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Abstract

Scale has played a central role in the rapid
progress natural language processing has en-
joyed in recent years. While benchmarks
are dominated by ever larger models, efficient
hardware use is critical for their widespread
adoption and further progress in the field. In
this cutting-edge tutorial, we will recapitulate
the state-of-the-art in natural language pro-
cessing with scale in perspective. After estab-
lishing these foundations, we will cover a wide
range of techniques for improving efficiency,
including knowledge distillation, quantization,
pruning, more efficient architectures, along
with case studies and practical implementation
tricks.

1 Tutorial Proposal

Recent advances in natural language processing
(Radford et al. (2018); Devlin et al. (2018); Liu
et al. (2019); Brown et al. (2020), among many
others) have substantially improved model capa-
bilities. Notably, pre-trained checkpoints can be
fine-tuned without substantial task specific mod-
ifications to create powerful models for a wide
range of tasks (Wang et al., 2018, 2019). For many
applications, production systems with models up
to date with the state-of-the-art are meeting high
quality bars for adoption across a wide variety of
language tasks.

However, the ever larger computational re-
quirements of such cutting-edge models—which
quickly approximates the scale of a trillion pa-
rameters (Lepikhin et al., 2020)—imposes chal-
lenges to their widespread adoption and further
progress in the field. This has driven increasing
attention to methods that allow more efficient use
of hardware, through techniques such as knowl-
edge distillation (Hinton et al., 2015; Turc et al.,
2019), quantization (Shen et al., 2020; Zafrir et al.,

2019), pruning (Sanh et al., 2020), and architec-
tural changes (Kitaev et al. (2020); Wang et al.
(2020b); Katharopoulos et al. (2020); Zaheer et al.
(2020), among others). Altogether, these tech-
niques are promising avenues for more efficient
natural language processing.

This tutorial starts with an introduction cover-
ing recent trends in NLP with scale in perspec-
tive, and covers foundational knowledge such as
the transformer architecture (Vaswani et al., 2017)
and the fine-tuning paradigm. We then move
to core techniques for improving efficiency, in-
cluding knowledge distillation, quantization and
pruning, later covering recent work on architec-
tural improvements, focusing on the move towards
self-attention with linear complexity. Then, we
dive into case studies by examining specific mod-
els such as Iandola et al. (2020) and Sun et al.
(2020). Finally, we end with practical implemen-
tation considerations including model and data
parallelism, gradient accumulation and floating
point precision, ending the tutorial with closing
notes and a questions and answers section. We
outline the structure of this tutorial in Table 1.

1.1 Type of the tutorial
Cutting edge.

1.2 Reading list
Fundamentals: Bahdanau et al. (2014);
Vaswani et al. (2017); Devlin et al. (2018); Brown
et al. (2020); Lepikhin et al. (2020); Nakkiran
et al. (2019).

Core techniques: Hinton et al. (2015); Turc
et al. (2019); Jiao et al. (2019); Shen et al. (2020);
Zafrir et al. (2019); Frankle and Carbin (2018);
Brix et al. (2020); Sanh et al. (2020).

Efficient attention: Beltagy et al. (2020); Ki-
taev et al. (2020); Wang et al. (2020b); Stickland
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Section Subsection Duration
Introduction Overview of the field with scale into perspective 10 min
Fundamentals Self-attention and the transformer architecture 25 min

Core techniques
Knowledge distillation 15 min
Quantization 15 min
Pruning 15 min

Efficient attention Towards linear complexity in attention 30 min

Case studies
Efficient language models 20 min
Retrieval 10 min

Scaling in practice Practical considerations for scaling NLP models 35 min
Final considerations Closing notes, Q&A 5 min
Total - 180 min

Table 1: Structure of the tutorial with duration of each section.

and Murray (2019); Correia et al. (2019); Vyas
et al. (2020); Katharopoulos et al. (2020); Zaheer
et al. (2020).

Case studies: Botha et al. (2017); So et al.
(2019); Sun et al. (2020); Yan et al. (2020); Wang
et al. (2020a); Iandola et al. (2020); Mehta et al.
(2020); Reimers and Gurevych (2019); Khandel-
wal et al. (2019); Guu et al. (2020).

Scaling in practice : Micikevicius et al. (2017);
Krizhevsky (2014); Sohoni et al. (2019); Kaplan
et al. (2020); Lepikhin et al. (2020)

1.3 Authors

Gabriel Ilharco is a PhD candidate at the Uni-
versity of Washington, where he is advised by
Ali Farhadi and Hannaneh Hajishirzi. Previously,
he worked at Google Research. His research
interests lie at the intersection of Natural Lan-
guage Processing and Computer Vision. His
previous experience in teaching includes the
tutorial Deep Learning for Natural Language
Processing with Tensorflow, at KDD 2019.
http://gabrielilharco.com/

Cesar Ilharco is a Research Engineer at Google,
developing ML models for News Intelligence
& Realtime Event Understanding, where per-
formance is important for efficient serving at
large scale. He was a guest lecturer and industry
partner at Harvard University (ML for knowledge
reconciliation), and co-organized the tutorials
Deep Learning for Natural Language Processing
with Tensorflow (KDD 2019) and Neural Struc-
tured Learning: Training neural networks with
structured signals (KDD 2020).

Iulia Turc is a Software Engineer at Google
Research, currently working on transfer learning.
Her past experience at Google includes feder-
ated learning and applied machine learning for
various products. Previously, Iulia completed
her master’s degree at the University of Ox-
ford where she focused on machine translation.
http://www.iuliaturc.com.

Tim Dettmers is a PhD student at the Uni-
versity of Washington where he is advised
by Luke Zettlemoyer. He also works as a
visiting researcher at Facebook AI Research,
Seattle. His main research interests are large
scale NLP models and efficient deep learning.
https://timdettmers.com/about

Felipe Tiengo Ferreira is a Senior Staff Soft-
ware Engineer leading News Intelligence and
Realtime Event Understanding, an applied re-
search team across Mountain View, NYC, Paris,
Vienna and Zurich. Felipe has an expertise
in making complex systems—including NLP
components—work in real-time at massive
scale across different product areas at Google.
https://research.google/people/
FelipeGoldstein/

Kenton Lee is a Research Scientist at Google. His
research spans several areas in NLP, including
structured prediction, question answering, and
transfer learning. Before joining Google Re-
search, Kenton completed a PhD at the University
of Washington while working with Luke Zettle-
moyer. https://kentonl.com.
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1.4 Prerequisites

• Math: Basic understanding of probability
theory and linear algebra;

• Machine Learning: Basic familiarity with
embeddings and sequence-to-sequence mod-
els. Familiarity with self-attention, trans-
formers, and large-scale pretraining is desir-
able;
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