.54 70.21 75.40 65.56 79.29 94.64 87.20 80.63 50.10 ↑ 3.08
T5-Large 66.63 64.12 65.95 13.33 83.93 91.79 86.85 83.04 52.70
T5-Large + SYMGEN 70.21 69.63 67.17 43.33 84.64 96.07 88.59 84.83 54.50 ↑ 5.68
T5-3B 71.76 68.38 65.97 - 83.21 89.29 87.74 83.76 53.30
T5-3B + SYMGEN 73.40 73.11 67.26 - 84.29 96.07 88.50 84.47 55.20 ↑ 2.36
Few-shot setting
#Human annotations 10 10 10 10 10 10
#SYMGEN 77,818 39,585 46,793 31,968 40,673 41,385
Codex 53.77 65.76 61.58 58.89 39.64 65.00 27.52 18.97 26.10
Codex + Verification 53.97 67.89 64.16 67.78 41.79 72.50 29.31 20.49 28.20 ↑ 3.21
T5-Large 0.00 0.00 17.65 0.00 10.00 12.86 8.01 4.25 0.60
T5-Large + SYMGEN 51.84 59.48 57.83 35.56 43.21 77.14 30.34 23.85 30.30 ↑ 39.58
T5-3B 0.97 1.26 28.11 - 7.86 10.71 5.50 2.50 1.20
T5-3B + SYMGEN 58.51 66.83 57.21 - 44.64 77.50 30.56 23.49 31.10 ↑ 41.47

Table 2: Results of data generation for training a task model under full data and few-shot settings. The top-scored
results for each setting are bold. We show the average improvement with SYMGEN across all tasks in the last
column.

3.3 Implementation Details

We use code-davinci-002 version for Codex and
T5-large and T5-3B for task models. Details are
elaborated in Appendix B.

3.4 SYMGEN + T5 vs. Codex Inferencer

In this section, we consider generating data in few-
shot and full data settings and report the model
performance in Table 2. Firstly, we can see the per-
formance of T5-Large consistently increases after
adding data from SYMGEN on all tasks. Notably,
we can achieve an on-average 40% performance
boost in the few-shot setting. Secondly, though
prompting-based inference has become the de-facto
standard to use LLMs on downstream tasks, we find
use LLMs as data generators and training a much
smaller task model can achieve comparable (e.g.,
Spider and NL2Bash) or better (e.g., Geoquery,
MTOP, and Break) performance. The reasons can
be twofold: 1) As recent work proves in-context
learning is an extreme approximation of fine-tuning
with a single-step gradient descent (von Oswald
et al., 2022; Dai et al., 2022), LLM inferencer fails
in utilizing the valuable human annotations, even
with prompt retrieval. For example, Codex can
surpass T5-3B on Spider in a few-shot setting but
cannot in full data setting; 2) the obtained knowl-
edge (i.e., generated data) from interacting with the
verifier is not explicitly learned by the LLMs, mean-

ing it never learns to correct its own mistakes, and
such knowledge also improves LLMs themselves
as shown in Haluptzok et al. (2022). In compari-
son, the task model can learn from those success-
ful interactions. Finally, we find an exception on
MBPP, where Codex inferencer significantly out-
performs T5, indicating that long-code generation
is still challenging for small-sized models.

3.5 SYMGEN vs. Human Annotations

A key benefit of SYMGEN is reducing annota-
tion effort when training a task-specific model.
We show the performance of the trained T5-large
model under various scales of human-annotated
and few-shot generated data by SYMGEN in Fig-
ure 3. When using human annotations, the model
performance grows linearly with exponentially in-
creased data size, which mirrors the power-law in
neural models (Kaplan et al., 2020). While for
10-shot generated data, the slope, which indicates
the quality of generated data, varies for different
symbolic languages. For example, it’s relatively
easier for Codex to generate SQL and Bash than
TOP-representation and QDMR, which we hypoth-
esize is due to the large amount of SQL and Bash
commands in the pretraining GitHub corpus (Chen
et al., 2021). In the extremely low resource scenario
where only 10 human annotations are given, the
performance SYMGEN can achieve, as indicated by
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Figure 3: T5-large performance trained under various scales of human-annotated and few-shot generated data by
SYMGEN. The horizontal line indicates the performance of the model trained on SYMGEN with only 10 initial
human-annotated examples, which is comparable with that on more than 10x (GeoQuery, MTOP, Break) or 100x
(Spider, NL2Bash, MBPP) human annotations.

the green horizontal line, significantly outperforms
the model trained solely on these 10 given data
points. Moreover, the intersection point of the hori-
zontal and vertical lines indicates the performance
achieved by training the model on the data gener-
ated by SYMGEN is comparable to that on at least
100 (e.g., MTOP) and up to several thousand (e.g.,
Spider) human-labeled data. This shows the poten-
tial of SYMGEN to greatly reduce the annotation
effort on complex tasks.

3.6 SYMGEN for Zero-shot Learning

Given the striking ability of SYMGEN in few-shot
data generation, we take a step forward to see
whether it can generate high-quality dataset with-
out any human annotations. We found it hard to
control the format in generating most symbolic lan-
guages without demonstrations, but we succeed
in generating SQL, as shown in Table 3. We find
with appropriate prompt and verification, one can
achieve a high zero-shot performance of 67.21, out-
performing the supervised T5-Large model. We
also note that the EM metric is much lower than
that of the T5 models, indicating Codex mostly
generates grammatically different but semantically
correct SQLs. Note for pre-trained models, leak-
age of the test data is a potential concern (Barbalau

Model EM EX
Full data setting
T5-Large 66.63 64.12
T5-3B 71.76 68.38
SOTA (Scholak et al., 2021) 75.50 71.90
Zero-shot setting
#Human annotations 0
Codex 45.45 64.89
Codex + verification 45.65 67.21
T5-Large 0.00 0.00
T5-Large + SYMGEN (140db, 71k) 45.74 56.38
T5-Large + SYMGEN (160db, 103k) 50.29 65.67
T5-3B 0.00 0.00
T5-3B + SYMGEN (140db, 71k) 48.55 61.03
T5-3B+ SYMGEN (160db, 103k) 53.38 69.25

Table 3: Results for zero-shot data generation on Spider.
We generate 71k data using databases from the training
set (140 databases), and 103k data using both the train-
ing and development sets (a total of 160 databases).

et al., 2020; Carlini et al., 2021; Rajkumar et al.,
2022). Based on the much lower EM accuracy,
we attribute the success of zero-shot learning to
prompt engineering rather than memorization.

Moreover, it has been shown that adapting to the
new environment significantly outperforms data
augmentation in the training environment by Zhong
et al. (2020b). Given no human-annotated data on
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the development environment, we further generate
data for those 20 databases as surrogate knowl-
edge for adaptation. We can see the results signif-
icantly increase after training on those additional
data, and even outperform the large Codex as well
as the human-supervised T5-Large model, indicat-
ing SYMGEN can be used for zero-shot adaptation
for specific symbolic languages such as SQL.

3.7 Prompt Engineering in SYMGEN

Recent work highlights PLM sensitivity to the nat-
ural instructions (Zhao et al., 2021; Liu et al., 2022;
Gao et al., 2021). In this section, we study the
influence of symbolic knowledge (e.g., database
and ontology), natural instruction, demonstration,
and language reformulation on answer generation.
An example of these four types of information in
prompts is shown in Figure 2. We report the re-
sults of removing certain types of information in
Table 4. Removing symbolic knowledge or demon-
strations has a greater impact on the answer quality
than natural instructions, suggesting symbolic lan-
guage prediction benefits more from the provided
symbolic knowledge and exemplar pairs. An excep-
tion is on Spider where removing demonstrations
slightly hurt performance, which is mainly because
Spider is a cross-domain dataset and the provided
few-shot examples are from different domains (see
example in Figure 10).

As also discussed in §3.4 that Codex is more
familiar with SQL than Prolog, we further experi-
ment on GeoQuery-SQL dataset (Iyer et al., 2017)
which converts Prolog commands to SQL com-
mands. We show a comparison of the two prompts
in Appendix Figure 21. We found altering Pro-
log to SQL in prompts increases the performance
dramatically, indicating aligning the expression of
prompts with pre-training corpus can be another
effective way of prompt engineering.

