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Preface

We are glad to pen the first few words for the proceedings of SIGDIAL 2023, the 24rd Annual Meeting of
the Special Interest Group on Discourse and Dialogue. The SIGDIAL conference is a premier publication
venue for research in discourse and dialogue. This year the conference is organized together with
the conference on International Natural Language Generation (INLG). The format is hybrid with most
participants and presenters in-person. Zoom was used for remote presentations and Discord was used as
a communication platform for both remote and local participants.

The joint SIGDIAL-INLG 2023 took place on September 11-15, 2023 in Prague, Czech Republic
at OREA Hotel Pyramida. The joint conference was collocated with five full-day and one half-day
workshops and one satellite event on September 11-12:

* Taming Large Language Models: Controllability in the era of Interactive Assistants

* Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG
Challenge

* The 1st Workshop on Counter Speech for Online Abuse
* The Eleventh Dialog System Technology Challenge
* PracticalD2T: 1st Workshop on Practical LLM-assisted Data-to-Text Generation

* Connecting multiple disciplines to Al techniques in interaction-centric autism research and
diagnosis (half-day workshop)

* The 2023 Young Researchers’ Roundtable on Spoken Dialog Systems (YRRSDS 2023) was held
as a satellite event

We thank the organizers of the workshops. We are grateful for their coordination with the main
conference.

SIGDIAL received 136 submissions this year, comprising 87 long papers, 42 short papers, and 7 demo
descriptions. We have aimed to develop a broad, varied program spanning the many positively-rated
papers identified by the review process. We therefore accepted 61 papers in total: 41 long papers (47%),
16 short papers (38%), and 4 demo descriptions, for an overall acceptance rate of 45.5%. In addition, we
considered 7 articles from Dialogue and Discourse journal and selected 3 for poster presentations.

SIGDIAL-INLG 2023 jointly featured 4 keynotes (one of them presented remotely), a panel discussion,
and a joint virtual poster/demo session. The SIGDIAL 2023 program featured 5 oral sessions with 24
talks. The presented topics included Analysis of discourse and dialogue, LLM for dialogue, Dialogue
modeling and evaluation, Language understanding and multimodality, and Topics in open-domain
dialogue (arguments, opinions, empathy).

7 of the talks were presented virtually and were evenly distributed among the oral sessions. The format
of the talks was a 15 minute presentation with 5 minutes for Q&A. The conference had two in-person
poster-demo sessions featuring a total of 27 poster and 2 demo presentations. A virtual joint SIGDIAL-
INLG poster/demo session was held on Discord during the conference and featured 8 posters and 2
demos from SIGDIAL submissions.

In organizing this hybrid in-person/ remote conference, we have tried to maintain as much of the spirit
of a fully in-person conference as possible, allowing opportunities for questions and discussion both
from in-person and remote audiences. Online participants were able to ask questions using the Discord
platform which also featured a channel for online discussions.
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We had 131 reviewers and 13 Senior Program Committee (SPC) members, who were each responsible for
9-11 papers, leading the discussion process and also contributing with meta-reviews. Each submission
was assigned to an SPC member and received at least three reviews. Decisions carefully considered
the original reviews, meta-reviews, and discussions among reviewers facilitated by the SPCs. We are
immensely grateful to the members of the Program Committee and Senior Program Committee for their
efforts in providing excellent, thoughtful reviews of the large number of submissions. Their contributions
have been essential to selecting the accepted papers and providing a high-quality technical program for
the conference.

A conference of this scale requires the energy, guidance, and contributions of many parties, and we would
like to take this opportunity to thank and acknowledge them all. We thank our four keynote speakers,
Emmanuel Dupoux (Ecole des Hautes Etudes en Sciences Sociales), Ryan Lowe (OpenAl), Barbara Di
Eugenio (University of Illinois Chicago), and Elena Simperl (King’s College London) for their inspiring
talks on "Textless NLP: towards language processing from raw audio”, "Aligning ChatGPT: past, present,
and future", "Engaging the Patient in Healthcare: Summarization and Interaction”, and "Knowledge
graph use cases in natural language generation", respectively.

Ryan Lowe’s talk was followed by a panel discussion on ‘Social Impact of LLMs’. We thank the panel
chair David Traum and the Panelists: Malihe Alikhani, Maria Keet, Ryan Lowe, and Ehud Reiter for
engaging discussion on this important topic.

SIGDIAL 2023 was made possible by the dedication and hard work of our community, and we are
indebted to many. The hybrid nature (in-person and remote), the collocation with the INLG and
seven workshops put additional burden on the organization process. The conference would not have
been possible without the advice and support of the SIGDIAL board, particularly Gabriel Skantze and
Milica Gasic as well as Emiel van Miltenburg and Dave Howcroft who helped coordination between the
collocated events.

The tireless work by the local organizing team led by Ondfej DuSek who was involved in countless
discussions prior and during the conference coordinating SIGDIAL, INLG, and collocated workshops.
We thank the local team who ensured that the conference ran very smoothly, and was enjoyed greatly by
all participants. Without that team, there would not have been a conference.

Special thanks go to Zdenek Kasner and Ondrej Platek for their tireless efforts in managing the website
with timely updates, and to the team handling various online aspects of participation: Ondrej Platek,
Patricia Schmidtova, Dave Howcroft. We would like to thank Patricia Schmidtova, Mateusz Lango and
Simone Balloccu for further help with conference preparation. We are grateful to Souro Mukherjee, Kirill
Semenov, Nalin Kumar, and Peter Poldk, as well as Zdenek Kasner, Ondrej Platek, Patricia Schmidtova,
Simone Balloccu, and Mateusz Lango again, for support with the registration, A/V and all other local
organizing tasks. Many thanks also go to Jan Haji¢ for his support, and especially to Anna KotéSovcova
for making all the local arrangements possible. We would also like to thank the sponsorship chair
Ramesh Manuvinakurike, who brought to the conference an impressive panel of conference sponsors.
We gratefully acknowledge the support of our sponsors: LivePerson (Platinum), LuxAl (Platinum),
Apple (Gold), Furhat Robotics (Silver), AX Semantics (Bronze), and Bloomberg (Bronze). In addition,
we thank Malihe Alikhani, the publication chair, and Casey Kennington, the mentoring chair for their
dedicated service.

Finally, it was our great pleasure to welcome you physically and remotely to the conference. We hope
that we have provided an enriching and productive experience at the joint SIGDIAL-INLG 2023.

Svetlana Stoyanchev, Shafiq Joty, Program Co-Chairs
David Schlangen, General Chair
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Keynote Abstracts

Keynote 1: Engaging the Patient in Healthcare: Summarization and Interaction
Barbara Di Eugenio
University of lllinois, Chicago

Abstract: Effective and compassionate communication with patients is becoming central to healthcare.
I will discuss the results of and lessons learned from three ongoing projects in this space. The first,
MyPHA, aims to provide patients with a clear and understandable summary of their hospital stay, which
is informed by doctors’ and nurses’ perspectives, and by the strengths and concerns of the patients
themselves. The second, SMART-SMS, models health coaching interactions via text exchanges that
encourage patients to adopt specific and realistic physical activity goals. The third, HFChat, envisions an
always-on-call conversational assistant for heart failure patients, that they can ask for information about
lifestyle issues such as food and exercise. All our work is characterized by: large interdisciplinary groups
of investigators who bring different perspectives to the research; grounding computational models in
ecologically valid data, which is small by its own nature; the need for culturally valid interventions, since
our UI Health system predominantly serves underprivileged, minority populations; and the challenges
that arise when dealing with the healthcare enterprise.

Bio: Barbara Di Eugenio is a Professor and Director of Graduate Studies in the Computer Science depart-
ment at the University of Illinois Chicago. There she leads the NLP laboratory (http://nlp.cs.uic.edu/).
She obtained her PhD in Computer Science from the University of Pennsylvania (1993). Her research
has always focused on the pragmatics and computational modeling of discourse and dialogue, grounded
in authentic data collection on the one hand, and in user studies on the other. The applications of her
work run the gamut from educational technology to human-robot interaction, from data visualization to
health care. Dr. Di Eugenio is an NSF CAREER awardee (2002); a UIC University Scholar (2018-
2020); and a Zenith Award recipient from AWIS, the Association for Women in Science (2022). She has
been the editor-in-chief for the Journal of Discourse and Dialogue since 2019. She is very proud to have
graduated 15 PhD and 32 Master’s students.
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Keynote 2: Textless NLP: towards language processing from raw audio
Emmanuel Dupoux
Ecole des Hautes Etudes en Sciences Sociales (EHESS)

Abstract: The oral (or gestural) modality is the most natural channel for human language interactions.
Yet, language technology (Natural Language Processing, NLP) is primarily based on the written modal-
ity, and requires massive amounts of textual resources for the training of useful language models. As
a result, even fundamentally speech-first applications like speech-to-speech translation or spoken assis-
tants like Alexa, or Siri, are constructed in a Frankenstein way, with text as an intermediate representation
between the signal and language models. Besides this being inefficient, This has two unfortunate conse-
quences: first, only a small fraction of the world’s languages that have massive textual repositories can
be addressed by current technology. Second, even for text-rich languages, the oral form mismatches the
written form at a variety of levels, including vocabulary and expressions. The oral medium also con-
tains typically unwritten linguistic features like rhythm and intonation (prosody) and rich paralinguistic
information (non verbal vocalizations like laughter, cries, clicks, etc, nuances carried through changes
in voice qualities) which are therefore inaccessible to language models. But is this a necessity? Could
we build language applications directly from the audio stream without using any text? In this talk, we
review recent breakthroughs in representation learning and self-supervised techniques which have made
it possible to learn latent linguistic units directly from audio which unlock the learning of generative
language models without the use of any text. We show that these models can capture heretofore un-
addressed nuances of the oral language including in a dialogue context, opening up the possibility of
speech-to-speech textless NLP applications. We outline existing technical challenges to achieve this
goal, including challenges to build expressive oral language datasets at scale.

