
Appendix for Prune-and-Score: Learning for Greedy Coreference
Resolution

Chao Ma, Janardhan Rao Doppa†, J. Walker Orr, Prashanth Mannem
Xiaoli Fern, Tom Dietterich and Prasad Tadepalli

School of Electrical Engineering and Computer Science, Oregon State University
{machao,orr,mannemp,xfern,tgd,tadepall}@eecs.oregonstate.edu
† School of Electrical Engineering and Computer Science, Washington State University

jana@eecs.wsu.edu

Appendix A. Pseudocode for Pruning and
Scoring Function Learning

Algorithm 1 Pruning Function Learning
Input: D = Training data, (I, A, T ) = Search space,
b = Pruning parameter

1: Initialize the set of ranking examplesR = ∅
2: for each training example (x, y∗) ∈ D do
3: s← I(x) // initial state
4: while not T (s) do
5: Generate an example Rt to imitate this search

step
6: Aggregate training data: R = R∪Rt

7: s← Apply a∗ on s
8: end while
9: end for

10: Fprune = Rank-Learner(R)
11: return pruning function Fprune

Appendix B. Proof for Expressiveness of
the Prune-and-Score Approach

Figure 1: An example that illustrates that methods
that use only scoring function for search can suffer
arbitrary large loss compared to Prune-and-Score
approach.

Proposition 1. Let Fprune and Fscore be functions
from the same function space. Then for all learn-
ing problems, minFscore

E(Fscore,Fscore) ≥
min(Fprune,Fscore) E(Fprune,Fscore). More-
over there exist learning problems for which
minFscore E(Fscore,Fscore) can be arbitrarily
worse than min(Fprune,Fscore) E(Fprune,Fscore).

Algorithm 2 Scoring Function Learning via Cross
Validation
Input: D = Training data, Sp = Search space, b =
Pruning parameter, F∗score = Optimal scoring function

1: Divide the training set D into k folds
D1,D2, · · · ,Dk

2: // Learn k different pruning functions
3: for i = 1 to k do
4: Ti = ∪j 6=i Dj

5: F i
prune = Learn-Pruner(Ti,Sp, b)

6: end for
7: // Generate ranking examples for scoring function

training
8: Intialize the set of ranking examplesR = ∅
9: for i = 1 to k do

10: for each training example (x, y∗) ∈ Di do
11: s← I(x) // initial state
12: while not Terminal(s) do
13: A′ ← Top b actions from A(s) according

to F i
prune

14: a∗ ← arg maxa∈A′ F∗score(s, a)
15: Generate ranking example Rt to imitate

this search step
16: Aggregate training data: R = R∪Rt

17: s← Apply a∗ on s
18: end while
19: end for
20: end for
21: Fscore = Rank-Learner(R)
22: return scoring function Fscore

Proof. The first part of the proposition follows
from the fact that the first minimization is over a
subset of the choices considered by the second.
For the second part, consider a problem with a
single training instance with search space shown
in Figure 2. We assume linear Fprune and Fscore

functions of features Φ(n), where n is an action.
The highlighted nodes correspond to the target
path. The Prune-and-Score approach with b = 2
can find Fprune and Fscore functions that are con-
sistent with the target path. For example, with
Fprune = (1, 0) and Fscore = (1, 2) and prun-
ing parameter 2 Prune-and-Score can achieve ze-



ro loss on this problem. However, it can be veri-
fied that there is no set of weights that satisfies all
the constraints for imitating the target path by the
Scoring-Only approach (Fscore(3)>Fscore(2) and
Fscore(8)>Fscore(7) in particular).


