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Abstract

Despite its importance to experimental design,
statistical power (the probability that, given
a real effect, an experiment will reject the
null hypothesis) has largely been ignored by
the NLP community. Underpowered experi-
ments make it more difficult to discern the
difference between statistical noise and mean-
ingful model improvements, and increase the
chances of exaggerated findings. By meta-
analyzing a set of existing NLP papers and
datasets, we characterize typical power for a
variety of settings and conclude that under-
powered experiments are common in the NLP
literature. In particular, for several tasks in
the popular GLUE benchmark, small test sets
mean that most attempted comparisons to state
of the art models will not be adequately pow-
ered. Similarly, based on reasonable assump-
tions, we find that the most typical experimen-
tal design for human rating studies will be un-
derpowered to detect small model differences,
of the sort that are frequently studied. For ma-
chine translation, we find that typical test sets
of 2000 sentences have approximately 75%
power to detect differences of 1 BLEU point.
To improve the situation going forward, we
give an overview of best practices for power
analysis in NLP and release a series of note-
books to assist with future power analyses.1

1 Introduction

Despite its importance to empirical evaluation, rel-
atively little attention has been paid to statistical
power in NLP. In particular, if it is the case that

typical experiments in NLP are underpowered, not
only would we expect many meaningful improve-
ments to go undetected, we would also expect many
apparently significant differences to be exagger-
ated (Gelman and Carlin, 2014). In this paper,
we build on past work calling for greater rigor

1https://github.com/dallascard/NLP-power-analysis

Figure 1: Cartoon example of statistical power in com-
paring two models: 65% of all people in the population
always prefer system B (left). A comparison using a
sample of 100 people would be well-powered (middle):
over 80% of such samples will show a significant dif-
ference (plotted in red) from the null hypothesis that
the models are equally good (dashed line). In samples
of 25 people (right), far fewer tests will be significant
(power ⇡ 30%). Note that the observed mean of sig-
nificant findings (dotted line) slightly overestimates the
true proportion that prefer system B when n = 100 and
more severely overestimates it when n = 25.

in evaluation (McCoy et al., 2019; Azer et al.,
2020), including the need for careful hypothesis
testing (Koehn, 2004; Berg-Kirkpatrick et al., 2012;
Søgaard et al., 2014; Dror et al., 2018), and show
why and how power matters to NLP, addressing
challenges unique to this domain.

Roughly speaking, power is the probability that
a statistical test will successfully detect a true effect.
As an illustrative example, imagine comparing two
dialog systems (see Figure 1). We want to know if
people tend to prefer one system over the other. To
test this, we will need multiple people to evaluate
the systems. But how many? Once we have col-
lected data, a statistical test will tell us if we can
reject the null hypothesis the systems are equally
good. Assuming the systems are not identical, sta-
tistical power is the probability that the experiment
will return a significant result (or equivalently, it is
one minus the probability of failing to detect the
difference as significant). Although we don’t know
the magnitude of this difference, power analysis

helps to estimate how much power an experiment

https://github.com/dallascard/NLP-power-analysis
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will have under various assumptions.
Power depends on multiple factors, including

the statistical test used, the significance threshold,
true effect size, variance, and sample size. All else
being equal, experiments with larger samples will
have greater power than smaller samples, as shown
in Figure 1. Similarly, larger effects and those
with less variance are easier to detect, and there-
fore require fewer samples for equivalent power.
Importantly, note that if we do find a significant
difference, this does not imply that the experiment
had high power.2

Proceeding with a test that is underpowered (i.e.,
too few subjects or items; often taken to mean
less than 80% power; Cohen, 1962) means that
one is less likely to be able to draw any useful
statistical conclusion from the experiment, and has
contributed, in part, to the replication crisis in other
fields (Button et al., 2013; Szucs and Ioannidis,
2017; Ioannidis et al., 2017). Routinely running
experiments with low statistical power undermines
the scientific enterprise. Not only will true effects
go undetected; when significant effects are found,
they are likely to be noisier and have lower positive
predictive value (Button et al., 2013).