4 Analysis

4.1 How does SYMGEN compare with data
augmentation methods?

For training a better task model for symbolic lan-
guage tasks, data recombination (Jia and Liang,
2016) has been the common choice due to its
compositional characteristics. We further compare
SYMGEN with two competitive baselines for se-
mantic parsing: Jia and Liang (2016) which uses an
SCFG induced by domain-specific heuristics, and
Andreas (2020) which compositionally reuses pre-

Spider NL2Bash MTOP Break
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Figure 4: (a) Comparison of different verification meth-
ods. We show improvement over the baseline which
directly takes the answer with maximum log-probability
as output without verification; (b) Results for Codex
with in-context learning and T5-large with SYMGEN us-
ing different numbers of human annotations on MTOP
dataset.

viously observed sequence fragments in novel en-
vironments. We generate 1,000 instances for each
method and report the results in Table 5. We can
see SYMGEN provides a larger boost, especially in
the few-shot setting, where Andreas (2020) failed
due to the lack of initial seed data.

4.2 How does the verification method affect
performance?

We now investigate the effectiveness of the veri-
fication method discussed in §2.2. Figure 4 (a)
shows various answer verification methods, com-
pared with picking the top-likelihood candidate
without verification. We observed that verifying
based on agreements of self-generated candidates
(sim(·, ·)) surpasses the without-verification base-
line, and also improves answer quality on all the
tasks more than simply checking grammar correct-
ness (exec(·)). Besides answer verification, we also
show filtering low-confidence questions in Table 7,
where the model trained on a much smaller size of
data can outperform the one trained on the original
data. This further indicates that low-quality data
can interfere with the training process.

4.3 How does a different number of human
annotations affect SYMGEN?

By far we have compared the few-shot results of
Codex with in-context learning and T5-large with
SYMGEN using 10 human annotations. In this
section, we experiment with various amounts of
human annotations and report the results in Fig-
ure 4 (b). We found the gap in performance be-
tween Codex and T5-Large remains virtually un-
changed, which indicates the performance gain
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Prompt Types Spider MTOP GeoQuery GeoQuery-SQL
EM EX Templete EM EM EX EM EX

Full prompt 53.97 67.89 29.31 20.49 41.79 72.50 71.43 85.36
- w/o natural instruction 54.64 67.02 25.19 15.21 34.29 71.43 68.57 83.57
- w/o symbolic knowledge 24.47 26.40 21.12 13.15 31.07 45.00 56.43 67.50
- w/o instruction & knowledge 23.60 26.31 16.51 10.38 25.00 41.79 55.00 66.43
- w/o demonstrations 45.65 67.21 0.00 0.00 0.00 17.86 39.29 61.79

Table 4: Results of few-shot answer generation with different prompts. GeoQuery-SQL refers to converting the
language of few-shot examples from the original Prolog commands in GeoQuery dataset to SQL. We found symbolic
knowledge and language reformulation both play key roles in generation quality, and the effect of natural instruction
varies for different symbolic languages.

Model Few-shot Full-data
EM Exec EM Exec

T5-Large 10.00 12.86 83.93 91.79
+ Jia and Liang (2016) 19.29 25.00 85.36 92.14
+ Andreas (2020) - - 83.21 91.79
+ SYMGEN 36.79 57.86 87.50 92.86

Table 5: Comparison of different data augmentation
methods on GeoQuery dataset. SYMGEN provides a
larger boost to the performance, especially in the few-
shot setting.

obtained from pipeline alternation (i.e., from in-
context learning to data generation and supervised
tuning in SYMGEN) maintains as the size of human
annotations grows. This further proves that one can
always apply SYMGEN in different real scenarios
from little to relatively more annotated data.

4.4 Data Analysis
We further conduct statistical and human evalu-
ations on the quality of generated data from the
perspective of question diversity, answer complex-
ity, and data pair quality, based on the generated
data for MBPP in the full data setting and Spider
in the few-shot setting.

Question Diversity We measure the question di-
versity of the generated data for Spider and MBPP
by question length and question distribution. As
shown in Figure 5 (a), we find that the questions
generated by SYMGEN are distributed similarly to
the original dataset with more coverage. We also
find the average length of the generated questions
is longer than the original dataset for Spider but
similar for MBPP as shown in Appendix E.1.

Answer Complexity We first measure the com-
plexity of answers based on their response lengths.
For Spider, as shown in Figure 5 (b), the answers
generated by SYMGEN are longer on average than

0.0 0.2 0.4 0.6 0.8 1.0
MBPP Question Distribution
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0.8

1.0 SymGen
Original

0 50 100 150 200
Spider Answer Length

0.00

0.01

0.02

0.03

0.04
SymGen
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Figure 5: (a) TSNE visualization of data generated by
SYMGEN (randomly sample 5000 examples) and the
original data in the MBPP dataset. (b) Comparison of
the length distribution of answers between the original
data and SYMGEN on Spider, with the length as x axis
and the probability density as y axis. More visualiza-
tions are presented in Appendix E.1.

the original dataset. Moreover, we measure the
answer by their hardness, which is defined by the
number of keywords following (Yu et al., 2018b).
Of all the 77,828 data generated by SYMGEN,
14.15% examples are easy SQLs, 35.83% exam-
ples are of medium level, 28.13% examples are
hard examples and 21.89% examples belong to
extra hard SQLs. For MBPP, we found that al-
though the generated answers have similar distri-
bution with human-annotated data in token-level
length, SYMGEN tends to generate code with more
number of rows compared to human-annotated data
(see Figure 8 in the Appendix). This indicates that
SYMGEN can generate answers in different com-
plexity levels, especially harder ones compared to
the original human-annotated data.

Human Evaluation of Data-pairs In order to
evaluate the quality of generated data, we also
present human evaluations on the data-pair qual-
ity of generated Spider and MBPP datasets. We
randomly sample 100 examples from SYMGEN

for both datasets and manually review the sampled
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data. We find 81 and 79 examples are correct for
MBPP and Spider, respectively. Apart from that,
we also find that SYMGEN generates more oper-
ators such as julianday, union in SQL compared
to the original dataset, and the generated questions
covered a wide range of data structures including
dict, list, and queue for MBPP.

However, there are mainly three issues that exist
in the data generated by SYMGEN in both MBPP
and Spider. First, SYMGEN may generate ambigu-
ous and under-specified questions (examples in Ap-
pendix E.3). Secondly, the answers sometimes can
be meaninglessly complex. In Spider, SYMGEN

tends to generate SQL queries with multiple JOIN
clauses, therefore making the response sequences
longer compared to the original dataset. Similarly.
the generated Python codes tend to use for-loop
and recursion instead of the built-in functions of
Python (e.g. max, min). Thirdly, it can be difficult
to verify the correctness of the generated answers
based on either the original databases in Spider or
the test cases that are generated along with Python
solutions for MBPP. A quarter of the generated
SQL queries have empty execution results on the
original databases of Spider and more than 10% of
the generated python codes have wrong test cases.
We hope these could help to shed light on possible
improvements for future works.

5 Related Work

5.1 Prompting LLMs

In recent years, large pre-trained language mod-
els (LLMs) have shown promising performance on
zero-shot and few-shot learning tasks by prompt-
based in-context learning (Radford et al., 2019;
Brown et al., 2020, inter alia). By explicitly cu-
rating to include code (programming language)
into pre-training corpora (Wang, 2021; Chen et al.,
2021; Chowdhery et al., 2022, inter alia), LLMs
exhibit surprising ability in symbolic tasks such
as semantic parsing (Shin and Van Durme, 2022)
and code generation (Austin et al., 2021; Poesia
et al., 2021; Rajkumar et al., 2022). Nevertheless,
prompt-based inference with LLMs suffers from
several problems including low inference efficiency
and expensive deployment cost. In this work, we
employ LLMs as data generators rather than direct
inferencer, which generate supervised data with
minimal human effort to improve the performance
of much smaller models for efficient inference on
downstream tasks.