Bio: E. Dupoux is professor at the Ecole des Hautes Etudes en Sciences Sociales (EHESS) and Re-
search Scientist at Meta Al Labs. He directs the Cognitive Machine Learning team at the Ecole Normale
Supérieure (ENS) in Paris and INRIA. His education includes a PhD in Cognitive Science (EHESS), a
MA in Computer Science (Orsay University) and a BA in Applied Mathematics (Pierre & Marie Curie
University). His research mixes developmental science, cognitive neuroscience, and machine learning,
with a focus on the reverse engineering of infant language and cognitive development using unsuper-
vised or weakly supervised learning. He is the recipient of an Advanced ERC grant, co-organizer of the
Zero Ressource Speech Challenge series (2015-2021), the Intuitive Physics Benchmark (2019) and led
in 2017 a Jelinek Summer Workshop at CMU on multimodal speech learning. He is a CIFAR LMB and
a ELLIS Fellow. He has authored 150 articles in peer reviewed outlets in cognitive science and language
technology.
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Keynote 3: Knowledge graph use cases in natural language generation
Elena Simperl
King’s College London

Abstract: Natural language generation (NLG) makes knowledge graphs (KGs) more accessible. I will
present two applications of NLG in this space: in the first one, verbalisations of KG triples feed into
downstream KG applications, allowing users with diverse levels of digital literacy to share their knowl-
edge, and contribute to the KG. In the second one, having text representations of KG triples helps us
verify the content of a KG against external sources towards more trustworthy KGs. I will present human-
in-the-loop solutions to these applications that leverage a range of machine learning techniques to scale
to the large, multilingual knowledge graphs modern applications use.

Bio: Elena Simperl is a Professor of Computer Science and Deputy Head of Department for Enterprise
and Engagement in the Department of Informatics at King’s College London. She is also the Director
of Research for the Open Data Institute (ODI) and a Fellow of the British Computer Society and the
Royal Society of Arts. Elena features in the top 100 most influential scholars in knowledge engineering
of the last decade. She obtained her doctoral degree in Computer Science from the Free University of
Berlin, and her diploma in Computer Science from the Technical University of Munich. Prior to joining
King’s in 2020, she was a Turing Fellow, and held positions in Germany, Austria and at the University
of Southampton. Her research is at intersection between Al and social computing, helping designers
understand how to build smart sociotechnical systems that combine data and algorithms with human and
social capabilities. Elena led 14 European and national research projects, including recently QROWD,
ODINE, Data Pitch, Data Stories, and ACTION. She is currently the scientific and technical director
of MediaFutures, a Horizon 2020 programme that is using arts-inspired methods to design participatory
Al systems that tackle misinformation and disinformation online. Elena’s interest in leading initiatives
within the scientific community has also taken form through chairing several conferences in her field,
including the European and International Semantic Web Conference series, the European Data Forum,
and the European Semantic Technologies conference. She is the president of the Semantic Web Science
Association.

XX1V



Keynote 4: Aligning ChatGPT: past, present, and future
Ryan Lowe
OpenAl

Abstract: In this talk I will present different perspectives on the alignment of chatbots like ChatGPT.
I'll review reinforcement learning from human feedback (RLHF), the core training technique behind
InstructGPT and ChatGPT, including a brief history of how it was developed. I'll discuss some of the
pitfalls of RLHF, and what is being done today to address them. I'll then speculate on some of the
alignment challenges I expect we’ll face with this new generation of powerful personal assistants, how
they could reshape society, and some things we’ll need to do to make sure these changes are good for
humans.

Bio: Ryan is a researcher at OpenAl on the Alignment team. His most recent work involved proving out
RLHF on language models, starting with summarization, then moving to InstructGPT and most recently
ChatGPT and GPT-4. Previously, he worked on multi-agent RL, emergent communication, and dialogue
systems at McGill University.
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Sources of Noise in Dialogue and How to Deal with Them

Derek Chen
Columbia University, NY
dc376l@columbia.edu

Abstract

Training dialogue systems often entails dealing
with noisy training examples and unexpected
user inputs. Despite their prevalence, there
currently lacks an accurate survey of dialogue
noise, nor is there a clear sense of the impact
of each noise type on task performance. This
paper addresses this gap by first constructing
a taxonomy of noise encountered by dialogue
systems. In addition, we run a series of exper-
iments to show how different models behave
when subjected to varying levels of noise and
types of noise. Our results reveal that mod-
els are quite robust to label errors commonly
tackled by existing denoising algorithms, but
that performance suffers from dialogue-specific
noise. Driven by these observations, we design
a data cleaning algorithm specialized for con-
versational settings and apply it as a proof-of-
concept for targeted dialogue denoising.

1 Introduction

Quality labeled data is a necessity for properly
training deep neural networks. More data often
leads to better performance, and dialogue tasks are
no exception (Qian and Yu, 2019). However, in the
quest for more data, practitioners increasingly rely
on crowdsourcing or forms of weak supervision to
meet scaling requirements. Even when acting in
good faith, crowdworkers are not trained experts
which understandably leads to mistakes. This ul-
timately results in noisy training inputs for our
conversational agents. Moreover, when dialogue
systems are deployed into the real world, they must
also deal with noisy user inputs. For example, a
user might make an ambiguous request or men-
tion an unknown entity. All these sources of noise
eventually take their toll on model performance.
Before building noise-robust dialogue systems
or denoising dialogue datasets, it would be help-
ful to know what types of noise exist in the first
place. Then our efforts can be spent more wisely
tackling the sources of noise that actually make a

1

Zhou Yu
Columbia University, NY
zy246l@columbia.edu

. I'm looking for a Chinese restaurant
@D on the south side of town.
(food=chinese, area=south)
There are 2 expensive and 1 cheap restaurant matching 2
your criteria. Which price range do you prefer? I@i
@  Book me a table for 7 on Thursday at 17:30
@D 2nd send me a reference number. Thank you.
(food=chinese, area=south)
<people=7, time=17:30, day=thursday>
O
Would you like to book cheap or expensive? =
Y P P! .@.
@ ! don'tcare what price range it is in. | will need
‘ a reference number please for the reservation.
(food=chinese, area=south, people=7, time=19:30,
day=thursday) <pricerange=dontcare>
Let's decide on the lucky star. However, o
that appears to already be booked. Do .@.
you want to try one of the others instead?
@  Yesplease. Let's try the other one you
@ mentioned. m

(food=chinese, area=south, people=7, time=17:30,
day=thursday, pricerange=dontcare)

Figure 1: An example of label errors within MultiWoz
2.0 which contains partially filled and missing labels.
We categorize this as two types of instance-level noise.

difference. Prior works have looked into counter-
acting noisy user interactions (Peng et al., 2021;
Liu et al., 2021), but did not study the impact of
noisy training data. Moreover, they lack analysis
on how noise influences performance across dif-
ferent model types or conversational styles. Other
works claim that dialogue agents can be easily bi-
ased by offensive language found in noisy training
data (Ung et al., 2022; Dinan et al., 2020). Given
such a danger, we wonder “How much toxic data
actually exists in annotated dialogue data?”

To investigate these concerns, we survey a wide
range of popular dialogue datasets and outline the
different types of naturally occurring noise. Build-
ing on this exercise, we also study the patterns of
annotation errors to determine the prevalence of
each noise type and identify the most likely causes
of noise. Next, we run transformer models through
the gamut to find out how well they handle the dif-
ferent types of noise documented in the previous
step. In total, we test 3 model types on 7 categories

Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue, pages 1-20
September 11-15, 2023. ©2023 Association for Computational Linguistics



Num. Collection Open Goal Synchronous KB/
Dataset Abbr. | Dialogs Methodology Domain Oriented Chat Document
Action-Based Conversations Dataset ABCD 10,042 Expert Live Chat X X X
DailyDialog DD 13,118  Post-conv Annotation X
Empathetic Dialogues ED 24,850 Live Chat X X
Google Simulated Conversations GSIM 3,008 Machine to Machine X
Key-Value Retrieval for In-Car KVRET 3,031 Wizard of Oz X X
Machine Interaction Dialog Act Schema | MIDAS 468 Live Chat X X
MultiWoz 2.3 MWOZ | 10,419 Wizard of Oz X
Schema Guided Dialogue SGD 42,706  Post-conv Annotation X
TicketTalk (TaskMaster 3) TT 23,789 Dialogue Self-Play X
Wizard of Wikipedia WOow | 22311 Wizard of Oz X X X

Table 1: Breakdown of ten dialogue datasets used in constructing the noise taxonomy. The datasets were chosen to
span a wide variety of annotation schemes, task specifications and conversation lengths. KB/Document refers to a
dataset containing an external knowledge base or document to ground the conversation. (See Appendix A)

of noise across 10 diverse datasets spanning 5 di-
alogue tasks. We discover that most models are
quite robust to the label errors commonly targeted
by denoising algorithms (Natarajan et al., 2013;
Reed et al., 2015), but perform poorly when sub-
jected to dialogue-specific noise. Finally, to verify
we have indeed identified meaningful noise types,
we apply our findings to denoise a dataset contain-
ing real dialogue noise. As a result, we are able
to raise joint goal accuracy on MultiwOZ 2.0 by
42.5% in relative improvement.