Moreover, significant findings from underpow-
ered experiments are more likely to exaggerate or
reverse the true effect – so-called Type-M (magni-
tude) and Type-S (sign) errors, respectively (Gel-
man and Carlin, 2014). This problem can lead to
systematic distortions in the literature if only sig-
nificant findings are published, especially if these
results are based on underpowered experiments
(Scargle, 1999). The effect of Type-M error can
be seen in Figure 1; significant differences are less
likely to be found in smaller samples (right), but
among those tests that are significant, the observed
difference will tend to exaggerate the true differ-
ence (left) by more than a larger sample (middle).
For further discussion of Type-M and Type-S er-
rors, please refer to Appendix B.

Here, we investigate how these issues affect NLP.
Although retrospective analysis of power involves
challenges, we present evidence that underpow-
ered experiments are widespread in NLP research.
Among human evaluations, we find most experi-
mental designs involve too few items and/or raters

2Using the observed outcome from a single experiment
to compute power falls into the trap of post-hoc power anal-
ysis and is not recommended. For additional background on
statistical power, power analysis, null-hypothesis significance
testing, and post-hoc analysis, please refer to Appendix A.

to detect small effects (§5). For comparing models
in terms of accuracy, we find that some widely used
benchmark datasets, including MRPC and SST-2,
are now too small to be able to properly measure
future progress against top performing models (§3).
We also introduce a novel approach to power analy-
sis for machine translation and characterize power
in experiments testing for differences in BLEU (§4).
Finally, a survey of recent papers reveals a general
lack of statistical evaluation and a dearth of detailed
reporting (§5.1).

To improve future practice, we suggest broader
adoption of power analyses prior to evaluation, pro-
vide guidance on running power analyses in NLP,
and release a series of notebooks for this purpose.

2 Power Analysis for NLP

Because most NLP tasks do not take the form of
standard experiments in other sciences (Kraemer
and Blasey, 2015; Westfall et al., 2014), it is non-
trivial to run power analyses for many tasks of
interest. While we cannot cover every scenario,
we present here a generalizable, simulation-based
approach to power analysis, along with three sam-
ple applications, which can be extended as neces-
sary. Such an approach is modular, reusable, and
transparent, and encourages planning of analyses
in advance of data collection.

Every power analysis requires assumptions, and
there is not likely to be a single correct approach.
Rather, the point is to make one’s assumptions ex-
plicit, and include enough detail so as to account
for whatever is likely to be observed. By using
reasonable assumptions, one can help to ensure
that one’s experiment is sufficiently well-powered,
In the case of NLP, this means that one recruits
enough subjects, collects enough ratings, or uses a
large enough test set.

The general procedure we suggest for power
analysis is described in detail in Figure 2. At a
high level, the idea is to estimate power by running
simulations. Recall that power is the probability
of detecting a true effect, conditional on the ex-
perimental setting (effect size, variance, etc.) and
significance threshold. Thus, if one can translate
these assumptions into a process for generating
simulated data, we can estimate power by gener-
ating many simulated datasets using assumed or
estimated parameter values, running each sample
through a significance test, and reporting the pro-
portion that are found to be significant.
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Define a generative process G(n, e⇤,h) parameterized by
number of items, n, hypothesized effect e⇤ for the statistic of
interest E, and other relevant parameters h (e.g., variance).
Also choose a statistical test T (D), which returns a p-value
p when performed on data D sampled from G(n, e⇤,h).
Finally, choose the size of the dataset to be sampled, n,
significance threshold, ↵, and number of repetitions, r.

1. For i in range(r):

• sample a dataset of size n, Di ⇠ G(n, e⇤,h)
• compute the effect of interest on this sample,

ei = E(Di)
• also compute a p-value according to the test of

interest: pi = T (Di)

2. Power ⇡ 1
r

P
(I[pi  ↵] · I[sign(ei) = sign(e⇤)])

Figure 2: An algorithm for power analysis by simu-
lation. For the example of comparing two systems
presented in Figure 1, e⇤ is the assumed overall pro-
portion of people who prefer system B, relative to
the null hypothesis, p = 0.5, G(n, e⇤,h) is simply
Binomial(n, 0.5+ e

⇤), while ei is the observed propor-
tion of people who prefer system B in sample i, again
relative to 0.5. For extensions to estimate Type-M and
Type-S error, see Appendix B.

The key to generalizing this approach is to begin
with the end in mind. In particular, if one plans to
test for a difference between models, one needs to
choose the statistical test that will be used. That
test will determine the level of detail required in
the generative process for simulating data.