5.2 Data Generation

Data generation is an alternative to data augmenta-
tion by creating entirely new examples instead of
combining original ones (Jia and Liang, 2016; An-
dreas, 2020, inter alia) (see Appendix F for details).
Conventional approaches adopt fine-tuned genera-
tive models (Zhong et al., 2020b; Guo et al., 2021;
Wang et al., 2021a, inter alia) as input generators,
with a semantic parser (e.g., PCFG grammar) for
sampling symbolic outputs. Considering the diffi-
culty in designing grammar to sample useful sym-
bolic forms in complex domains, Yang et al. (2022)
assumes access to an unlabeled corpus of symbolic
language, which is represented in canonical forms,
and simulates natural language inputs via LLMs.
In comparison, we explore directly generating sym-
bolic forms as well as natural languages without
the need to design task-specific grammars for sym-
bolic forms or synchronous context-free grammars
(SCFG) that map between canonical forms and
symbolic forms. Data generation via LLM has
also been explored under various contexts, e.g.,
cross-lingual semantic parsing (Rosenbaum et al.,
2022), python program (Haluptzok et al., 2022),
instruction generation (Wang et al., 2022), and mul-
timodal tasks (Liu et al., 2023; Pi et al., 2023), in
contrast, we aim to unify the data generation proce-
dure for various symbolic languages tasks. Further-
more, for simple classification tasks, it has been
found a smaller model trained on data generated
with a few or even zero human demonstrations can
achieve better performance than the LLMs (Schick
and Schütze, 2021; Meng et al., 2022; Ye et al.,
2022b,a; Gao et al., 2023). This work fills in the
gap by exploring such an approach to complex sym-
bolic language tasks.

6 Conclusion

In this work, we treat LLMs as data generators
rather than task inferencer for complex symbolic
language tasks, with the generated data being used
to train much affordable model for depolyment and
inference. We demonstrate that a 1%-sized model
trained under SYMGEN can achieve superior per-
formance to the LLM inferencers. We especially
show the effectiveness in low-resource scenarios,
which is a common situation for symbolic language
tasks due to the annotation-expensive characteris-
tics. Additionally, we also reveal the possibility
of obtaining a well-performed task model through
SYMGEN even without any human annotations.
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Limitations

This work is based on prompting and in-context
learning with informative prompts for symbolic
data generation. However, the information that can
be packed into the prompt is hard limited by the
prompt length, as language models are created and
trained only to handle sequences of a certain length.
The problem becomes more acute for symbolic
languages with complex grammar and is rarely
seen by the LLMs during the pre-training stage.
Possible solutions are internalizing the grammar
knowledge into the output rather than input through
constrained decoding algorithms (Scholak et al.,
2021; Wu et al., 2021; Shin et al., 2021; Shin and
Van Durme, 2022), identifying limited relevant doc-
umentation when generating data (Agarwal et al.,
2020; Zhou et al., 2022), or improving the architec-
tures of LLMs to handle long inputs (Katharopou-
los et al., 2020; Peng et al., 2020; Press et al., 2021).
In addition, alternative evaluation metrics such
as tree edit distances or Smatch (Cai and Knight,
2013) can be employed to reflect the similarity be-
tween two symbolic languages when execution is
impractical.
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A Datasets

Spider The Spider dataset (Yu et al., 2018b) is a
multi-domain and cross-database dataset for text-
to-SQL parsing. There are 7,000 examples for
training and 1,034 for development. We report
performance on the development set as noted by
Rajkumar et al. (2022) that evaluating on the held-
out test set risks inadvertently leaking them for
retraining of Codex.1 We determine model per-
formance based on surface form Exact Set Match
(EM; Yu et al. (2018b)) and test-suite Execution
accuracy (EX; Zhong et al. (2020a)) which ex-
tends execution to multiple database instances per
SQL schema to provide the best approximation of
semantic accuracy.

NL2Bash The NL2Bash dataset (Lin et al., 2018)
aims to translate natural language to bash com-
mands. There are 8,090 examples for training and
609 for development. Because it is difficult to ex-
ecute bash commands in a sandbox, we evaluate
the a bash command by parsing and tokenizing
with bashlex2, and calculating token-level BLEU-
4 score between commands as the estimation of
execution result similarity. Following Lin et al.
(2018), commands are evaluated with character-
level BLEU-4 score.

MBPP The MBPP dataset (Austin et al., 2021) is
a python programming task, where text description
is mapped to python program containing multiple
lines. MBPP consists of 974 examples, with 500
of them used for testing and the rest for training
or few-shot prompting. We evaluate with execu-
tion accuracy (EX), where a program is consid-
ered as passing if all three associated test cases

1Unless otherwise mentioned, we also report the results on
the development set for the other datasets.

2https://pypi.org/project/bashlex/

are correct. We don’t include surface-level metrics
(e.g., BLEU) as semantically identical programs
can potentially have very low n-gram overlap (e.g.,
identifier renaming) (Austin et al., 2021).

GeoQuery The GeoQuery dataset (Zelle and
Mooney, 1996) contains human-authored questions
paired with prolog logic programming language
about U.S. geography, with 600 examples for train-
ing and 280 for testing. We report Exact Match
(EM) and Execution (EX) accuracy by running
with SWI-Prolog3 and pyswip4.

MTOP MTOP (Li et al., 2021) is a semantic pars-
ing dataset, focused on multilingual task-oriented
dialogues, where commands are mapped to com-
plex nested queries across 11 domains. Similar to
previous work (Pasupat et al., 2021), we use the
English subset, which contains 15,667 training ex-
amples and 2,235 development set examples. We
evaluate with Exact Match (EM), i.e., whether the
prediction string is identical to the reference string,
and Template Accuracy where the query tokens are
discarded (e.g., the template of [IN:A [SL:B text]]
is [IN:A [SL:B]]).

Break The Break dataset Wolfson et al. (2020)
contains complex natural language questions sam-
pled from 10 QA datasets, and they are decom-
posed into an ordered list of atomic steps. We use
the low-level subset, which contains 44,321 train-
ing examples and 8,000 development set examples.
We randomly sample 1,000 examples to construct
a new development set for evaluation. We evalu-
ate model performance with LF-EM (Hasson and
Berant, 2021), which is proposed as an improve-
ment to Exact Match (EM) to measure whether two
meaning representations are semantically equiva-
lent.

B Implementation Details

For prompting or in-context learning with Codex,
we use code-davinci-002 and a maximum context
size of 7000. For all the tasks, we set the tempera-
ture to 0.8 and the number of samplings to 30 for
answer generation. When generating questions, we
construct initial 200 prompts by randomly select-
ing in-context examples5 and use the mixture of
temperature (i.e., 0.6, 0.8, and 1) with a number of

3https://www.swi-prolog.org/
4https://github.com/yuce/pyswip
5In few-shot settings, we random sample permutation of

all the examples to infuse diversity.
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samplings of 100 to generate at most 60k questions.
For Spider, we generate 200 questions for each of
the 140 databases in the training set, which results
in at most 84k data pairs using three temperatures.
We set the number of shots to 10 in the few-shot
setting. In the full-data setting, as found by prior
work that including similar exemplars helps in an-
swer prediction (Liu et al., 2022; Wu et al., 2022;
Ye et al., 2023), we use all-mpnet-base-v2 (Song
et al., 2020)6 to encode questions and Faiss7 to
search similar examples. We truncate the number
of in-context examples based on the maximum con-
text size and order the examples from least to most
based on similarity score.

We mainly use T5-large (770M) and T5-3B (Raf-
fel et al., 2020) as task models for all the datasets.
For MBPP (python) dataset, we find the original
tokenizers of T5 is based on SentencePiece and
would remove the indentations and blankspaces in
the codes when doing tokenization, and therefore
would influence the execution of Python program
when generating the code string. Based on this
reason, we use CodeT5-large (770M; Wang et al.
2021b) on MBPP dataset.

For training T5, we adopt the setting from Xie
et al. (2022), where we use a batch size of 32, an
Adafactor (Duchi et al., 2011) optimizer for T5-
large, an AdamW (Loshchilov and Hutter, 2018)
optimizer for T5-3B, a learning rate of 5e-5, a linear
learning rate decay and a maximum number of
training epochs of 50 with early-stopping patience
of 5. In the full-data setting, we use the strategy
of first tuning on the mixture of synthesized and
human-annotated data, then continue tuning it with
only the human annotation data. We find this two-
stage training performs better than the importance-
weighted loss (see Appendix C for details).

C Training Strategy

We compare the training strategies when we have
both full human annotated data and generated data
in Table 6. We can see the two-stage training proce-
dure that first trains on the mixture on both datasets
and then solely on human annotated data outper-
forms the weighted training baselines.