In total, our contributions are as follows: (a)
Construct a realistic taxonomy of dialogue noise to
guide future data collection efforts. (b) Measure the
impact of noise on multiple tasks and neural models
to aid the development of denoising algorithms. (c)
Establish a strong baseline for dealing with noise
by resolving dialogue specific concerns, and verify
its effectiveness in practice.

2 Dialogue Datasets

A data-driven taxonomy of dialogue noise was de-
signed by manually reviewing thousands of con-
versations across ten diverse datasets and their
accompanying annotations. The datasets were
chosen from non-overlapping domains to exhaus-
tively represent all commonly considered dia-
logue tasks. At a high level, they are divided
into six task-oriented dialogue datasets and four
open domain chit-chat datasets. The task-oriented
datasets are comprised of MultiWoz 2.0 (MWOZ)
(Budzianowski et al., 2018), TicketTalk (TT)
(Byrne et al., 2019), Schema Guided Dialogue
(SGD) (Rastogi et al., 2020), Action Based Con-
versations Dataset (ABCD) (Chen et al., 2021),
Google Simulated Conversations (GSIM) (Shah
etal., 2018), and Key-Value Retrieval for In-car As-

sistant (KVRET) (Eric et al., 2017). The open do-
main datasets include DailyDialog (DD) (Li et al.,
2017), Wizard of Wikipedia (WOW) (Dinan et al.,
2019b), Empathetic Dialogues (ED) (Rashkin et al.,
2019), and Machine Interaction Dialog Act Schema
(MIDAS) (Yu and Yu, 2021). The datasets also
span a variety of data collection methodologies,
such as M2M or Wizard-of-Oz, which has a close
connection to the types of noise produced. We also
consider whether the interlocutors engage in real-
time vs. non-synchronous chat. Details of each
dataset can be found in Table 1 and Appendix A.
The taxonomy creation process starts by uni-
formly sampling 1% of conversations from each
corpus, rounding up as needed to include at least
100 dialogues per dataset. Five expert annotators
then conducted two rounds of review per conver-
sation to tally noise counts, with a third round
to break ties if needed. The group also cross-
referenced each other to merge duplicate categories
and resolve disagreements. Notably, the final tax-
onomy purposely excludes sources of noise that
occur less than 0.1% of the time. This active cura-
tion supports future denoising research by focusing
attention on the most prominent sources of noise.

3 Sources of Noise

Through careful review of the data, we discover
that dialogue systems encounter issues either from
noisy training inputs during model development or
from noisy user inputs during model inference.

3.1 Training Noise

Noisy training data impacts model learning, before
any user interaction with the system. The sources
of noise are derived from labeling errors, ontology
inconsistencies or undesirable discourse attributes.
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Figure 2: Diagram of the main sources of noise that affect training, based on review of the data. Our taxonomy also
includes inference noise which occurs when users interact with the dialogue agent (See Fig 3).

3.1.1 Labeling Errors

For a given dataset of (X, Y") pairs, any occasion
when the target label y is labeled incorrectly can
be considered a labeling error.

Class Level When noise occurs due to confu-
sion between two classes, this is considered a class-
level labeling error. This can be further sub-divided
into Uniform Label Swapping or Structured Label
Swapping. In the former, symmetric noise implies
all classes have equal likelihood to be confused
with any other class, whereas in the latter certain
classes are more likely to confused with other re-
lated classes. For example, “anger” as a label is
more likely to be confused with “frustration” than
“joy” when performing emotion detection.

Instance Level Noise comes from the example
itself due to the complexity of interpreting natu-
ral language, which is especially common within
dialogues (Zhang et al., 2021). For example, an-
notators may carry over the dialogue act from the
previous turn, even though it is no longer relevant,
resulting in Over Labeling. Conversely, Under La-
beling is when a label is missed. Partial Labels
occur when some labels are correct, while others
are not. This is common in dialogue due to the
prevalence of multi-label examples, such as an ut-
terance with two slot-values to fill. (See Figure 1)

Annotation Level Noise arises due to the labeler
or data collection process. (Snow et al., 2004).

3

Applying heuristics on a gazetteer to label named
entities in NER produces Distant Supervision noise.
Human annotators are also a source of noise either
purposely from Adversarial Actors or inadvertently
from annotators acting in good faith still leading to
Formatting Mistakes. (See Table 2)

3.1.2 Ontology Inconsistency

Another source of noise comes from inconsistent
formatting when constructing the ontology. The
only entities which actually contained issues are
(a) Dates: tomorrow, Jan 3rd, 1/3/2022, January 3
(b) Times: 14:15, 2:15 PM, quarter past 2, 215pm
(c) Locations: NYC, New York, ny, the big apple
(d) Numbers: three, ‘wife daughter & I’, 3, ‘Me
and my two buddies’. In contrast, inconsistent
names (ie. Fred Miyato, Mr. Miyato, fred miyato,
my father) only occurred occasionally. Lack of
standardization in the ontology was so pronounced
in certain datasets that classifying labels becomes
untenable, leaving generation or copying as the
only viable method of predicting slot-values.

3.1.3 Discourse Attributes

Dialogue agents developed for response genera-
tion often mimic the behavior found in the training
examples, so one hopes they contain positive dis-
course attributes while avoiding negative ones. We
identify six such attributes by following qualitative
metrics commonly used for dialogue evaluation
and through our own review of the conversations.



Dialogue

Labels

SGD — [ Ontology Inconsistency > Date, Time ]
User: I need a rental car in Chicago on the 3rd of this month.
System: When and for how long will you need the car?
User: I'd like it from 12:30 in the afternoon till next Wednesday.

System: So you’d like to reserve a standard car from March 3rd at 12:30 pm
until March 6th from the O’Hare International Airport location?

GetCarsAvailable (pickup_city=Chicago,
pickup_date=3rd of this month)

GetCarsAvailable (pickup_time=12:30 in
the afternoon, dropoff_date=Wednesday)

ReserveCar (dropoff_date=March 6th,

User: Yes that’ll work

pickup_time=12:30 pm)

MIDAS — [ Discourse Attribute > Incoherent |
User: one guy

User: you can’t get a boy

Agent: what do you think about christopher nolan’s acting

Revised dialog act:
statement — nonsense

TT — [ Labeling Error > Annotator Level > Formatting |

Assistant: How many tickets will you need today?
User: We will need 4 tickets.
Assistant: Where would you like to see the movie?

User: We would like to see the Rhythm Section. That sounds good.

User: We would like to see it in San Antonio at Cinemark McCreless Market.

(name.movie=‘the Rhythm Section’)

(num.tickets=4)

=‘inemark McCreless Market.’)

Table 2: Selected qualitative examples of dialogue noise. Best viewed in color. Many more examples in Appendix I.

(1) Fluent utterances flow well, obey proper
grammar, and are syntactically valid. (2) Coherent
dialogues are semantically valid, and make sense
such that they are interpretable and understandable
by a general audience. (3) Consistent models do
not contradict what was stated earlier in the con-
versation, or haphazardly change their stance on a
subject. (4) Sensible models follow common sense
principles and understand basic natural laws (ie.
gravity). (5) Polite dialogue models avoid toxic
language or offensive speech. They should not ex-
hibit overt bias towards certain groups or minorities.
(6) Natural dialogues reflect how people generally
talk in real life. In addition, the speakers should
not break the fourth wall by directly or indirectly
referring to the data collection process.

3.2 Inference Noise

Inference noise refers to issues that occur in test
time, during user interaction with the system after
deployment to production. This aligns nicely with
the concept of out-of-scope errors (Chen and Yu,
2021), which are made up of two categories: out-
of-distribution cases and dialogue breakdowns.

3.2.1 Out-of-Distribution (OOD)
Causes of OOD (Peng et al., 2021) include:

Novel queries The user asks the model to do
something it was not trained to do. Example: the
customer asks about frequent flyer miles, but the
agent is only capable of making or modifying flight
reservations. The model fails for these requests
since it was never taught to handle such queries.

Unseen entities Facing new entities or values
not seen during training. Although difficult, we
could still expect a model to understand a portion
of such queries by generalizing from the context.
For example, “I would like a flight from Miami to
Puftville”. Even though the model has never heard
of ‘Puffville’, it can infer from context that this is
the desired value for the destination slot.

Domain shift The dialogue system must make
predictions in a new domain (taxi vs. flight). Com-
monly tackled in zero-shot settings, we can expect
models to occasionally generalize because there
may be shared slots across domains (ie. departure
time is shared by both taxi and flights queries).

3.2.2 Dialogue Breakdown

In contrast to OOD issues, dialogue breakdowns
are situations a model should be able to handle
since the scenario is within the bounds (i.e. in-
domain) of what the model was trained to under-
stand (Higashinaka et al., 2016). However, due to
noise from ambiguous or unclear user input, com-
munication breaks down and the conversation is
unable to continue. (Higashinaka et al., 2015).