To return to the opening example of evaluating
dialog systems, we want to test if people prefer one
system over the other (Ai et al., 2007). If we ig-
nore the nuances of human preference for now (but
see §5 for a more nuanced approach), and simply
assume that each person either prefers system A or
system B, the only assumption we need to make
for a power analysis in this setting is the proportion
of people in the population who prefer system B.
We can then simulate samples of n people (each
of whom independently has the same probability
of preferring system B) as a draw from a binomial
distribution, and repeat this thousands of times.3

For each sample, we then test whether the propor-
tion of people who prefer system B is significantly
different from 0.5. The estimated power of this ex-
periment would thus be the proportion of simulated
differences that are found to be significant.4

3We don’t need to address variance in this scenario, as the
variance of a binomial distribution is a function of its mean.

4More direct solutions are available for some settings, in-
cluding this one (see Appendix E.5), but we describe it using

The most difficult part of power analyses is es-
timating the relevant quantities, such as the true

proportion of people that prefer system B. Note,
however, that one can always compute what power
would be for a range of possible values, and indeed,
this is the recommended procedure. For estimat-
ing the relevant parameters within an NLP context,
we will primarily rely on data from the literature,
measurements on validation data, and estimates
from external datasets (see §3.2). However, where
appropriate, pilot studies may also be informative.

In the remainder of this paper, we consider three
scenarios of interest in depth, and assess the state
of power in the NLP literature for each.

3 Comparing Models on Accuracy

It is common in NLP research to look for mod-
els which improve over state of the art (SOTA) on
various benchmarks. However, an important but
rarely asked question is, can these benchmarks sup-

port the kinds of comparisons we want to make?

Many have emphasized the need for proper sig-
nificance testing to avoid spurious findings, but
if an experiment’s test set is small, the minimum
detectable effect (MDE) size may be large: only
large improvements will yield sufficiently powered
comparisons (i.e., � 80% power). If an experiment
is badly underpowered, it cannot provide useful
evidence that one model achieves slightly better
performance than another for the underlying data
distribution. Reliance on such evidence risks lead-
ing to over-confidence about the relative ranking
of various models. As we show in §3.3, there is
legitimate reason to be concerned about this in the
case of certain widely used benchmarks.

3.1 Significance test for comparing classifiers

The standard statistical test for comparing classi-
fiers on paired data is McNemar’s test (Dietterich,
1998; Dror et al., 2018), which uses the numbers
of items where the models disagree (i.e., the off-
diagonal elements in Table 1).5 McNemar’s test
assesses whether �

2 = (p10�p01)
2

p10+p01
is significant,

and if so, rejects the null hypothesis that the distri-
butions are the same.

the generic approach from Figure 2 for the purpose of illus-
tration. For all cases examined in this paper, simulations take
only minutes on a laptop.

5Unpaired data (i.e., if two models are evaluated on differ-
ent data drawn from the same distribution) requires a different
approach, such as using a binomial test. See Appendix E.5 for
extended discussion.
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M1 correct M1 incorrect
M2 correct both correct only M2 correct
M2 incorrect only M1 correct both incorrect

Table 1: A contingency table representing the distribu-
tion of possible outcomes for two models (M1 and M2).

Thus, for McNemar’s test, the relevant data gen-
erating process for simulations can be specified
in terms of the expected difference in accuracy
between the models, �acc, and Pa, the expected
proportion of examples for which the models will
have the same outcome (i.e., both correct or both in-
correct). From these we can compute the expected
proportions of examples on which only one model
is correct (i.e., the off-diagonals in Table 1), and es-
timate power via the algorithm in Figure 2. Figure
3 illustrates how power increases with increased
sample size, effect size, and agreement rate.6

Figure 3: Power for comparing two classifiers on accu-
racy using paired data depends on the size of the test
set (n), the expected agreement (Pa), and the expected
difference in accuracy (�acc). The dashed line shows
80% power, often taken to be a minimal requirement.

3.2 Estimating parameters
In order to estimate the required parameters (Pa

and �acc), we consider three options: (1) use re-
sults on validation (dev) data; (2) fit a regression
based on historical data; (3) use middle-of-the-road
assumptions when lacking other information. Us-
ing these methods, we can then estimate power or
calculate the smallest effect that can be detected
with 80% power at ↵ = 0.05 (or other thresh-
olds). Both to illustrate this process, and to provide
guidance for future work, we demonstrate these
approaches below using data from two widely-
used datasets for evaluating NLP models: SQuAD
2.0 (Rajpurkar et al., 2016, 2018) and the GLUE
benchmark (Wang et al., 2018).