6https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

7https://github.com/facebookresearch/faiss

MTOP NL2bash Break Spider
#Data (Gold+Syn.) 15k+36k 8k+47k 45k+41k 7k+82k
Gold 83.04 65.95 52.70 64.12
Mix 1:1 81.88 62.88 51.60 68.38
Mix 1:3 83.27 66.50 53.10 68.57
Mix 1:1 → Gold 84.83 67.17 54.50 69.63

Table 6: Training strategies to use full human-annotated
data and synthetic data using T5-Large. The two-stage
training strategy (last row) performs better than the
importance-weighted loss.

D Question Verification Results

We measure the quality of a question through an-
swer consistency, where more generated answers
are semantically equivalent means the question is
less ambiguous and considered as high quality. We
show the effect of the threshold used to filter am-
biguous question in Table 7. We can see the model
trained on a much smaller size of data can outper-
form the one trained on original data, indicating
low quality data can interfere with the training pro-
cess.

Thre. NL2Bash MTOP Break
#data CBLEU #data EM #data LF-EM

T=0 58k 56.83 40k 23.13 56k 29.90
T=3 46k 56.49 34k 23.85 41k 30.30
T=5 39k 57.83 27k 22.10 29k 28.30

Table 7: Results on filtering generated questions with
varying threshold T on few-shot setting and training
T5-large. We found filtering questions that have low-
confidence answers results in a smaller dataset but im-
proves model performance.

E Data Analysis

E.1 Question Diversity
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Figure 6: Comparison on token-level length distribution
of the questions on Spider and MBPP.
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Figure 7: Comparison on the distribution of the ques-
tions’ embedding (obtained by SBERT) in Spider (ran-
domly sample one database) and MBPP from SYMGEN
(randomly sample 5000) and the original datasets.

E.2 Response Complexity
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Figure 8: Comparison on row-level lengths of the an-
swers between SYMGEN generated data and the original
MBPP dataset.

E.3 Human Evaluation on Data Pair Quality

In this section we present some typical examples
of the question ambiguity and underspecification
problems in data generation by SYMGEN. The
generated questions may be underspecified and
ambiguous, even sometimes unreasonable, there-
fore influencing the generation of corresponding
answers. Some examples are presented as follows.

# Spider
(1) How to modify table Customer_Orders
such that for every row, system will
automatically insert a row to table
Customer_ord
(2) List the name and the year in which
the party was first elected for the
parties that have been elected in at
least 2 counties.

# MBPP
(1) Write a function to convert a string

to a list. (Didn't mention in character-
-level or word-level)
(2) Write a function to split the given
comma-separated values of list into two
lists. (Didn't tell the rule to split
the list)

F Related Work on Data Augmentation

There is a large body of research on general data
augmentation (Feng et al., 2021), which assume the
outputs remain unchanged. For symbolic-language
prediction tasks, instead of holding outputs fixed,
we would like to apply simultaneous transforma-
tions to inputs and outputs to increase the coverage
of output structures. Data recombination method
(Jia and Liang, 2016; Andreas, 2020; Akyürek
et al., 2020; Guo et al., 2020; Qiu et al., 2022a)
along both dimensions of inputs and outputs are
proposed, where different fragments of input and
output from different examples are re-combined to
create hard (Jia and Liang, 2016; Andreas, 2020;
Akyürek et al., 2020; Qiu et al., 2022a) or soft (Guo
et al., 2020) augmented examples. Yu et al. (2018a,
2020) follow the same spirit and use a hand-crafted
SCFG grammar to generate new parallel data. How-
ever, rule-based heuristics or a large pool of seed
examples are needed to induce the grammar.

G Prompt Examples
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CREATE TABLE "Rooms" ("RoomId" TEXT PRIMARY KEY, "roomName" TEXT, "beds" INTEGER, "bedType" TEXT, "maxOccupancy" INTEGER, "basePrice" INTEGER, "decor"
TEXT)

/*
3 example rows from table Rooms:
SELECT * FROM Rooms LIMIT 3;
RoomId roomName beds bedType maxOccupancy basePrice decor

HBB Harbinger but bequest 1 Queen 2 100 modern
TAA Thrift and accolade 1 Double 2 75 modern
RTE Riddle to exculpate 2 Queen 4 175 rustic

*/

CREATE TABLE "Reservations" ("Code" INTEGER PRIMARY KEY, "Room" TEXT, "CheckIn" TEXT, "CheckOut" TEXT, "Rate" REAL, "LastName" TEXT, "FirstName" TEXT,
"Adults" INTEGER, "Kids" INTEGER, FOREIGN KEY (Room) REFERENCES Rooms(RoomId))

/*
3 example rows from table Reservations:
SELECT * FROM Reservations LIMIT 3;
Code Room CheckIn CheckOut Rate LastName FirstName Adults Kids

60313 CAS 28-OCT-10 30-OCT-10 218.75 SLONE LARITA 1 1
81473 RND 01-FEB-10 02-FEB-10 127.50 EVERITT YUK 1 1
35546 TAA 19-SEP-10 24-SEP-10 67.50 YUK TIM 1 0
*/

-- Write a question that can be answered based on the above tables.
-- Question: List the type of bed and name of all traditional rooms.

** EXAMPLE SEPARATOR **

CREATE TABLE "department" ("Department_ID" int, "Name" text, "Creation" text, "Ranking" int, "Budget_in_Billions" real, "Num_Employees" real, PRIMARY
KEY ("Department_ID"))

/*
3 example rows from table department:
SELECT * FROM department LIMIT 3;
Department_ID Name Creation Ranking Budget_in_Billions Num_Employees

7 Commerce 1903 7 6.2 36000.0
3 Defense 1947 3 439.3 3000000.0
15 Homeland Security 2002 15 44.6 208000.0

*/

CREATE TABLE "head" ("head_ID" int, "name" text, "born_state" text, "age" real, PRIMARY KEY ("head_ID"))
/*
3 example rows from table head:
SELECT * FROM head LIMIT 3;
head_ID name born_state age

8 Nick Faldo California 56.0
7 Stewart Cink Florida 50.0
5 Jeff Maggert Delaware 53.0

*/

CREATE TABLE "management" ("department_ID" int, "head_ID" int, "temporary_acting" text, PRIMARY KEY ("Department_ID","head_ID"), FOREIGN KEY ("
Department_ID") REFERENCES `department`("Department_ID"), FOREIGN KEY ("head_ID") REFERENCES `head`("head_ID"))

/*
3 example rows from table management:
SELECT * FROM management LIMIT 3;
department_ID head_ID temporary_acting

7 3 No
15 4 Yes
11 10 No

*/

-- Write a question that can be answered based on the above tables.
-- Question:

Figure 9: Example prompt for generating questions for Spider, only single in-context example is shown for
illustration.
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CREATE TABLE "Rooms" ("RoomId" TEXT PRIMARY KEY, "roomName" TEXT, "beds" INTEGER, "bedType" TEXT, "maxOccupancy" INTEGER, "basePrice" INTEGER, "decor"
TEXT)

/*
3 example rows from table Rooms:
SELECT * FROM Rooms LIMIT 3;
RoomId roomName beds bedType maxOccupancy basePrice decor

HBB Harbinger but bequest 1 Queen 2 100 modern
TAA Thrift and accolade 1 Double 2 75 modern
RTE Riddle to exculpate 2 Queen 4 175 rustic

*/

CREATE TABLE "Reservations" ("Code" INTEGER PRIMARY KEY, "Room" TEXT, "CheckIn" TEXT, "CheckOut" TEXT, "Rate" REAL, "LastName" TEXT, "FirstName" TEXT,
"Adults" INTEGER, "Kids" INTEGER, FOREIGN KEY (Room) REFERENCES Rooms(RoomId))

/*
3 example rows from table Reservations:
SELECT * FROM Reservations LIMIT 3;
Code Room CheckIn CheckOut Rate LastName FirstName Adults Kids

60313 CAS 28-OCT-10 30-OCT-10 218.75 SLONE LARITA 1 1
81473 RND 01-FEB-10 02-FEB-10 127.50 EVERITT YUK 1 1
35546 TAA 19-SEP-10 24-SEP-10 67.50 YUK TIM 1 0
*/

-- Using valid SQLite, answer the following questions for the tables provided above.
-- Question: List the type of bed and name of all traditional rooms.
SELECT roomName , bedType FROM Rooms WHERE decor = "traditional";

** EXAMPLE SEPARATOR **

CREATE TABLE "department" ("Department_ID" int, "Name" text, "Creation" text, "Ranking" int, "Budget_in_Billions" real, "Num_Employees" real, PRIMARY
KEY ("Department_ID"))