Ambiguous Meaning Query or statement that
the model should be able to handle, but caused
confusion, possibly because the model failed to
take the dialogue context into consideration. For
example, a co-reference issue may cause difficulty
in interpreting the user intent. “Yea, let’s go with
that one” is unclear when viewed in isolation. To
resolve this type of noise a model should look at
the broader conversational context.

(location='San Antonio’, name.theater
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Figure 3: Diagram of the sources of noise that affect dialogue systems during inference.

Paraphrasing The text is rephrased to become:
(a) Simplification: request may be simplified or
shortened that makes it unclear what the user
wants. (b) Non Sequitur: response is plausibly
in-distribution, but does not reasonably answer the
question. (c) Verbosity: request is so verbose that
the underlying request is lost. (See Appendix D)

Text Perturbations Notable instances include (a)
ASR Errors that fail to “wreck a nice beach” (rec-
ognize speech) (b) Typos and other syntax errors
on the user input. This is distinct from formatting
mistakes by annotators, which are errors on the tar-
get output. (c) Speech Disfluencies such as repeats,
corrections, or adding ‘umm’ to start a utterance
(Liu et al., 2021; Peng et al., 2021).

4 Noise Patterns

Beyond categorization, manually reviewing 10K+
utterances also provides unique insights.

How often does noise appear? The percentage
of dialogues with at least one instance of noise
comes out to an average of 11.2%, a median of
10.6%, with a standard deviation of 3.7%. However,
given the approximate nature of sampling, the extra
digits may not be significant. Instead, we assert the
rate of noise in curated dialogue datasets is usually
over 5%, rarely above 20% and typically around
10%. Since these rates are relatively low, denoising
techniques aiming to combat extremely high levels
of noise may be impractical.

What noise types are most common? While
most existing denoising algorithms are designed to
resolve class confusion (Sukhbaatar et al., 2015;
Patrini et al., 2017; Goldberger and Ben-Reuven,
2017), our analysis reveals that instance-level noise
is actually much more common, showing up in
nearly 10% of cases compared to just 5% for class-
level errors. Class-level noise assumes a latent
noise transition matrix stochastically switches la-
bels from one class to another. However, the preva-
lence of instance-level noise implies that the more
likely explanation is that some examples are sim-
ply more confusing then others due to the gen-
uinely ambiguous nature of dialogue (Pavlick and
Kwiatkowski, 2019; Nie et al., 2020)

From an algorithmic perspective, the upshot is
that developing denoising methods to target individ-
ual examples rather than class errors are likely to
be most effective. Furthermore, we discovered that
noise is clustered rather than evenly distributed, so
filtering out or relabeling these particularly noisy
instances should have an out-sized impact.

Why is X source of noise missing? The expected
influence of some sources of noise are greatly exag-
gerated. Building out the taxonomy not only shows
the most likely sources of noise, but equally notable
is uncovering the least likely noise types. Con-
cretely, the threat of adversarial actors is largely
overblown (Dinan et al., 2019a), as spam-like ac-
tivity appears less than 2% of the time. Offen-
sive speech is the subject of numerous dialogue
studies (Khatri et al., 2018; Xu et al., 2021; Sun



et al., 2022), but is practically non-existent in real-
ity (<0.5% of cases). While hate speech may be a
problem when training on raw web text (Schmidt
and Wiegand, 2017), our empirical review reveals
that toxic language is exceedingly rare in curated
datasets. Instead, unnatural utterances generated
by crowdworkers role-playing as real users occurs
much more often. (Full breakdown in Appendix E)
Other types of noise occur so infrequently that
they are missing from the taxonomy completely!
Noteworthy options include inconsistent names or
titles within the ontology (See Appendix C), as well
as improper reference texts for dialogue generation
tasks. While these noise types are possible, they did
not occur in practice. We intentionally exclude all
such candidates from the taxonomy since the aim
is not to be comprehensive, but rather to highlight
where researchers should spend their efforts.

Where does noise come from? Our survey
found that each data collection method had a
propensity to produce certain kinds of noise. This
suggests noise arises as a result of how examples
are annotated, rather than other factors such as con-
versation length (number of utterances) or dialogue
style (open-domain vs. task-oriented). For exam-
ple, positive discourse attributes are most common
with Post-conversation Annotation and Live Chat,
which involve two human speakers engaging in
real dialogue. Wizard-of-Oz datasets are less time-
consuming to produce, but contain more label noise.
In contrast, dialogues from Machine-to-Machine or
Dialog Self-play (ie. starting with the labels to gen-
erate the dialogue) contain fewer label errors, but
also sound less natural. Separately, annotator and
ontology issues can be mitigated with well-written
agent guidelines and proactive crowdworker screen-
ing. Thus, practitioners should consider these noise
trade-offs when collecting dialogue data.

5 Experiments and Results

This section explores to what degree various mod-
els and dialogue tasks are impacted by each of the
seven different categories of noise outlined in Sec-
tion 3. To study this, a model is trained on a clean
version of the dataset and on a corrupted version
with either natural or injected noise. The level of
corruption for all trials is held constant at 10% to
allow for comparison across noise types. Datasets
for each noise type are selected to maximize the
overall variety, while always keeping one instance
of MultiWwOZ 2.3 to aid comparison. Intuitively,

sources of noise that induce a larger gap in mod-
els trained on cleaned versus corrupted data are
more significant, and consequently deserve more
attention as targets to denoise.

5.1 Task Setup

All trials are conducted with GPT2-medium as a
base model (Brown et al., 2020). The chosen tasks
are: (1) Conversation Level Classification (CLC)
— Choose from a finite list of labels for each con-
versation. (2) Turn Level Classification (TLC) —
Make a prediction for each turn that contains a la-
bel. (3) Dialogue State Tracking (DST) — Predict
the overall dialogue state, which may contain multi-
ple slot-values or no new slot-values at all. Individ-
ual values come from an enumerable or open-ended
ontology. (4) Response Generation (RG) — Produce
the agent response given the dialogue context so
far. (5) Information Retrieval (IR) — Find and rank
the appropriate information from an external data
source, such as a knowledge base (KB) or separate
document. Metrics were chosen to adhere to the
evaluation procedure introduced with the original
dataset or from related follow-up work.

5.2 Noise Injection

For each noise category, we start by independently
sampling 10% of the data, adding the correspond-
ing noise and training a model to convergence. For
example, consider instance-level label errors ap-
plied to MultiWOZ. This dataset contains 113,556
total utterances so 11,356 of them are selected for
corruption. Next, one of the three sub-categories
of instance noise are chosen uniformly at random.
Over-labeling occurs when a label that has recently
appeared in previous turns is no longer valid. To
match this behavior, we keep a running tally of
recent slot-labels and occasionally insert an extra
one from this pool into the current training exam-
ple. Partial-labeling is achieved by replacing a
slot-label with a randomly selected one from the
recent pool, and under-labeling is achieved by sim-
ply dropping a slot-label from the example. Finally,
a model is trained with the noisy data applying the
same hyper-parameters as the ones used for train-
ing the standard, original model. This process is
repeated for each other noise type, with details for
each source of noise found in Appendix F.

5.3 Main Results

Denoising methods targeting class-level noise may
have minimal impact since it turns out such label er-



Noise Source‘ MultiWoz Dataset 2 Dataset 3 Dataset 4 Average
Label Noise by Class | 84.1 (0.13%) 75.8 (0.37%)PP  58.1 (1.15%)%P 78.8 (1.92%)MIPAS | 0.89%
Label by Instance | 59.1 (4.88%) 82.4 (3.03%)°¢P  72.9 (0.96%)" 98.9 (0.12%)&51M 2.25%
Label by Annotator | 58.2 (18.1%) 73.6 (3.36%)°P  90.2 (1.43%)TT 44.7 (15.9%)Wow 9.68%
Discourse Attributes | 62.9 (9.31%) 36.8 (8.42%)"OW 25,6 (5.08%)45CP 392 (10.7%)KVEET | 8.38%
Ontology Inconsistency | 61.9 (3.41%) 98.7 (0.40%)“S™™  58.7 (26.8%)FP 84.9 (0.94%)°¢P 7.89%
Out-of-Distribution | 48.1 (28.9%) 83.2 (2.04%)"  83.3 (10.5%)4BCP  74.6 (23.6%)¢P 16.3%
Dialogue Breakdown | 61.8 (11.3%) 49.8 (4.02%)"OW 4,07 (4.44%)%P 72.1 (2.08%)TT 5.45%

Table 3: Performance across various datasets when injected with 10% noise. Scores in parentheses are the percent
degradation when compared to the clean version of the data. Datasets 2-4 contain a superscript representing the
dataset name as described in Table 1. Please see Appendix 5 for the exact task and dataset mapping for each item.

RoBERTa GPT2 BART
Original 45.7 61.9 62.3
Noised 39.4 59.1 61.4

(a) Performance on MultiWOZ for each model

CLC TLC DST RG IR
Median 3.4% 09% 4.0% 103% 8.4%
Average 65% 4.6% 84% 105% 8.1%

(b) Change in performance for each task due to noise.

Table 4: Breakdown by dialogue task and model type

rors are not all that damaging with just 0.89% drop
in performance. On the other hand, annotator noise
is quite powerful causing a 9.7% disturbance and
should be mitigated whenever possible. Luckily,
our manual review showed that spamming behavior
occurs infrequently in reality simply by following
some best practices'. Negative discourse attributes
can also cause major harm leading to a 8.4% gap.