6Corresponding plots showing Type-M and Type-S er-
ror (Gelman and Carlin, 2014) are in Appendix B. To walk
through a numerical example, see Appendix C. For an interac-
tive example, see the accompanying online notebooks.

Using validation results: To the extent that we
expect performance on test data to match perfor-
mance on validation data (i.e., in the absence of
domain shift), paired performance on validation
data (i.e., difference in accuracy and agreement
rate) provides one method for estimating power
when comparing against a baseline model.

To illustrate this, from the authors of SQuAD 2.0,
we obtain the pairwise agreement rates between all
models submitted to the leaderboard on both valida-
tion and test data. We find a very strong correlation
between validation and test for both pairwise accu-
racy differences (�acc) and agreement rates (Pa)
(r = 0.99 for both, as shown in Figure 9 in Ap-
pendix D, with results on validation data included
in the accompanying online materials), suggesting
we can use paired predictions on validation data
for power calculations when we have access to the
predictions from both models. Note that this ap-
proach assumes that the dev and test data have been
drawn from the same distribution, and that dev per-
formance has not been artificially inflated (such as
by training on validation data directly).

Using historical data: When one does not have
access to the baseline model or an informative prior,
one can make use of historical trends. That is, we
can try to estimate what a typical improvement will
look like, given the current state of the art (SOTA).
To illustrate this approach, we collect reported re-
sults for both SQuAD 2.0 and GLUE, and fit re-
gressions to estimate �acc and Pa. Given these
parameters, we can assess the likely power and
MDE for a typical model improvement against a
given baseline accuracy level.

To fit a regression to predict typical improve-
ments to SOTA, we gather data from GLUE papers
and manually label 119 accuracy comparisons and
57 claims of improvement (as denoted by bolding
of a result and a claim of SOTA in text) across 14
papers (selected as being at or above the BERT
score on the GLUE leaderboard with an accompa-
nying paper). In regressing �acc on baseline accu-
racy and task, we achieve an R

2 = 0.69, which is
not a perfect fit, but still provides a prior on likely
effect size. Similarly, we achieve an R

2 = 0.67
when fitting a regression to SOTA improvements
on the SQuAD 2.0 leaderboard (selected as being
a significant improvement in time-ordered submis-
sions). See Appendix E.2.1 for more details.

To assess power for McNemar’s test, we must
also fit a regression predicting the expected overlap



9267

between the models (Pa). To fit such a regres-
sion, from GLUE authors we obtain the model test
set predictions on all tasks from a set of 10 high-
performing models, which allows us to measure the
extent to which their predictions overlap with each
other. Using GLUE tasks which measure accuracy,
we regress Pa on baseline accuracy and �acc, and
achieve an R

2 of 0.97.7 Repeating this for SQuAD
2.0, we get an R

2 of 0.94. See Appendix E.2 for
regression coefficients and additional details.

Typical improvements on popular tasks tend to
be small (see mean improvements in Table 2). Ex-
cept for rare transformative work, such as BERT
(Devlin et al., 2019), it is generally difficult to do
much better than a previous SOTA and thus im-
provements are likely to follow a trend, which is
why we are able to use historical data as a guide.
In cases where such data is not available or cannot
be trusted, other methods are necessary.

No prior: If no informative prior is available and
the baseline model or can’t be used for comparison
on a validation set, then we must fall back on mid-
dle of the road assumptions. Lachenbruch (1992)
provides a suggested default prior, and we find that
MDEs using this method are very similar to those
found by using the regression based approach. Ap-
pendix E.3 provides more details, and Table 9 in
the appendix presents the comparison.

3.3 Assessing power in the literature
Using the regression-based approach of estimat-
ing �acc and Pa described above, we estimate the
MDE for each individual accuracy-based GLUE
task in comparison to current SOTA, and report
the average effect size of results which claimed
improvements. Table 2 summarizes these results,
showing for each dataset the size of the test set, the
accuracy of the best performing model on each task
at the time of writing, the estimated MDE to have
80% power using our regression to predict overlap
(Pa), and the average reported difference from their
respective baselines.