/*
3 example rows from table department:
SELECT * FROM department LIMIT 3;
Department_ID Name Creation Ranking Budget_in_Billions Num_Employees

1 State 1789 1 9.96 30266.0
2 Treasury 1789 2 11.10 115897.0
3 Defense 1947 3 439.30 3000000.0

*/

CREATE TABLE "head" ("head_ID" int, "name" text, "born_state" text, "age" real, PRIMARY KEY ("head_ID"))
/*
3 example rows from table head:
SELECT * FROM head LIMIT 3;
head_ID name born_state age

1 Tiger Woods Alabama 67.0
2 Sergio Garcia California 68.0
3 K. J. Choi Alabama 69.0

*/

CREATE TABLE "management" ("department_ID" int, "head_ID" int, "temporary_acting" text, PRIMARY KEY ("Department_ID","head_ID"), FOREIGN KEY ("
Department_ID") REFERENCES `department`("Department_ID"), FOREIGN KEY ("head_ID") REFERENCES `head`("head_ID"))

/*
3 example rows from table management:
SELECT * FROM management LIMIT 3;
department_ID head_ID temporary_acting

2 5 Yes
15 4 Yes
2 6 Yes

*/

-- Using valid SQLite, answer the following questions for the tables provided above.
-- Question: What are the names of the heads who manage the department with ID 15?
SELECT

Figure 10: Example prompt for generating SQL queries for Spider, only single in-context example is shown for
illustration.
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Translate the natural language description to bash commands.

Natural Language: Recursively removes all files and folders named '.svn' in a current folder, handling content of removed folder before folder inself.

Natural Language: find all executable files in /home directory.

Natural Language: Locate files that reside in the /u/bill directory tree and were last accessed between 2 and 6 minutes ago

Natural Language: Search the current directory tree for files whose names match regular expression '.*packet.*', ignoring the case

Natural Language: List all the emptry files in thecurrent directory only.

Natural Language: Find all files under current directory whose status was changed less than 3 days ago and show last 5 lines of output

Natural Language: Find files that were modified more than 7 days ago and archive them

Natural Language: Set variable 'file' to the base name of first argument to script or function, that is the part following the last slash.

Natural Language: Connect to host "$USER_AT_HOST" in master mode in the background without executing any commands and set the ControlPath to "
$SSHSOCKET"

Natural Language: Print input "your, text, here" formatted to fit 70 characters per line breaking at spaces

Natural Language:

Figure 11: Example prompt for generating questions for NL2Bash.

Translate the natural language description to bash commands.

Natural Language: Recursively removes all files and folders named '.svn' in a current folder, handling content of removed folder before folder inself.
Bash commands: find . -depth -name .svn -exec rm -fr {} \;

Natural Language: find all executable files in /home directory.
Bash commands: find /home -type f -perm /a=x

Natural Language: Locate files that reside in the /u/bill directory tree and were last accessed between 2 and 6 minutes ago
Bash commands: find /u/bill -amin +2 -amin -6

Natural Language: Search the current directory tree for files whose names match regular expression '.*packet.*', ignoring the case
Bash commands: find . -iregex ".*packet.*"

Natural Language: List all the emptry files in thecurrent directory only.
Bash commands: find . -maxdepth 1 -empty

Natural Language: Find all files under current directory whose status was changed less than 3 days ago and show last 5 lines of output
Bash commands: find . -type f -ctime -3 | tail -n 5

Natural Language: Find files that were modified more than 7 days ago and archive them
Bash commands: find . -type f -mtime +7 | xargs tar -cvf `date '+%d%m%Y'_archive.tar`

Natural Language: Set variable 'file' to the base name of first argument to script or function, that is the part following the last slash.
Bash commands: file=`basename "$1"`

Natural Language: Connect to host "$USER_AT_HOST" in master mode in the background without executing any commands and set the ControlPath to "
$SSHSOCKET"

Bash commands: ssh -M -f -N -o ControlPath="$SSHSOCKET" "$USER_AT_HOST"

Natural Language: Print input "your, text, here" formatted to fit 70 characters per line breaking at spaces
Bash commands: echo 'your, text, here' | fold -sw 70

Natural Language: Find files with names that start with 'input' and end with a single character 'a' or 'b' in the current directory and all its
subdirectories

Bash commands:

Figure 12: Example prompt for generating bash commands for NL2Bash.

8435



Translate the natural language instructions to Python codes.

Natural Language Instruction for Python Code: Write a function to find squares of individual elements in a list using lambda function.

Natural Language Instruction for Python Code: Write a function to find all words which are at least 4 characters long in a string by using regex.

Natural Language Instruction for Python Code: Write a python function to find the minimum number of rotations required to get the same string.

Natural Language Instruction for Python Code: Write a python function to check whether the two numbers differ at one bit position only or not.

Natural Language Instruction for Python Code: Write a python function to identify non-prime numbers.

Natural Language Instruction for Python Code: Write a function to find the largest integers from a given list of numbers using heap queue algorithm.

Natural Language Instruction for Python Code: Write a function to get the n smallest items from a dataset.

Natural Language Instruction for Python Code: Write a function to find the number of ways to fill it with 2 x 1 dominoes for the given 3 x n board.

Natural Language Instruction for Python Code: Write a function to find the minimum cost path to reach (m, n) from (0, 0) for the given cost matrix cost
[][] and a position (m, n) in cost[][].

Natural Language Instruction for Python Code: Write a function to find the similar elements from the given two tuple lists.

Natural Language Instruction for Python Code:

Figure 13: Example prompt for generating question descriptions for MBPP.
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"""
Write a python function to check whether the word is present in a given sentence or not.
"""
def is_Word_Present(sentence,word):

s = sentence.split(" ")
for i in s:

if (i == word):
return True

return False
# 3 test cases
assert is_Word_Present("machine learning","machine") == True
assert is_Word_Present("easy","fun") == False
assert is_Word_Present("python language","code") == False

"""
Write a function to find the cumulative sum of all the values that are present in the given tuple list.
"""
def cummulative_sum(test_list):

res = sum(map(sum, test_list))
return (res)

# 3 test cases
assert cummulative_sum([(1, 3), (5, 6, 7), (2, 6)]) == 30
assert cummulative_sum([(2, 4), (6, 7, 8), (3, 7)]) == 37
assert cummulative_sum([(3, 5), (7, 8, 9), (4, 8)]) == 44

"""
Write a python function to find the average of a list.
"""
def Average(lst):

return sum(lst) / len(lst)
# 3 test cases
assert Average([15, 9, 55, 41, 35, 20, 62, 49]) == 35.75
assert Average([4, 5, 1, 2, 9, 7, 10, 8]) == 5.75
assert Average([1,2,3]) == 2

...... (Some in-context examples omitted here for simplicity)

"""
Write a function to create a list taking alternate elements from another given list.
"""
def alternate_elements(list1):

result=[]
for item in list1[::2]:

result.append(item)
return result

# 3 test cases
assert alternate_elements(["red", "black", "white", "green", "orange"])==['red', 'white', 'orange']
assert alternate_elements([2, 0, 3, 4, 0, 2, 8, 3, 4, 2])==[2, 3, 0, 8, 4]
assert alternate_elements([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])==[1,3,5,7,9]

"""
Write a function to find the minimum total path sum in the given triangle.
"""
def min_sum_path(A):

memo = [None] * len(A)
n = len(A) - 1
for i in range(len(A[n])):

memo[i] = A[n][i]
for i in range(len(A) - 2, -1,-1):

for j in range( len(A[i])):
memo[j] = A[i][j] + min(memo[j],

memo[j + 1])
return memo[0]

# 3 test cases
assert min_sum_path([[ 2 ], [3, 9 ], [1, 6, 7 ]]) == 6
assert min_sum_path([[ 2 ], [3, 7 ], [8, 5, 6 ]]) == 10
assert min_sum_path([[ 3 ], [6, 4 ], [5, 2, 7 ]]) == 9

"""
Write a python function to count occurences of a character in a repeated string.
"""
def count_Char(str,x):

count = 0
for i in range(len(str)):

if (str[i] == x) :
count += 1

n = 10
repititions = n // len(str)
count = count * repititions
l = n % len(str)
for i in range(l):

if (str[i] == x):
count += 1

return count
# 3 test cases
assert count_Char("abcac",'a') == 4
assert count_Char("abca",'c') == 2
assert count_Char("aba",'a') == 7