Moving onto inference noise, ontology issues
are not only quite common, but also have meaning-
ful impact on performance, causing a 7.9% drop.
Dataset creators can ameliorate this by deciding on
an ontology upfront, rather than creating one after
the fact. Dialogue breakdowns also cause notice-
able degradation, but the impact of OOD is most
prominent among all noise types. Neural networks
are powerful enough to learn from any training
signal, even complete random noise (Zhang et al.,
2017). However, OOD cases are by definition areas
the network has not seen, leading to poor perfor-
mance. Data augmentation and other robustness
methods may serve as a strong tool to cover the
unknown space by maximizing the diversity of the
examples (Ng et al., 2020; Chen and Yin, 2022).

"For example, gold checks insert questions with known
labels; timers ensure adequate time is spent on each task.

5.3.1 Task Breakdown

In order to study tasks across noise types, we look
at the percentage change between models, rather
than absolute difference. Furthermore, to minimize
the influence of outliers, we emphasize the median
of change, rather than the average. The results in
Table 4b show that RG and IR observe the largest
drops when noise is added. Somewhat surprisingly,
CLC has larger performance shift than TLC despite
being an easier task. We hypothesize this is because
CLC examples only occur once for each conversa-
tion, whereas TLC examples occur at every turn,
leading to an order of magnitude less data. Train-
ing with the existence of noisy data depends on
both the rate of noisy data as well as on a minimum
number of clean examples.

5.3.2 Model Robustness

Prior work has suggested that models behave differ-
ently when faced with distinct types of noise (Be-
linkov and Bisk, 2018). In addition to GPT2-
medium (345M parameters), we also consider a
masked language model in RoOBERTa-Large (355M
parameters) (Liu et al., 2019) and a sequence-to-
sequence model with BART-large (406M parame-
ters) (Lewis et al., 2020). These are selected due
to having a comparable number of training parame-
ters. Based on the results in Table 4a, RoBERTa is
the weakest performer of the group. We hypothe-
size this is because many dialogue tasks are gener-
ation based, whereas BERT-based models typically
perform well on classification. Conversely, BART
deals quite well with noise, suggesting encoder-
decoder models as reasonable starting points for
future dialogue projects.

5.4 Amount of Noise

We simulate increasing levels of noise by adding
instance-level label errors and incoherent discourse
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Figure 4: Impact of injecting different amounts of label
and discourse noise to MultiWOZ dataset. MultiwOZ
2.3 is defined to be 0% noise. MultiwOZ 2.0 and 2.1
have estimated noise levels based on the ratio of labels
that are changed compared to MultiWwOZ 2.3 data.

attributes to the MultiwOZ 2.3 dataset (Han et al.,
2021), which we define to be noise-free. We ad-
ditionally plot the performance of models trained
on MultiwOZ 2.0 (Budzianowski et al., 2018) and
2.1 (Eric et al., 2020), where all models are evalu-
ated on the MultiWOZ 2.4 test set (Ye et al., 2021).
Looking at Fig 4, we first note that scores on natu-
rally noisy data from MWOZ 2.0 and MWOZ 2.1
fall close to the plotted trajectory, lending credence
to the overall trend. Furthermore, we notice that as
we vary the amount of noise, model performance
decreases logarithmically, but surprisingly does not
have a tipping point at which it fails to converge.

6 Dialogue Denoising

Informed by our understanding of the sources of di-
alogue noise, we now design a preliminary denois-
ing algorithm for learning in the presence of noisy
labels. We select MultiWOZ to serve as our testbed
not only because it is one of the most popular dia-
logue datasets, but also because it is representative
of how noise affects most datasets in general (see
Figure 6). While our method produces promising
results, our aim is not to declare the noise issue
solved, but rather to establish a baseline others can
further improve. (More details in Appendix G.)

6.1 Algorithm

Based on analysis in Section 3, MultiwOZ 2.0 is
most plagued by three types of errors: ontology
inconsistencies, instance label errors and out-of-
distribution issues. We now devise three solutions
to resolve each source of noise accordingly.

(1) To clean up the ontology, we drop values that
do not conform to the correct format, and remove

the associated examples from training. For exam-
ple, if time_of_day slot expects the HH:MM
format, then we remove all values referencing day
formats (e.g. Friday). (2) To deal with label er-
rors, we filter out individual instances where the
predicted label from a pre-trained GPT2-medium
model disagrees with the annotator label (Cuendet
et al., 2007; Jiang et al., 2018; Chen et al., 2019).
We calibrate the model with temperature scaling to
prevent it from being over-confident in its predic-
tions (Guo et al., 2017). (3) To counteract issues
caused by OOD, we augment our training data by
pseudo-labeling the examples stripped out in the
first two steps. When the model used for filtering
is also used for pseudo-labeling, biases may prop-
agate across each iteration. As a result, inspired
by co-teaching (Han et al., 2018), we instead use
a different BART-base model for pseudo-labeling
to force divergence of model parameters and avoid
errors from accumulating.

6.2 Denoising Results

We once again evaluate with MultiwOZ 2.4 since
this is the cleanest version of test data. As seen
in Figure 4, we are able to outperform MultiwOZ
2.0 (39.8) by 16.9% absolute accuracy and 42.5%
relative accuracy. Ontology Clean (43.2), Filter
Disagree (53.7) and Co-teaching (46.7) all show
marked improvement over the original baseline, but
Combined (58.6) does the best overall, reaching
a score that even surpasses MultiwOZ 2.1 (56.5).
These initial efforts show our ability to successfully
identify and counteract sources of noise within Mul-
tiWOZ, which we encourage others to build upon.

7 Related Works

Our work is related to efforts to categorize noise
within speech and dialog. Clark (1996) proposed a
theory of miscommunication consisting of channel,
signal, intention and conversation where each of
the four levels serves as a potential vector for noise.
Others have also studied noise in spoken dialogue
systems, where they found that the main culprit
stems from errors in speech transcription (Paek,
2003; Bohus, 2007). Rather than a high-level
framework of general communication, our hier-
archical taxonomy focuses on understanding the
multiple layers of noise found in written text.
More recent works on dialogue noise discuss
robustness to noisy user inputs, whereas we ex-
pand this view to also analyze noisy training in-



puts. Peng et al. (2021) introduce RADDLE as a
platform which covers OOD due to paraphrasing,
verbosity, simplification, and unseen entities, as
well as general typos and speech errors. Liu et al.
(2021) create a robustness benchmark which con-
siders paraphrasing through word perturbations as
well as speech disfluencies. Lastly, Krone et al.
(2021) considers noise from abbreviations, casing,
misspellings, paraphrasing, and synonyms.

7.1 Survey of Denoising Methods

Most prior works exploring learning with noisy la-
bels were originally developed for the computer
vision domain (Smyth et al., 1994; Mnih and Hin-
ton, 2012; Sukhbaatar et al., 2015). Some meth-
ods model the noise within a dataset in order to
remove it, often through the use of a noise transi-
tion matrix (Dawid and Skene, 1979; Goldberger
and Ben-Reuven, 2017). Others have designed
noise-insensitive training schemes by modifying
the loss function (van Rooyen et al., 2015; Ghosh
et al., 2017; Patrini et al., 2017), while a final set
of options manipulate noisy examples by either
reweighting or relabeling them. (Reed et al., 2015;
Jiang et al., 2018; Li et al., 2020). While denoising
work certainly exists for NLP (Snow et al., 2008;
Raykar et al., 2009; Wang et al., 2019), none of
them specifically touch upon the dialogue scenario.

7.2 Denoising by Source of Noise

To support the effort of designing improved algo-
rithms for combating dialogue-specific noise, we
highlight potential methods that can be adapted to
deal with the noise categories identified by our tax-
onomy in Section 3. To start, a common technique
for dealing with class-level errors is to learn a noise
adaptation layer to recognize label noise (Gold-
berger and Ben-Reuven, 2017). For instance-level
noise, besides filtering by disagreement, core-set se-
lection (Mirzasoleiman et al., 2020) or the Shapley
algorithm (Liang et al., 2021) can be used to iden-
tify important datapoints and thereby remove the
noisy ones. Modeling the likelihood of annotator-
level error in order to reverse its impact is also
worth considering (Welinder et al., 2010; Hovy
et al., 2013; Guan et al., 2018). Next, a model
trained on NLI data can be used to screen out incon-
sistent discourse examples (Welleck et al., 2019).
A model trained on Prosocial Dialogue data can
learn to reduce toxicity (Kim et al., 2022). In terms
of discourse fluency, one can train a student model
to reweight its logits during inference based on a

large language model (Brown et al., 2020) to im-
prove the fluency of the student. Another method is
to create an ontology upfront which defines the al-
lowed entities before data collection and enforcing
this by having checks upon label submission. Out-
of-Domain issues can be handled with the use of
more examples to increase the coverage and diver-
sity of the solution space to limit OOD errors. This
can be tackled by performing data augmentation on
the in-domain (Feng et al., 2021) or out-of-domain
examples (Chen and Yu, 2021). Lastly, dialogue
breakdown can be mitigated by screening for anno-
tators through minimum acceptance rates, language
filters, and pre-qualifications quizzes (ie. quals).

8 Conclusion

This paper categorizes the different sources of noise
found in dialogue data and studies how models re-
act to them. We find that dialogue noise is divided
into issues that occur during training and during
inference. We also find that conversations pose
unique challenges not found in other NLP corpora,
such as discourse naturalness and dialogue break-
downs. Our study further reveals that the most
common sources of noise are actually based on
the ambiguity of individual instances, rather than
systematic noise across classes or adversarial anno-
tators actively harming data collection efforts.