As can be seen in Table 2, the mean reported
effect size (|�acc|) is well below the estimated
MDE for the three smallest test sets – WNLI,
MRPC, and SST-2. Because this mean is based

7WNLI (Levesque et al., 2012), MRPC (Dolan and Brock-
ett, 2005), SST-2 (Socher et al., 2013), RTE (Dagan et al.,
2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2009), QNLI (Rajpurkar et al., 2016)
MNLI (Williams et al., 2018), and QQP (Iyer et al., 2017).
For consideration of other metrics, see Appendix F.

Dataset Size SOTA (%) Est. MDE (%) |�acc| (%)

WNLI 147 94.5 +5.26 +1.72
MRPC 1,725 92.0 +1.62 +0.63
SST-2 1,821 97.2 +1.02 +0.57
RTE 3,000 91.7 +1.23 +3.89
QNLI 5,463 97.5 +0.55 +1.31
MNLI-m 9,796 91.6 +0.67 +0.97
MNLI-mm 9,847 91.3 +0.68 +1.29
QQP 390,965 91.0 +0.11 +0.36

SQuAD 2.0 8,862 90.7 +0.56 +2.23†

Table 2: Estimated minimum detectable effect (MDE)
using a regression-based estimate of likely agreement
with leaderboard SOTA as of May 6th, 2020. |�acc| is
the average improvement over baseline per task among
surveyed papers that claimed SOTA. For future com-
parisons, unless the expected improvement is larger
than the estimated MDE, an experiment is unlikely to
be adequately powered, and researchers should instead
choose a different (larger) dataset. Note that this likely
applies to the vast majority of experiments on WNLI,
MRPC, and SST-2, based on recent trends. † indicates
that the SQuAD 2.0 average was based on leaderboard
improvements, which weren’t necessarily reported in a
publication. See Appendix E for full table and details.

on models comparing to even weaker baselines, we
would expect most future improvements to be even
smaller. Thus, most future experiments involving
these three datasets will not have adequate power

to test for improvements over the current SOTA
in the way that they are routinely used. Moreover,
alternative analyses give even more pessimistic es-
timates of likely improvements relative to MDE, as
described in Appendix E.4. If an experiment does
show significant improvement on a dataset such as
MRPC, the potential for Type-M error should make
us skeptical that this improvement will generalize
to new data from the same domain.

While the above results are informative about
future experiments, we would also ideally like to
know about the power of past experiments. Most of
the papers from which we collected results did not
report a significance test on the test set. Here we
estimate the expected power and predicted result of
such a test using leave-one-out regressions, where
we make a prediction for each reported improve-
ment using all other reported model comparisons.
This procedure reveals that only 46% would have
predicted adequate power (using estimates for
expected improvement and agreement), and ap-
proximately 51% would have been significant
(based on estimated agreement and reported im-
provement). Approximately 80% of experiments
with at least 80% power would also have been
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found to be significant (37% of all comparisons).
In part because performance on many of these

tasks is now so good, a large expected improve-
ment is required in order for a new experiment
to have 80% power, suggesting that larger test set
sizes may be necessary to continue making well-
powered claims of SOTA improvement on individ-
ual tasks. For any comparisons which are likely to
be underpowered, we should refrain from placing
much emphasis on obtaining small improvements
over the previously reported best model. In extreme
cases, such as MRPC and SST-2, it is worth con-
sidering whether it is time to retire these datasets
as the basis for model comparison.8

4 Machine Translation

To show how our approach to power analysis can
be applied to a more difficult setting, we consider
automated evaluation of machine translation us-
ing BLEU scores (Papineni et al., 2002). As with
accuracy, we would like to know what scale of im-
provements can be detected with reasonable power
on typical test sets. This setting is more compli-
cated because (1) BLEU is a corpus-level metric,
rather than being averaged across instances, and
(2) typical models are trained on vast amounts of
parallel data, with little data available that has not
been used in training, making it difficult to estimate
variation in performance.

Significance testing for BLEU: To test for a sig-
nificant difference between two MT models we use
the randomization test, as recommended in Dror
et al. (2018): given the paired output translations
from both models, swap the outputs for a random
subset of test examples and compute the resulting
difference in BLEU. Repeating this thousands of
times gives us a null distribution, which can be used
to test the observed difference between models.

Generative process for simulations: If large
amounts of untouched evaluation data were avail-
able, we could approach power analysis by simply
evaluating BLEU score on many random subsets
of n sentences, and computing the mean and vari-
ance of each system. Unfortunately, because MT
depends on parallel text (most of which is used in
training), evaluation data tends to be scarce. In-

8It is also worth exploring power with respect to claims of
improvement on multiple tasks with a single model (Demšar,
2006), rather than each task individually. We leave considera-
tion of this as an interesting direction for future work.

stead, we introduce a generative process that can
produce the necessary inputs for power analysis.

