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Appendix A. Pseudocode for Pruning and
Scoring Function Learning

Algorithm 1 Pruning Function Learning
Input: D = Training data, (I, A, T ) = Search space,
b = Pruning parameter

1: Initialize the set of ranking examplesR = ∅
2: for each training example (x, y∗) ∈ D do
3: s← I(x) // initial state
4: while not T (s) do
5: Generate an example Rt to imitate this search

step
6: Aggregate training data: R = R∪Rt

7: s← Apply a∗ on s
8: end while
9: end for

10: Fprune = Rank-Learner(R)
11: return pruning function Fprune

Appendix B. Proof for Expressiveness of
the Prune-and-Score Approach

Figure 1: An example that illustrates that methods
that use only scoring function for search can suffer
arbitrary large loss compared to Prune-and-Score
approach.

Proposition 1. Let Fprune and Fscore be functions
from the same function space. Then for all learn-
ing problems, minFscore

E(Fscore,Fscore) ≥
min(Fprune,Fscore) E(Fprune,Fscore). More-
over there exist learning problems for which
minFscore E(Fscore,Fscore) can be arbitrarily
worse than min(Fprune,Fscore) E(Fprune,Fscore).

Algorithm 2 Scoring Function Learning via Cross
Validation
Input: D = Training data, Sp = Search space, b =
Pruning parameter, F∗score = Optimal scoring function

1: Divide the training set D into k folds
D1,D2, · · · ,Dk

2: // Learn k different pruning functions
3: for i = 1 to k do
4: Ti = ∪j 6=i Dj

5: F i
prune = Learn-Pruner(Ti,Sp, b)

6: end for
7: // Generate ranking examples for scoring function

training
8: Intialize the set of ranking examplesR = ∅
9: for i = 1 to k do

10: for each training example (x, y∗) ∈ Di do
11: s← I(x) // initial state
12: while not Terminal(s) do
13: A′ ← Top b actions from A(s) according

to F i
prune

14: a∗ ← arg maxa∈A′ F∗score(s, a)
15: Generate ranking example Rt to imitate

this search step
16: Aggregate training data: R = R∪Rt

17: s← Apply a∗ on s
18: end while
19: end for
20: end for
21: Fscore = Rank-Learner(R)
22: return scoring function Fscore

Proof. The first part of the proposition follows
from the fact that the first minimization is over a
subset of the choices considered by the second.
For the second part, consider a problem with a
single training instance with search space shown
in Figure 2. We assume linear Fprune and Fscore

functions of features Φ(n), where n is an action.
The highlighted nodes correspond to the target
path. The Prune-and-Score approach with b = 2
can find Fprune and Fscore functions that are con-
sistent with the target path. For example, with
Fprune = (1, 0) and Fscore = (1, 2) and prun-
ing parameter 2 Prune-and-Score can achieve ze-



ro loss on this problem. However, it can be veri-
fied that there is no set of weights that satisfies all
the constraints for imitating the target path by the
Scoring-Only approach (Fscore(3)>Fscore(2) and
Fscore(8)>Fscore(7) in particular).