Despite being surprisingly resilient, dialogue
models nonetheless experience a notable drop in
performance when exposed to high levels of noise.
To combat this, we design a proof-of-concept de-
noising algorithm to serve as a strong foundation
for others to compare against. We apply this algo-
rithm successfully to the MultiwOZ 2.0 dataset,
raising the accuracy by 42.5% over the original
baseline. We hope our survey informs the collec-
tion of cleaner dialogue datasets and the develop-
ment of advanced denoising algorithms targeting
the true sources of dialogue noise.

9 Limitations

The main limitation of the taxonomy is only con-
sidering natural language text within dialogue. It
could be useful to conduct a detailed breakdown of
speech noise or multi-modal noise that occurs in
conversations grounded by images. Our survey also
does not include all theoretically possible sources
of noise and instead is limited to actual sources of
noise saw occuring in the data. We argue this type
of taxonomy serves a more practical purpose.
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A

Dataset Descriptions

In no particular order, the datasets we study are:

1.

10.

DailyDialog (DD) - a collection of conver-
sations from the web about everyday events,
curated for teaching English. (Li et al., 2017)

Wizard of Wikipedia (WoW) - a wizard reads
an article on Wikipedia and then talks about it
with their partner (Dinan et al., 2019b)

Google Simulated Dialogue (GSIM) - a large
scale Machine-to-Machine (M2M) dataset
build through paraphrasing, covers movie and
restaurant domains. (Shah et al., 2018)

Action Based Conversations Dataset (ABCD)
- customer service conversations that mimic
agents in real-life where actions are taken to
resolve customer issues based on instructions
in agent guidelines (Chen et al., 2021)

MultiWoz 2.0 (MWoz) - a multi-domain di-
alogue dataset. Note that we use the origi-
nal version for initial analysis because it con-
tains true noise, before any additional clean-
ing. (Budzianowski et al., 2018)

TicketTalk (TT) - As part of the third install-
ment of TaskMaster, this dataset also uses the
M2M style, but focuses on the single vertical
of movie ticket booking. (Byrne et al., 2019)

Empathetic Dialogues (ED) - a set of dia-
logues that aim to teach models to be empa-
thetic by being more attuned to what a user is
feeling. (Rashkin et al., 2019)

Machine Interaction Dialog Act Schema (MI-
DAS) - created for the Amazon Alexa chal-
lenge with Gunrock. Transcribed conversa-
tions are with actual Alexa users, and not
crowdworkers. (Yu and Yu, 2021)

Schema Guided Dialogue (SGD) - the most
comprehensive DST dataset to date, with a
heavy focus on slot-filling for API calls. Con-
tains natural OOD splits. (Rastogi et al., 2020)

Key-Value Retrieval for In-Car Assistant
(KVRET) - Task oriented dataset with a
knowledge base for querying items. Covers
navigation, weather and scheduling domains.
(Eric et al., 2017)

B Label Error Details

Class Level Examples are labeled incorrectly due
to confusion with another class.

* Uniform Label Swapping: symmetric noise
where all classes have equal likelihood to be
confused with any other class. The assump-
tion is that noise is injected through a ran-
domly initialized noise transition matrix.

* Structured Label Swapping: asymmetric noise
where certain classes are more likely to con-
fused with other related classes. For example,
a cheetah is more likely to be confused with
leopard than a refrigerator when performing
image recognition. Alternatively, dogs and
wolves are likely to be confused for each other
much more often than with horses since those
animals are similar to each other.

Instance Level Noise comes from the example
itself due to the complexity of interpreting natural
language. This is the realization that even when
annotators act in good-faith, mistakes are still made
since the instances themselves are difficult to label.
Errors must be determined on a case-by-case basis.

* Over Labeling: annotator added a label, but
should be removed since it is unnecessary. Ex-
ample: carrying over a slot-value from the pre-
vious turn to the current dialogue state when
it is not warranted.

* Under Labeling: annotator missed the label,
when most people would include it. Example:
failing to notice a newly mentioned criteria in
the dialogue state. This also includes cases
where a better label could have been used,
but the option is missing from the ontology
and consequently prevents the example from
being properly labeled.

* Partial Labeling: part of the label is correct,
but other parts are not. For multi-intent utter-
ances, the annotator may have captured one
intent, but not the other. For slot-filling tasks,
the annotator may have selected the appropri-
ate value, but assigned it to the wrong slot.

Annotation Level Noise arises due to the labeler
or data collection process. (Snow et al., 2004)

* Distant Supervision: the noise results from
the fact that the label is not from a human,
but rather weakly labeled from distant super-
vision (Sun et al., 2017). For example, using a
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gazetteer for labeling named entities in NER.
As another example, you use the SQL results
to train a semantic parser, rather than an anno-
tated SQL query.

Adversarial Actors: meant to mimic spam-
mers, this is characterized by repeating pat-
terns or irrational behavior. For example, the
annotator selects “greeting” dialogue act as
the label for every single utterance regardless
of the underlying text. (Raykar et al., 2009;
Hovy et al., 2013; Khetan et al., 2018) Other
examples include bad actors in social media
who provoke chatbots into producing unsafe
content or labelers who mark every review as
possessing positive sentiment without actually
reading the passage.

Formatting Mistakes: Caused by non-experts
making human mistakes, which are indepen-
dent of the dialogue context. For example,
typos or off-by-one errors, such as when the
labeler failed to highlight the entire phrase
during span selection. (See Table 2)

C Ontology Inconsistency Details

Another source of noise comes from inconsistent
formatting when constructing the ontology. More
specifically, the creators of the dataset did not set a
canonical format for each type of slot being tracked.
While we can imagine many other slot-types caus-
ing issues, the types of errors which actually oc-
curred in practice include:

 Dates: tomorrow, Jan 3rd, 1/3/2022, Monday,
January 3, mon

* Times: 14:15, 2:15 PM, quarter past 2, 215pm
* Locations: NYC, New York, ny, the big apple

e Numbers: three, ‘wife daughter & I’, 3, ‘Me
and my two buddies’.

Other ontology issues which we thought might oc-
cur more often, turn out to happen very rarely. For
example, naming inconsistency such as [Fred Miy-
ato, Mr. Miyato, fred miyato, my father] did not
really occur. Titles of people or places [Macdon-
alds, MickeyD’s, McDonald’s, mcdonalds] also
were not present. To minimize the amount of noise
from ontology inconsistency, a recommendation is
to declare the allowable slot-values upfront before
data collection begins.
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D Paraphrasing Examples

Paraphrasing can take on three general forms:

1. Simplification — the request may be simpli-
fied so much that it becomes unclear what the
user wants. For a restaurant scenario:

Agent: What part of town
would you like to eat?
User: W

(as a shorthand for West side)

Non Sequitur — response is plausibly in-
distribution, but does not reasonably answer
the question.

Agent: What part of town
would you like to eat?
User: I would like Italian

food.

Note that the user’s response is still in distribu-
tion since it could have been a reasonable an-
swer to “What cuisine do you prefer?”. How-
ever, in this instance, this type of response
is very noisy because it fails to answer the
agent’s question.

. Verbosity — the request contains extra words
or entities, which makes it confusing as to
exactly what the answer may be.

Agent: What part of town
would you like to eat?

User: I prefer food in the
East, but I live in the South
right now.

In this case, the user’s response is not neces-
sarily long, but it is verbose enough to make
it unclear whether the user wants food in the
east side of town or the south side of town.

True paraphrasing noise should alter the text with-
out altering the user’s underlying intent. If the text
has changed so much that the user’s intent has also
shifted, then it should be considered adversarial be-
havior beyond the scope of typical dialogue noise.

Agent: What part of town would
you like to eat?

User: The Northern Lights are
beautiful this time of year.

The example above displays positive sentiment,
but the user has completely ignored the agent’s
request. This case borders on being incoherent and
fails to move the dialogue forward.



E Results Breakdown

Aggregated amounts of noise by each sub-category:

| Average Median Std. Dev.
Class-level 4.9% 3.8% 0.7%
Instance-level 9.7% 6.9% 5.4%
Annotator-level 1.8% 0.7% 2.1%
Dates 3.6% 0.5% 6.3%
Times 1.1% <0.1% 2.0%
Locations 1.3% 0.3% 2.1%
Numbers 2.3% 0.2% 4.6%
Incoherent 3.4% 3.8% 1.9%
Disfluent 2.6% 2.4% 2.0%
Inconsistent 1.7% 1.3% 1.5%
Nonsensical 2.0% 2.6% 1.1%
Offensive 0.2% <0.1% 0.9%
Unnatural 4.8% 5.8% 1.6%
Overall \ 11.2% 10.6% 3.7%

Table 5: Breakdown across noise sub-categories

F Noise Injection Methods

Class-level Label Errors We create a noise tran-
sition matrix to mimic structured confusion. Specif-
ically, given a certain class label, we want to de-
termine what is likely to be confused with it so we
can substitute the current label for that other class.
To fill the noise transition matrix, we embed all
class labels into bag-of-word GloVe embeddings
and measure their similarity to other classes by
cosine distance. Then, for 10% of examples, we
sample an incorrect label given the original class
according to the likelihood in the transition matrix.