For intuition, note that if we swap the i
th pair of

model outputs (as is done in the randomization test),
leaving rest as they are, we change the difference
in BLEU between models by a specific amount,
�i, which we call the effect of making that swap.
While these individual effects are not independent
of each other due to the corpus-level nature of the
metric, in practice, the sum of individual effects
closely approximates the net effect of swapping
entire subsets (see Figure 15 in Appendix G).

Based on analyzing several models and datasets,
we find the typical distribution of these individual
effects can be approximated using a mixture of a
Delta distribution at zero, and a Laplace distribu-
tion (see Appendix G for details). Concretely, if
we assume �B is the expected difference in BLEU
between two models on a dataset of n examples,
and P0 is the expected proportion of examples for
which �i = 0, we can simulate a dataset {�i}ni=1 of
n individual effects using the following process:
with probability P0, �i = 0. With probability
1 � P0, �i ⇠ Laplace(µ, b), where µ = �2·�B

n(1�P0)
,

b = b0/n, and b0 is a user-specified parameter that
controls the variance, independent of the sample
size. By construction, E[

Pn
i=1 �i] = �2 ·�B .9

Given this generative process, we can then esti-
mate power using the Algorithm in Figure 2. On
each iteration, draw a simulated dataset from the
generative process, compute the observed differ-
ence between models as �̂B = �1

2

Pn
i=1 �i, and

test if this is significantly different from zero using
a modified randomization test, in which we assume
that the net effect of swapping a subset of instances
is simply the sum of the �i’s in the subset. (Please
see online materials for an interactive example).

Empirical estimates: In order to estimate rea-
sonable values for the required parameters, we use
several pretrained models from the FAIRSEQ library
(Ott et al., 2019) for the WMT English-German
translation task. We evaluate these models on the
shared task test sets from 2016-2019 and compute
BLEU scores using SACREBLEU (Post, 2018). Fit-
ting a Delta-Laplace mixture to the effects of swap-
ping individual output pairs, we estimate values for
P̂0 and b̂0, reported in Table 3. (See also Figure
16 in Appendix G; code for computing estimates is
provided in the online materials).

9Note that swapping all n examples would reverse the
model scores, equivalent to a net effect of �2 ·�B .
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M1 M2 Test set n �B P̂0 b̂0

TF19⇤ TF18⇤ 2019 2K 4.3 0.19 23.7
TF18 TF16 2018 3K 4.2 0.09 29.4
TF16 Conv17 2017 3K 1.3 0.12 22.5
TF16 Conv14 2016 3K 7.6 0.10 27.6

Table 3: Relevant parameters from four MT evalu-
ations. TF are Transformer-based (Ott et al., 2018;
Edunov et al., 2018; Ng et al., 2019) and Conv are Con-
volutional models (Gehring et al., 2017) from FAIRSEQ.
Test sets are from WMT shared tasks for En-De transla-
tion. �B is the reported difference in BLEU, whereas
P̂0 and b̂0 are estimated. * indicates ensembles.

Figure 4: Power analysis for MT, showing how power
increases with n and �B , using an average of fitted val-
ues for P0 and b0. Based on this analysis, we expect
that an experiment with a test set of 2000 sentences
would have approximately 75% power to detect a dif-
ference of 1 BLEU point as significant. For additional
plots, refer to Figure 17 in Appendix G.

While far from identical, the four comparisons,
each representing different stages of model evo-
lution, all produce similar estimates. Although
these estimates are only based on a single language
pair, the models and test sets are relatively diverse,
and we expect that these estimates will generalize,
though better estimates could be obtained by fitting
this distribution to a new domain of interest.

Using these estimates, we can now characterize
how much power test sets of different test set sizes
(n) would have for a range of possible differences
in BLEU (�B). Figure 4 shows this for P0 and b0

set to the average of the observed values.10 Based
on this estimate, we conclude that for typical MT
test sets of around 2,000 examples, an improve-
ment of 1 BLEU point can likely be detected with
approximately 75% power. As shown in Figure 4
this power level increases dramatically with sample
size and effect size.