"""
Write a function to find the difference between two lists.
"""

Figure 14: Example prompt for generating python program queries for MBPP.
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IN:GET: MESSAGE, WEATHER, ALARM, INFO_RECIPES, STORIES_NEWS, REMINDER, RECIPES, EVENT, CALL_TIME, LIFE_EVENT, INFO_CONTACT, CONTACT, TIMER,
REMINDER_DATE_TIME, AGE, SUNRISE, EMPLOYER, EDUCATION_TIME, JOB, AVAILABILITY, CATEGORY_EVENT, CALL, EMPLOYMENT_TIME, CALL_CONTACT, LOCATION,
TRACK_INFO_MUSIC, SUNSET, MUTUAL_FRIENDS, UNDERGRAD, REMINDER_LOCATION, ATTENDEE_EVENT, MESSAGE_CONTACT, REMINDER_AMOUNT, DATE_TIME_EVENT,
DETAILS_NEWS, EDUCATION_DEGREE, MAJOR, CONTACT_METHOD, LIFE_EVENT_TIME, LYRICS_MUSIC, AIRQUALITY, LANGUAGE, GENDER, GROUP | IN:SEND: MESSAGE | IN
:SET: UNAVAILABLE, RSVP_YES, AVAILABLE, DEFAULT_PROVIDER_MUSIC, RSVP_INTERESTED, DEFAULT_PROVIDER_CALLING, RSVP_NO | IN:DELETE: REMINDER, ALARM,
TIMER, PLAYLIST_MUSIC | IN:CREATE: ALARM, REMINDER, CALL, PLAYLIST_MUSIC, TIMER | IN:QUESTION: NEWS, MUSIC | IN:PLAY: MUSIC, MEDIA | IN:END: CALL
| IN:IGNORE: CALL | IN:UPDATE: CALL, REMINDER_DATE_TIME, REMINDER_TODO, TIMER, METHOD_CALL, ALARM, REMINDER_LOCATION, REMINDER | IN:PAUSE: MUSIC

, TIMER | IN:ANSWER: CALL | IN:SNOOZE: ALARM | IN:IS: TRUE_RECIPES | IN:REMOVE: FROM_PLAYLIST_MUSIC | IN:ADD: TIME_TIMER, TO_PLAYLIST_MUSIC | IN:
SHARE: EVENT | IN:PREFER: | IN:START: SHUFFLE_MUSIC | IN:SILENCE: ALARM | IN:SWITCH: CALL | IN:SUBTRACT: TIME_TIMER | IN:PREVIOUS: TRACK_MUSIC |
IN:HOLD: CALL | IN:SKIP: TRACK_MUSIC | IN:LIKE: MUSIC | IN:RESTART: TIMER | IN:RESUME: TIMER, CALL, MUSIC | IN:MERGE: CALL | IN:REPLAY: MUSIC |

IN:LOOP: MUSIC | IN:STOP: MUSIC, SHUFFLE_MUSIC | IN:UNLOOP: MUSIC | IN:CANCEL: MESSAGE, CALL | IN:REWIND: MUSIC | IN:REPEAT: ALL_MUSIC,
ALL_OFF_MUSIC | IN:FAST: FORWARD_MUSIC | IN:DISLIKE: MUSIC | IN:DISPREFER: | IN:HELP: REMINDER | IN:FOLLOW: MUSIC

SL:CONTACT: , ADDED, RELATED, REMOVED, METHOD | SL:TYPE: CONTENT, RELATION, CONTACT | SL:RECIPIENT: | SL:LOCATION: | SL:DATE: TIME | SL:ORDINAL: |
SL:CONTENT: EXACT | SL:RECIPES: ATTRIBUTE, DISH, COOKING_METHOD, INCLUDED_INGREDIENT, TYPE, UNIT_NUTRITION, EXCLUDED_INGREDIENT, DIET,
UNIT_MEASUREMENT, TYPE_NUTRITION, MEAL, RATING, QUALIFIER_NUTRITION, SOURCE, CUISINE | SL:PERSON: REMINDED | SL:TODO: | SL:NEWS: TYPE, CATEGORY,
TOPIC, REFERENCE, SOURCE | SL:SENDER: | SL:MUSIC: TYPE, ARTIST_NAME, PLAYLIST_TITLE, TRACK_TITLE, PROVIDER_NAME, GENRE, ALBUM_TITLE, RADIO_ID,

ALBUM_MODIFIER, REWIND_TIME, PLAYLIST_MODIFIER | SL:NAME: APP | SL:WEATHER: ATTRIBUTE, TEMPERATURE_UNIT | SL:CATEGORY: EVENT | SL:METHOD: TIMER,
RETRIEVAL_REMINDER, RECIPES | SL:LIFE: EVENT | SL:AMOUNT: | SL:EMPLOYER: | SL:PERIOD: | SL:EDUCATION: DEGREE | SL:TITLE: EVENT | SL:TIMER:
NAME | SL:JOB: | SL:PHONE: NUMBER | SL:ATTRIBUTE: EVENT | SL:ALARM: NAME | SL:SCHOOL: | SL:SIMILARITY: | SL:GROUP: | SL:AGE: | SL:ATTENDEE:
EVENT, | SL:USER: ATTENDEE_EVENT | SL:MAJOR: | SL:GENDER:

Translate the natural language description to logical form with the above arguments.

Natural Language: Every day my alarm is set for what time?

Natural Language: top news stories

Natural Language: should I bring the plants in tonight

Natural Language: Resume the timer in 10 seconds

Natural Language: Message Ben to see if he can come to my birthday party

Natural Language: Do I have a friend that works in Los Angeles?

Natural Language: give me the news update for around the world.

Natural Language: Set the sleep timer for 10 minutes

Natural Language: i need to change my podiatrist appointment reminder to 5pm instead of 5:30

Natural Language: take 11 minutes off the timer

Natural Language:

Figure 15: Example prompt for generating questions for MTOP.
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IN:GET: MESSAGE, WEATHER, ALARM, INFO_RECIPES, STORIES_NEWS, REMINDER, RECIPES, EVENT, CALL_TIME, LIFE_EVENT, INFO_CONTACT, CONTACT, TIMER,
REMINDER_DATE_TIME, AGE, SUNRISE, EMPLOYER, EDUCATION_TIME, JOB, AVAILABILITY, CATEGORY_EVENT, CALL, EMPLOYMENT_TIME, CALL_CONTACT, LOCATION,
TRACK_INFO_MUSIC, SUNSET, MUTUAL_FRIENDS, UNDERGRAD, REMINDER_LOCATION, ATTENDEE_EVENT, MESSAGE_CONTACT, REMINDER_AMOUNT, DATE_TIME_EVENT,
DETAILS_NEWS, EDUCATION_DEGREE, MAJOR, CONTACT_METHOD, LIFE_EVENT_TIME, LYRICS_MUSIC, AIRQUALITY, LANGUAGE, GENDER, GROUP | IN:SEND: MESSAGE | IN
:SET: UNAVAILABLE, RSVP_YES, AVAILABLE, DEFAULT_PROVIDER_MUSIC, RSVP_INTERESTED, DEFAULT_PROVIDER_CALLING, RSVP_NO | IN:DELETE: REMINDER, ALARM,
TIMER, PLAYLIST_MUSIC | IN:CREATE: ALARM, REMINDER, CALL, PLAYLIST_MUSIC, TIMER | IN:QUESTION: NEWS, MUSIC | IN:PLAY: MUSIC, MEDIA | IN:END: CALL
| IN:IGNORE: CALL | IN:UPDATE: CALL, REMINDER_DATE_TIME, REMINDER_TODO, TIMER, METHOD_CALL, ALARM, REMINDER_LOCATION, REMINDER | IN:PAUSE: MUSIC

, TIMER | IN:ANSWER: CALL | IN:SNOOZE: ALARM | IN:IS: TRUE_RECIPES | IN:REMOVE: FROM_PLAYLIST_MUSIC | IN:ADD: TIME_TIMER, TO_PLAYLIST_MUSIC | IN:
SHARE: EVENT | IN:PREFER: | IN:START: SHUFFLE_MUSIC | IN:SILENCE: ALARM | IN:SWITCH: CALL | IN:SUBTRACT: TIME_TIMER | IN:PREVIOUS: TRACK_MUSIC |
IN:HOLD: CALL | IN:SKIP: TRACK_MUSIC | IN:LIKE: MUSIC | IN:RESTART: TIMER | IN:RESUME: TIMER, CALL, MUSIC | IN:MERGE: CALL | IN:REPLAY: MUSIC |