Instance-level Label Errors To match the be-
havior of over-labeling, we keep a running tally of
recent labels and occasionally insert an extra one
from this pool into the example. Partial-labeling is
achieved by replacing a label from the recent pool,
and under-labeling is achieved by simply dropping
a random label from the example.

Annotator-level Label Errors We mimic spam-
mers who apply preset answers to every occasion
without considering the actual dialogue. For the
classification tasks, we assume a spammer ran-
domly picks from one of the three most common
labels for that task as the noisy target label. For re-
sponse generation tasks, we assume a spammer ran-
domly responds with one of three generic phrases.

Undesirable Discourse Attributes We replace
a subset of the utterances with noisy versions 10%
of the time. Incoherent utterances are randomly
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selected sentences from other dialogues within the
dataset. Disfluent utterances are generated by shuf-
fling the tokens within the current utterance. Un-
natural utterances are generated by selecting from
a list of awkward sentences referencing the task.

Ontology Inconsistency To clean the data, we
manually remove entries that do not comply to the
proper format. We also merge similar categories
to create more compact ontologies. Training ex-
amples that are covered by the remaining entries
are considered the clean version, while the full,
original dataset is considered the noisy version.

Out-of-Distribution Multi-domain data is di-
vided such that training data contains a subset of
domains while the test set includes examples from
all domains. Choosing the domains to exclude was
straightforward for ABCD and SGD since they are
given by the task design. Rather than choosing
an arbitrary domain to leave out for MWOZ, we
instead run the experiment once for each domain,
and report the average of the five results.

Dialogue Breakdown We reproduce this behav-
ior by pre-training a paraphrase model and applying
it to perturb 10% of utterances. Paraphrase model
is trained on QQP, MRPC and PAWS corpora.

G Denoising Procedure for MultiwOZ

We identify the highest likelihood sources of noise
for any given dataset and dealing with each one
accordingly. MultiWwOZ in particular has (1) ontol-
ogy issues, (2) instance level label errors and (c)
out-of-distribution examples caused by low cover-
age in the training set. In turn, we proceed to deal
with each of these issues as follows:

(1) To clean up the ontology, we drop values that
do not conform to the correct format for their given
slots, and remove the associated examples from
training. For example, if the slot is a time of day
expecting the HH:MM format, then we remove all
values referencing ‘Friday’ or ‘afternoon’ which
are incorrectly formatted.

(2) To deal with possible label errors, we filter
out individual instances where the predicted label
from a pre-trained GPT2-medium model disagrees
with the annotator label (Cuendet et al., 2007; Jiang
et al., 2018; Chen et al., 2019).

(3) Lastly, we augment our training data to coun-
teract issues caused by OOD cases. In order to aug-
ment, we pseudo-labeling the datapoints that have
been stripped out in the first two steps. However,



Noise Source MultiWoz 2.3 Dataset 2 Dataset 3 Dataset 4
Label Noise by Class MWOZ (TLC on intents) DD (CLC on topics) ED (CLC on emotions) MIDAS (TLC on dialog acts)
Label by Instance | MWOZ (DST on slot-values) SGD (DST w/ slot-values ) ~ TT (DST w/ slot-values) GSIM (TLC on user acts)
Label by Annotator MWOZ (RG of agent utt) DD (CLC on topics) TT (TLC on APIs) WOW (RG on wizard utt)
Discourse Attributes MWOZ (RG of agent utt) WOW (IR on wizard utt) ABCD (IR on agent utt) KVRET (IR on KB entries)
Ontology Inconsistency | MWOZ (DST on slot-values) ~ GSIM (TLC on user acts) ED (CLC on emotions) SGD (DST on slot-values)
Out-of-Distribution | MWOZ (DST on slot-values) SGD (DST on slot-values) ABCD (CLC on subflows) SGD (TLC on intents)
Dialogue Breakdown MWOZ (RG of agent utt) WOW (RG on wizard utt) ED (RG on agent utt) TT (DST on slot-values)

Figure 5: Mapping of model performance to datasets and dialogue tasks. Parentheses also includes the target of the
task. For example, ‘CLC on topics’ means that the task is to classify the associated topic label at a conversation
level, while ‘“TLC on intents’ means the task is to classify the intent of each user turn.
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Figure 6: Impact of the different noise types on the Mul-
tiWoz2.3 dataset. DST is dialogue state tracking, RG is
response generation and TLC is turn level classification.

the pretrained model’s predictions are unlikely to
be all correct, so rather than keep all the new labels,
we only keep the examples where the probability
of the max value crosses the 0.5 threshold. Then,
since neural networks are often over-confident, we
perform calibration with temperature scaling us-
ing a A\ parameter (Guo et al., 2017). However,
pseudo-labeling with the same model that is used to
perform filtering causes errors to propagate which
hinders performance gains. As a result, inspired
by co-teaching (Han et al., 2018), we instead use
a different model to force divergence of model pa-
rameters and avoid the existing biases. In more de-
tail, we rely on a BART-base model rather than the
original GPT-2 medium, which works even though
BART-base has much fewer parameters.

H Noise as Uncertainty

An interesting way to view the impact of noise
is through the lens of Bayesian uncertainty. In
particular, aleatoric and epistemic uncertainty can
be seen caused by different types of noise. Kendall
and Gal (2017) describe aleatoric uncertainty as
uncertainty which “captures noise inherent in the
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observations.” In contrast “epistemic uncertainty
accounts for uncertainty in the model parameters
which can be explained away given enough data.”

Roughly speaking, labeling errors cause epis-
temic uncertainty since these errors produce uncer-
tainty in the model parameters. If given enough
clean data to train a model, the issues caused by
the noisy labels should largely be erased. In other
words, epistemic uncertainty describes what the
model does not know because training data was not
appropriate, so by resolving the labeling errors, the
training data is now appropriate and the dialogue
system can be trained successfully.

On the other hand, ontology inconsistencies
cause aleatoric uncertainty since they can lead to
situations where it is impossible to fix the prob-
lem by altering the training data alone. Suppose
we want the dialogue model to predict the desired
time for a restaurant reservation (such as 11 AM,
6PM or 8PM), but options such as ‘Sunday’ or ‘af-
ternoon’ keep appearing, which are never correct.
This would make it harder for a classifier to choose
the correct time. In the degenerate case, suppose
the ontology only consisted of days of the week
such as ‘Monday’, ‘Wednesday’ or ‘Friday’, such
that the classifier would only have the ability to
choose from seven incorrect options. In this case,
adding any amount of extra data (even those la-
beled in the correct format) would do nothing to
resolve the issue since the problem itself has been
modeled incorrectly.

Accordingly, a model developer should focus on
eliminating certain types of noise based on the type
of uncertainty they are seeing in their dialogue sys-
tem. If the model is consistently making a handful
of random mistakes, then relabeling some data or
collecting new data may resolve the issue. Alterna-
tively, if the model is a making systematic errors
then looking into the ontology or data collection
procedure might be a better route.



I Additional Noise Examples

Examples were carefully selected to give good coverage of the different types of noise that occurred
frequently within the data.

Wednesday. Where will you be departing
from? <truncated>

Dataset | Noise Type Dialogue Comments
Apprentice 1 have visited the United States. To New
York City, Los Angeles, and Seattle for work
and vacation. Every city was unique with its
own culture and loved every one of them. Correct label:
Labeling Error Wizard 1haven’t been to the East coast yet, but I have {topic:
WOW | — Instance level been to Los Angeles, which is Spanish for "Los Angeles’}
— Under “The Angels”
Apprentice Oh I never knew. The East coast always
felt busier, the West coast felt more relaxed. Possible:
Wizard Agreed! I grew up in Hawaii, where the life missing labels:
expectancy is amongst the highest in the na- {topic: ‘Hawaii’
tion. Do you like large cities or smaller towns? ‘longevity’ }
A Hello Mike ! Would you like a drink ?
B No, thank you. I had too much to drink
yesterday evening. I had a bad hangover this | Revise label:
Labeling Error morning. My head felt terrible. (happiness) happiness —
DD — Class level A Were you celebrating something ? disgust
— Uniform B Yes. It was a friend’s birthday party. We drank
all kinds of things - beer, wine and spirits.
After midnight, we even drank cocktails!
A It’s a bad idea to drink a combination of
alcoholic drinks. You should stick with one
for the whole evening.
A I’ve got popcorn kernels to last me through
Discourse retirement. I wonder how long they keep for.
ED Attribute B That is nice. grammar
— Disfluent A Yea, it is. Do you like popcorn? mistake
B Yes. Why did you bought that many popcorn
kernels?
User  I'm looking for a special place, can you help?
attraction (type=Special) ontology:
Ontology System 1 need just a little more information to help. uppercase
Inconsistency I think all places in Cambridge are special ...
— Location User  1am looking specifically for Saint John’s ontology:
College. attraction (type=special, lowercase
MWOZ name=Saint John’s College.) | formatting:
System sorry i dont have that in our list. is there added an extra
Labeling Error something else i can do for you? period
— Annotator User  Okay, well I also need a train departing
— Formatting for Cambridge on Wednesday.
train (dest=cambridge, day=wednesday)
System 1 have several trains headed to Cambridge on
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Agent  Thank you for contacting acmebrands. how
can [ help you?