This analysis has served, in part, to show how a
simulation-based approach to power analysis can

10For a sensitivity analysis of how power varies under dif-
ferent assumptions for P0 and b0, please see Figure 17 in
Appendix G.

be adapted to virtually any task. Additional work is
required to test how well these specific parameter
estimates will generalize, but the same process can
easily be adapted to new language pairs. More
generally, there would be great value in the MT
community curating larger held-out test sets, both
to validate this analysis, and for better powered
future comparison.

5 Likert-Scale Human Evaluations

Tasks such as natural language generation are diffi-
cult to evaluate using automated methods; as such,
human evaluations are central to NLP. Past work
has reported great variation in how human evalua-
tions are done (van der Lee et al., 2019). Therefore,
we begin with a meta-analysis of a subset of human
evaluation experiments from EMNLP 2019, which
we then use as the basis for claims about the power
of human evaluations in NLP more generally.

5.1 Meta-analysis

To characterize the state of human evaluation in
NLP, we identified papers from the main session
of EMNLP 2019 that made use of human evalu-
ations (details in Appendix H.2). To generalize
across studies, we restrict our analysis to Likert-
scale comparisons, which was the most commonly
reported type of evaluation. We extracted all cases
where a new model was being compared to the
best-performing baseline on one more metrics (117
comparisons from 41 papers) and normalized all
ratings to be on a 0-1 scale.

One takeaway from this meta-analysis is that the
reported effect sizes (that is, difference between
the novel model and the best-performing baseline)
vary widely (s.d. = .12 on a [0, 1] scale). Number
of items tested is more consistent: 69% used 100
or fewer, and only 18% used over 200. But, as sim-
ilarly found by van der Lee et al. (2019), many key
details were not reported in this sample of exper-
iments. Most commonly missing was number of
ratings per item (34% of all experiments), followed
by total number of workers (28%). For 7% of ex-
periments, we could not determine the number of
items tested. 57% of experiments collected 3 anno-
tations per item, which was also the modal number
of unique annotators. Thus, it is often difficult to
ascertain, for any particular experiment, the details
of the experimental setting that are necessary to
evaluate the validity of the results.

Because the number of items rated was the most
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Figure 5: Scaled effect size vs. number of items from
our EMNLP 2019 survey, showing higher variance in
the smallest samples. There is a slight negative correla-
tion, though it is not significant. As can be seen, most
experiments are small (n  100).

commonly reported, we use that as our proxy for
sample size. Figure 5 shows scaled mean difference
between models as a function of number of items.
As expected, we see greater variance in effects with
smaller samples since, with smaller samples, we
expect greater noise. We also observe a slight neg-
ative correlation between effect size and sample
size. That is, as sample size gets larger (and, thus,
as estimates get more precise), the estimated effect
size gets smaller. This trend is sometimes used as
an indication of publication bias (censoring of null
and opposite-direction effects) since, in a sample
with no publication bias, the effect size should be
independent of the sample size (Begg and Mazum-
dar, 1994). However, in our case, this correlation is
not significant (Kendall’s ⌧ = �.07, p = .32) and
so it is difficult to draw strong conclusions.11

5.2 Power analysis for human Likert ratings
What kind of effect sizes can typical human evalu-
ation experimental designs detect? As in previous
sections, we can use simulations to explore how
many annotators and/or instances should be used
to have sufficient power.

Simulating human experiments is conceptually
simple (e.g., m raters each rate n generated sen-
tence on overall quality), but for realistic simula-
tions, we need to consider variation in items (some
generated sentences are better than others), and
variation by rater (some raters use higher ratings
and/or respond to different aspects of quality), as
well as the overall difference in quality between
models. A simulation which treated all workers as
identical would fail to capture this variation, and
hence might overestimate power (Barr et al., 2013).

11We exclude from this analysis two large negative effects
with N = 500 which would exaggerate this correlation.

Figure 6: Using parameters estimated with mixed ef-
fects models from a high variance setting (top) and
a low variance setting (bottom), the left panel shows
simulated experiments with 3 workers annotating each
item, the right panel shows an unusually high number
of annotators per item (10 workers). Under typical as-
sumptions, many common experimental settings (e.g.,
3 workers and 100 items) are underpowered.