IN:LOOP: MUSIC | IN:STOP: MUSIC, SHUFFLE_MUSIC | IN:UNLOOP: MUSIC | IN:CANCEL: MESSAGE, CALL | IN:REWIND: MUSIC | IN:REPEAT: ALL_MUSIC,
ALL_OFF_MUSIC | IN:FAST: FORWARD_MUSIC | IN:DISLIKE: MUSIC | IN:DISPREFER: | IN:HELP: REMINDER | IN:FOLLOW: MUSIC

SL:CONTACT: , ADDED, RELATED, REMOVED, METHOD | SL:TYPE: CONTENT, RELATION, CONTACT | SL:RECIPIENT: | SL:LOCATION: | SL:DATE: TIME | SL:ORDINAL: |
SL:CONTENT: EXACT | SL:RECIPES: ATTRIBUTE, DISH, COOKING_METHOD, INCLUDED_INGREDIENT, TYPE, UNIT_NUTRITION, EXCLUDED_INGREDIENT, DIET,
UNIT_MEASUREMENT, TYPE_NUTRITION, MEAL, RATING, QUALIFIER_NUTRITION, SOURCE, CUISINE | SL:PERSON: REMINDED | SL:TODO: | SL:NEWS: TYPE, CATEGORY,
TOPIC, REFERENCE, SOURCE | SL:SENDER: | SL:MUSIC: TYPE, ARTIST_NAME, PLAYLIST_TITLE, TRACK_TITLE, PROVIDER_NAME, GENRE, ALBUM_TITLE, RADIO_ID,

ALBUM_MODIFIER, REWIND_TIME, PLAYLIST_MODIFIER | SL:NAME: APP | SL:WEATHER: ATTRIBUTE, TEMPERATURE_UNIT | SL:CATEGORY: EVENT | SL:METHOD: TIMER,
RETRIEVAL_REMINDER, RECIPES | SL:LIFE: EVENT | SL:AMOUNT: | SL:EMPLOYER: | SL:PERIOD: | SL:EDUCATION: DEGREE | SL:TITLE: EVENT | SL:TIMER:
NAME | SL:JOB: | SL:PHONE: NUMBER | SL:ATTRIBUTE: EVENT | SL:ALARM: NAME | SL:SCHOOL: | SL:SIMILARITY: | SL:GROUP: | SL:AGE: | SL:ATTENDEE:
EVENT, | SL:USER: ATTENDEE_EVENT | SL:MAJOR: | SL:GENDER:

Translate the natural language description to logical form with the above arguments.

Natural Language: Every day my alarm is set for what time?
Logical Form: [IN:GET_ALARM [SL:PERIOD Every day ] ]

Natural Language: top news stories
Logical Form: [IN:GET_STORIES_NEWS [SL:NEWS_REFERENCE top ] [SL:NEWS_TYPE news stories ] ]

Natural Language: should I bring the plants in tonight
Logical Form: [IN:GET_WEATHER [SL:WEATHER_ATTRIBUTE plants ] [SL:DATE_TIME in tonight ] ]

Natural Language: Resume the timer in 10 seconds
Logical Form: [IN:RESUME_TIMER [SL:METHOD_TIMER timer ] [SL:DATE_TIME in 10 seconds ] ]

Natural Language: Message Ben to see if he can come to my birthday party
Logical Form: [IN:SEND_MESSAGE [SL:RECIPIENT Ben ] [SL:CONTENT_EXACT he can come to my birthday party ] ]

Natural Language: Do I have a friend that works in Los Angeles?
Logical Form: [IN:GET_CONTACT [SL:CONTACT_RELATED I ] [SL:TYPE_RELATION friend ] [SL:LOCATION Los Angeles ] ]

Natural Language: give me the news update for around the world.
Logical Form: [IN:GET_STORIES_NEWS [SL:NEWS_TYPE news ] ]

Natural Language: Set the sleep timer for 10 minutes
Logical Form: [IN:CREATE_TIMER [SL:TIMER_NAME sleep ] [SL:METHOD_TIMER timer ] [SL:DATE_TIME for 10 minutes ] ]

Natural Language: i need to change my podiatrist appointment reminder to 5pm instead of 5:30
Logical Form: [IN:UPDATE_REMINDER_DATE_TIME [SL:PERSON_REMINDED my ] [SL:TODO podiatrist appointment ] [SL:DATE_TIME to 5 pm ] [SL:DATE_TIME of 5 : 30

] ]

Natural Language: take 11 minutes off the timer
Logical Form: [IN:SUBTRACT_TIME_TIMER [SL:DATE_TIME 11 minutes ] [SL:METHOD_TIMER timer ] ]

Natural Language: What is my alarm set to every day.
Logical Form:

Figure 16: Example prompt for generating TOP-representations for MTOP.

Break down a question into the requisite steps for computing its answer.

Question: If both images show mainly similar-shaped orange-and-white striped fish swimming among anemone tendrils.

Question: If two seals are lying in the sand in the image on the right.

Question: If the right image shows a single dog sitting.

Question: How many large metallic items are there?

Question: who was the leader of the north during the vietnam war?

Question: What actor played in both the Trial of Michael Jackson and The Wiz?

Question: If the bed set in the left image has a pink canopy above it.

Question: Give the name of the student in the History department with the most credits.

Question: when did lil wayne first start singing?

Question: If there are no less than five dogs

Question:

Figure 17: Example prompt for generating questions for Break.
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Break down a question into the requisite steps for computing its answer.

Question: If both images show mainly similar-shaped orange-and-white striped fish swimming among anemone tendrils.
Answer Steps: 1#) return fish 2#) return #1 that are similar-shaped 3#) return #2 that are orange-and-white striped 4#) return anemone tendrils 5#)

return #3 swimming among #4 6#) return if #5 are mainly in both images

Question: If two seals are lying in the sand in the image on the right.
Answer Steps: 1#) return right image 2#) return seals in #1 3#) return sand in #1 4#) return #2 that are lying in #3 5#) return number of #4 6#) return

if #5 is equal to two

Question: If the right image shows a single dog sitting.
Answer Steps: 1#) return the right image 2#) return dogs in #1 3#) return #2 that are sitting 4#) return number of #3 5#) return if #4 is equal to one

Question: How many large metallic items are there?
Answer Steps: 1#) return items 2#) return #1 that are large 3#) return #2 that are metallic 4#) return number of #3

Question: who was the leader of the north during the vietnam war?
Answer Steps: 1#) return north vietnam 2#) return leader of #1 3#) return the vietnam war 4#) return #2 during #3

Question: What actor played in both the Trial of Michael Jackson and The Wiz?
Answer Steps: 1#) return Trial of Michael Jackson 2#) return The Wiz 3#) return actor of both #1 and #2

Question: If the bed set in the left image has a pink canopy above it.
Answer Steps: 1#) return left image 2#) return bed set in #1 3#) return canopy in #1 4#) return #3 that is pink 5#) return #4 that is above #2 6#)

return number of #5 7#) return if #6 is at least one

Question: Give the name of the student in the History department with the most credits.
Answer Steps: 1#) return students 2#) return #1 in History department 3#) return credits of #2 4#) return number of #3 for each #2 5#) return #2 where

#4 is highest 6#) return name of #5

Question: when did lil wayne first start singing?
Answer Steps: 1#) return lil wayne 2#) return date that #1 start singing

Question: If there are no less than five dogs
Answer Steps: 1#) return dogs 2#) return number of #1 3#) return if #2 is at least five

Question: when was the last time the steelers won back to back super bowls
Answer Steps: 1#)

Figure 18: Example prompt for generating question decompositions for Break.
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%geobase.pl
:- ensure_loaded(library('lists')).
:- ensure_loaded(library('ordsets')).
:- ensure_loaded(geobase).

country(countryid(usa)).

state(stateid(State)) :- state(State,_,_,_,_,_,_,_,_,_).

city(cityid(City,St)) :- city(_,St,City,_).

river(riverid(R)) :- river(R,_,_).

lake(lakeid(R)) :- lake(R,_,_).