Unfortunately, details such as worker variance
are rarely reported in published papers. To better
characterize the typical variation in human evalua-
tions, we rely on a convenience sample of several
large datasets to estimate these parameters and use
them in our simulations as a proxy for what we
might observe in practice. Although focused on dif-
ferent tasks, all use a similar methodology, namely,
getting many Likert-scale annotations per instance
from many annotators and models (in some cases
as many as 20 ratings per item).12

In order to extract estimates of these parameters
for our simulations, we use hierarchical mixed-
effects models, as used in psychology and other be-
havioral fields (Barr et al., 2013; Gelman and Hill,
2006). Such models incorporate variation in the
quality of generated instances, annotator responses,
and annotator sensitivity, and are recommended by
van der Lee et al. (2019) for analyzing human eval-
uations. (We provide details in Appendix H.3 and
include code for fitting such models as part of the
online materials). Using this approach, we obtain
an estimate of the relevant parameters from each of
the large datasets. From these, we choose sets of
parameters to be representative of experiments with
high or low variance, with full results in Appendix
H.3 (see Table 16 for parameter estimates).

As before, we then use these estimates to simu-
late data, assess significance on the simulated data
(here using mixed effect regression), and compute
power as a function of mean difference and sample

12We use publicly available or author-provided data from
Hashimoto et al. (2019); Dathathri et al. (2020); Holtzman
et al. (2020), and WMT19 (links in Appendix H.2).
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size.13 The resulting power estimates are shown
in Figure 6, plotted in terms of effect size, sample
size, and numbers of workers and items, for both
the high and low variance scenarios. From this
analysis, we highlight a few key takeaways:

• Many human evaluation studies are likely

underpowered: Using the “high variance” pa-
rameters (which are typical of most of the
datasets we used), the most common design at
EMNLP 2019 (3 workers, 100 items) is under-
powered unless the effect size is quite large
(0.2 or higher on the [0, 1] scale).

• Even with low variance, typical designs are

underpowered to detect small effects: Using
our estimated parameters for the low variance
setting, experiments will be underpowered to
detect small effects (0.05 on the [0, 1] scale),
unless an unusually large number of ratings
per item are collected (10+ for 100 items).

• Need for improved reporting: Most human
evaluations do not report enough detail to in-
terpret the results. This could be drastically
improved through basic power analyses, sig-
nificance testing using mixed-effects models,
and sharing of raw data.

Given our model estimates and simulations, we
conclude that, in aggregate, many human evalua-
tions are underpowered and would benefit from
larger sample sizes, particularly by using more
workers per item. Increased adoption of even ap-
proximate power calculations within the NLP com-
munity will promote thoughtful consideration of
appropriate sample sizes and improve the reliability
and replicability of results.

6 Overall Recommendations

• Power analyses should be done prior to eval-
uation when comparing against a baseline. If
a comparison is likely to be underpowered,
the pros and cons of running that evaluation
should be carefully considered. Underpow-
ered experiments do not provide convincing
evidence of progress.

• For new datasets and shared tasks, the num-
ber of instances in the test will determine the

13These simulations require estimates for 7 parameters:
the baseline, the effect size, variance by worker, variance by
worker as a function of model, variance by item, variance by
item as a function of model, and residual variance.

minimum detectable effect size, and should
be chosen accordingly.

• For tasks which no longer have adequate
power to detect typical improvements (e.g.,
MRPC and SST-2), authors should consider
expanding the test set or retiring the task.

• To facilitate future power calculation and sig-
nificance tests, model owners should release
final fine-tuned model checkpoints. Alterna-
tively, leaderboard owners may wish to make
validation set predictions from all submitted
models publicly available.

• For human evaluations, (anonymized) raw
data should be shared, along with parameters
and code to replicate the analysis, including
proper significance testing. Prior to collect-
ing human evaluation data, researchers should
create an analysis plan and run power analy-
ses to determine an appropriate sample size
(likely requiring more workers and items than
is currently typical in NLP).

7 Conclusion
Recent progress in NLP has been extraordinarily
rapid, sometimes at the cost of experimental rigor.
In this paper, we have presented evidence that un-
derpowered experiments are widespread in NLP.
For comparisons based on small samples, there is
little reason to think that such an evaluation could

reliably provide evidence of a significant improve-
ment, and good reason to believe that improve-
ments found to be significant will exaggerate or
reverse the true effect. Going forward, a combi-
nation of larger test sets, simple power analyses,
and wider sharing of code, data, and experimental
details will help to build the foundation for a higher
standard of experimental methodology in NLP.
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