mountain(mountainid(M)) :- mountain(_,_,M,_).

place(placeid(P)) :- highlow(_,_,P,_,_,_).
place(placeid(P)) :- highlow(_,_,_,_,P,_).

abbreviation(stateid(State), Ab) :- state(State,Ab,_,_,_,_,_,_,_,_).
abbreviation(Ab) :- abbreviation(_,Ab).

capital(stateid(State), cityid(Cap,St)) :- state(State,St,Cap,_,_,_,_,_,_,_).
capital(Cap) :- capital(_,Cap).

loc(X,countryid(usa)) :- city(X) ; state(X) ; river(X) ; place(X) ; lake(X); mountain(X).
loc(cityid(City,St), stateid(State)) :- city(State, St, City,_).
loc(cityid(City,St), stateid(State)) :- state(State,St,City,_,_,_,_,_,_,_).
loc(placeid(P), stateid(S)) :- highlow(S,_,P,_,_,_).
loc(placeid(P), stateid(S)) :- highlow(S,_,_,_,P,_).
loc(mountainid(P), stateid(S)) :- mountain(S,_,P,_).
loc(riverid(R), stateid(S)) :- river(R,_,States), member(S,States).
loc(lakeid(L),stateid(S)) :- lake(L,_,States), member(S,States).

traverse(riverid(R), stateid(S)) :- river(R,_,States), member(S,States).
traverse(riverid(R), countryid(usa)).

high_point(countryid(usa), placeid('mount mckinley')).
high_point(stateid(S), placeid(P)) :- highlow(S,_,P,_,_,_).

low_point(countryid(usa), placeid('death valley')).
low_point(stateid(S), placeid(P)) :- highlow(S,_,_,_,P,_).

area(stateid(X),Areal) :- state(X,_,_,_,Area,_,_,_,_,_), Areal is float(Area).
area(countryid(X),Areal) :- country(X,_,Area), Areal is float(Area).

major(cityid(C,S)) :- X = cityid(C,S), city(X), population(X,P), P > 150000.
major(riverid(R)) :- X = riverid(R), river(X), len(X,L), L > 750.
(omitted to save space)
%Translate the natural language description to prolog commands.

%Natural Language: what state is the biggest ?

%Natural Language: what is the population of montana ?

%Natural Language: what are the major cities in delaware ?

%Natural Language: what is the capital of michigan ?

%Natural Language: name the rivers in arkansas .

%Natural Language: what state has the largest urban population ?

%Natural Language: what is the longest river that flows through colorado ?

%Natural Language: what is the biggest state in continental us ?

%Natural Language: which states have points that are higher than the highest point in texas ?

%Natural Language: what is the longest river in the smallest state in the usa ?

%Natural Language:

Figure 19: Example prompt for generating questions for GeoQuery.
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%geobase.pl
:- ensure_loaded(library('lists')).
:- ensure_loaded(library('ordsets')).
:- ensure_loaded(geobase).

country(countryid(usa)).

state(stateid(State)) :- state(State,_,_,_,_,_,_,_,_,_).

city(cityid(City,St)) :- city(_,St,City,_).

river(riverid(R)) :- river(R,_,_).

lake(lakeid(R)) :- lake(R,_,_).

mountain(mountainid(M)) :- mountain(_,_,M,_).

place(placeid(P)) :- highlow(_,_,P,_,_,_).
place(placeid(P)) :- highlow(_,_,_,_,P,_).

abbreviation(stateid(State), Ab) :- state(State,Ab,_,_,_,_,_,_,_,_).
abbreviation(Ab) :- abbreviation(_,Ab).

capital(stateid(State), cityid(Cap,St)) :- state(State,St,Cap,_,_,_,_,_,_,_).
capital(Cap) :- capital(_,Cap).

loc(X,countryid(usa)) :- city(X) ; state(X) ; river(X) ; place(X) ; lake(X); mountain(X).
loc(cityid(City,St), stateid(State)) :- city(State, St, City,_).
loc(cityid(City,St), stateid(State)) :- state(State,St,City,_,_,_,_,_,_,_).
loc(placeid(P), stateid(S)) :- highlow(S,_,P,_,_,_).
loc(placeid(P), stateid(S)) :- highlow(S,_,_,_,P,_).
loc(mountainid(P), stateid(S)) :- mountain(S,_,P,_).
loc(riverid(R), stateid(S)) :- river(R,_,States), member(S,States).
loc(lakeid(L),stateid(S)) :- lake(L,_,States), member(S,States).

traverse(riverid(R), stateid(S)) :- river(R,_,States), member(S,States).
traverse(riverid(R), countryid(usa)).

high_point(countryid(usa), placeid('mount mckinley')).
high_point(stateid(S), placeid(P)) :- highlow(S,_,P,_,_,_).

low_point(countryid(usa), placeid('death valley')).
low_point(stateid(S), placeid(P)) :- highlow(S,_,_,_,P,_).

area(stateid(X),Areal) :- state(X,_,_,_,Area,_,_,_,_,_), Areal is float(Area).
area(countryid(X),Areal) :- country(X,_,Area), Areal is float(Area).

major(cityid(C,S)) :- X = cityid(C,S), city(X), population(X,P), P > 150000.
major(riverid(R)) :- X = riverid(R), river(X), len(X,L), L > 750.
(omitted to save space)
%Translate the natural language description to prolog commands.

%Natural Language: what state is the biggest ?
answer(A,largest(A,state(A)))

%Natural Language: what is the population of montana ?
answer(A,(population(B,A),const(B,stateid(montana))))

%Natural Language: what are the major cities in delaware ?
answer(A,(major(A),city(A),loc(A,B),const(B,stateid(delaware))))

%Natural Language: what is the capital of michigan ?
answer(A,(capital(A),loc(A,B),const(B,stateid(michigan))))

%Natural Language: name the rivers in arkansas .
answer(A,(river(A),loc(A,B),const(B,stateid(arkansas))))

%Natural Language: what state has the largest urban population ?
answer(A,largest(B,(state(A),population(A,B))))

%Natural Language: what is the longest river that flows through colorado ?
answer(A,longest(A,(river(A),traverse(A,B),const(B,stateid(colorado)))))

%Natural Language: what is the biggest state in continental us ?
answer(A,largest(A,(state(A),loc(A,B),const(B,countryid(usa)))))

%Natural Language: which states have points that are higher than the highest point in texas ?
answer(A,(state(A),loc(B,A),higher(B,C),highest(C,(place(C),loc(C,D),const(D,stateid(texas))))))

%Natural Language: what is the longest river in the smallest state in the usa ?
answer(A,longest(A,(river(A),loc(A,B),smallest(B,(state(B),loc(B,C),const(C,countryid(usa)))))))

%Natural Language: count the states which have elevations lower than what alabama has .
answer(

Figure 20: Example prompt for generating prolog commands for GeoQuery.
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%geobase.pl
:- ensure_loaded(library('lists')).
:- ensure_loaded(library('ordsets')).
:- ensure_loaded(geobase).
country(countryid(usa)).
state(stateid(State)) :- state(State,_,_,_,_,_,_,_,_,_).
city(cityid(City,St)) :- city(_,St,City,_).
river(riverid(R)) :- river(R,_,_).
…

%Translate the natural language description to prolog 
commands.

%Natural Language: what state is the biggest?
answer(A,largest(A,state(A)))

%Natural Language: what is the population of montana?
answer(A,(population(B,A),const(B,stateid(montana))))

%Natural Language: count the states which have 
elevations lower than what alabama has .
answer(

CREATE TABLE "border_info" ("state_name" text, "border" 
text)
/*
3 example rows from table border_info:
SELECT * FROM border_info LIMIT 3;
state_name    border
   alabama tennessee
   alabama   georgia
   alabama   florida
*/
…

-- Using valid SQLite, answer the following questions for 
the tables provided above.

-- Question: what state is the biggest ?
SELECT state.state_name FROM state WHERE 
state.area=(SELECT max(state.area) FROM state);

-- Question: what is the population of montana ?
SELECT state.population FROM state WHERE 
state.state_name='montana';

-- Question: count the states which have elevations lower 
than what alabama has .
SELECT

(a) Prompt for GeoQuery. (b) Prompt for GeoQuery-SQL.

Figure 21: Prompt comparison for GeoQuery and GeoQuery-SQL. Only two demonstrations and a part of symbolic
knowledge are shown for simplicity.
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