Customer 1 need to check the status of an order

Revision: The

Labeling Error Agent  Okay. Could I have your name or Account ID | agent followed
ABCD | < Class level please? the ‘manage
— Structured Customer alessandro phoenix shipping’ flow
Action Account has been pulled up for alessandro | when instead
phoenix. [Pull-up Account] they should
Agent  Thank you. Do you just need to know the | pave followed
order’s shi.pping status'? - the ‘shipping
Customer The email that I received showed it is being | ¢tatus’ flow
shipped to the wrong address. is it being ship-
ped to <street_address>, jacksonville, mi
A I liked the way Lebron was snatched up by Emotion label:
ED Labeling Error the Lakers impressed
— Instance level | B Will be a game changer. Missing labels:
— Partial A I hope so. I hope they can crush the warriors | hopeful,
B Did the Warriors get a replacement? anticipating
User 1 want to check in on March 2nd, and stay in 1
room until the 12th.
System Okay, please confirm: You want to stay in | Inconsistent
New York at 1 hotel central park, checking in | since the user
tomorrow, and checking out on March 12th. | wants 1 room
you also want 1 room. than arbitrarily
Discourse User  Actually 3 rooms please. changes to 3.
Attribute System Okay, confirm: You want 3 rooms and you
SGD .
check in tomorrow?
—Inconsistent, User  No. I want to check out on the 13th. Nonsensical
Nonsensical System Please confirm: You want to check out of your | since you
hotel in New York on March 13th. would want to
User  Yes, works for me. know the price
System THe reservation is made. of a hotel room
User  Does it allow pets? How much does it cost? | before booking,
System 1t is pet friendly, and costs $4,488. not afterwards.
User Thank you, i’m all set.
Labeling Error User  actually Revise label:
MIDAS | — Class level Agent  what was that experience like statement —
— Structured User  1ihave not neg answer
System please confirm the date is next monday at Original label:
Ontology 8 pm for ephesus restaurant for 3 people AFFIRM_AFFIRM |
GSIM | Inconsistency User  yesiconfirm the date is next monday at 8pm | AFFIRM_AFFIRM
— General for ephesus restaurant for 3 people Revised label:
(multi-part label not needed) AFFIRM
User what is the weather like in the city request -
Assistant Which city do you want the weather for? {date:today,
1y - . loc:Alameda,
Ontology User  Will it hail in Alameda today? weather:hail}
KVRET | Inconsistency Assistant Today in Alameda is gonna be drizzle, with Date is annotated
< Date low temperature of 70F, and high of 90F as “today”, but

User  Thank you!
Assistant You are welcome.

should be a day of
the week such as
Monday, Tuesday
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Abstract

Discourse relations have different patterns of
marking across different languages. As a result,
discourse connectives are often added, omit-
ted, or rephrased in translation. Prior work has
shown a tendency for explicitation of discourse
connectives, but such work was conducted us-
ing restricted sample sizes due to difficulty of
connective identification and alignment. The
current study exploits automatic methods to
facilitate a large-scale study of connectives in
English and German parallel texts. Our results
based on over 300 types and 18000 instances of
aligned connectives and an empirical approach
to compare the cross-lingual specificity gap
provide strong evidence of the Explicitation
Hypothesis. We conclude that discourse rela-
tions are indeed more explicit in translation
than texts written originally in the same lan-
guage. Automatic annotations allow us to carry
out translation studies of discourse relations on
a large scale. Our methodology using relative
entropy to study the specificity of connectives
also provides more fine-grained insights into
translation patterns.

1 Introduction

Discourse connectives such as because and how-
ever are considered volatile items in translation:
translators often add, rephrase or remove them
(e.g. Zufferey and Cartoni, 2014). Prior studies
have often focused specifically on whether con-
nectives are added (i.e. the relation sense is ex-
plicitated) or removed (i.e. implicitated), and have
shown that there is a tendency for explicitation
in translation (but this also depends on various
other factors, see e.g., Hoek et al., 2015, 2017;
Lapshinova-Koltunski et al., 2022; Zufferey, 2016).
The current work focuses on an understudied aspect
of connectives in translation, namely when they
are underspecified (e.g. connectives like “and” or
“but” are compatible with many different types of
discourse relations) or highly specific (e.g. the con-
nective “nevertheless” can only mark concessive
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relations). The question we address is whether we
can see a similar pattern of explicitation of connec-
tives in translation for connectives that are already
explicit (but possibly unspecific) in the source text.

One factor that impedes a comprehensive study
of DCs in translation is the (manual) annotation
effort that is required for this task. Consequently,
many studies are restricted to limited samples and
a subset of DCs. To facilitate a more compre-
hensive investigation, we explore an automatic ap-
proach to identify and align connectives. Specifi-
cally, we use language-specific discourse parsers
(Bourgonje, 2021; Knaebel, 2021) and a neural
word alignment model (Dou and Neubig, 2021) to
link a large range of connectives and their transla-
tions in English and German parallel texts. We test
the feasibility of this approach by replicating the
well-established explicitation results in our newly
created dataset. Using an empirical measure of
cross-lingual specificity gap, we identify all the
cases of (under)specifications instead of a subjec-
tively defined subset.

Our contributions are: 1) We demonstrate that
automatic word alignments and discourse parsers
facilitate a comprehensive study of discourse con-
nectives and relations in translation. 2) We show
evidence for explicitation in translation, in terms
of both insertion and specification of DCs; 3) We
compare the cross-lingual specificity of English
and German DCs; 4) The automatically aligned
and annotated data are publicly available!.

2 Background

2.1 Explicitation Hypothesis

Previous studies show that the translation of dis-
course connectives depends on various factors. One
of the most well-known accounts, the Explicitation
Hypothesis, suggests that translations tend to be

"https://osf.io/ybfxp/?view_only=
8ef5f7a591064b7ea3334f706e544118

Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue, pages 21-30
September 11-15, 2023. ©2023 Association for Computational Linguistics



more explicit than the source texts (Blum-Kulka,
1986). However, this does not mean that discourse
relations are always explicitated in translation, or
that explicitation of the relations is always due to
the translation effect. Klaudy (1998) more specif-
ically distinguishes between obligatory explicita-
tions and translation-inherent explicitations. Oblig-
atory explicitation results from grammatical and
stylistic differences between the source and target
languages, as well as pragmatic and cultural prefer-
ences of the source and target readers. For example,
Becher (2010) found that over 50% of damit in-
stances in German translated texts are the result of
explicitation, but all except a few are explicitations
that address the cross-lingual contrast.

By contrast, translation-inherent explicitations
are language-independent and depend on the nature
of the translation process. This type of explicitation
is separate from structural, formal or stylistic differ-
ences between the two languages, and with culture-
specific textual elements. Klaudy (2009) argues
that, in order to identify any translation-inherent
explicitations, corresponding implicitation in the
opposite translation direction should be taken into
account. That is to say, explicitation due to the con-
trast in the explicitness of the source and target lan-
guages (with some languages being more prone to
expressing discourse relations through explicit con-
nectives than others), should be counter-balanced
by the degree of implicitation when translating in
the other direction. Becher (2011b) found that the
insertions of discourse connectives in English to
German translation are in fact more than the num-
ber of omissions in German to English translation,
but still, most of the insertions can be qualitatively
explained by the known observation that German is
more explicit than English (Hawkins, 1986; House,
2014; Becher, 2011a).

Various other factors have also been found to
affect the explicitation of connectives, such as the
type of the coherence relations and the connec-
tives involved (Zufferey and Cartoni, 2014; Crible
et al., 2019), the identity of the source and target
languages (Zufferey, 2016), register and translator
expertise (Dupont and Zufferey, 2017), contrast
between the constraints and communicative norms
of the source and target languages (Marco, 2018),
the cognitive interpretability and expectedness of
the relations in context (Hoek et al., 2015, 2017),
information density and the mode of translation
(Lapshinova-Koltunski et al., 2022).
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2.2 Explicitation of DCs in translation

Much of the earlier work on explicitation of DCs
focused largely on cases where connectives are
inserted or omitted in translation or they provided
qualitative estimations of specificity without basing
it on a quantitative method (Crible et al., 2019;
Lapshinova-Koltunski et al., 2022). In the current
work, we propose a score to quantify the specificity
gap between a connective and its translation, such
as cases where a stronger connective is used in
translation (e.g. “and" translated as “auflerdem"
in German). While previous works only study a
limited subset of subjectively defined specification,
our empirical approach allows us to identify all
cases where a more specified connective verbalizes
the relation to a greater degree.

The specificity of connectives likely differs be-
tween languages due to the contrast between the
connective lexicons and discourse marking of these
languages. This means that the entropy of English
and might differ from the precise value of the en-
tropy of German und. One connective could there-
fore appear to be more specific than another con-
nective in a different language due to differences
between the lexicons, even though both connectives
express a similar range of relation senses. Previ-
ous studies found that the explicitation pattern of
a given connective in a target language is directly
related to the alternative options available in that
language (Becher, 2011b; Zufferey and Cartoni,
2014). To address the issue of cross-lingual corre-
spondence, we derive estimates of a connective’s
specificity empirically by normalizing connectives’
entropy value within a language (see Section 3.3).

2.3 Identification and alignment of discourse
connectives

Prior work is often based on a restricted selection of
connectives. This can be attributed to the fact that
connective identification on a large scale can be dif-
ficult, because many discourse connectives can also
be used in non-connective contexts (e.g., indeed
is not always used as a DC). Consequently, prior
corpus studies have mostly focused on a handful
of connectives and senses. For example, Zufferey
and Cartoni (2014) analyzed 200 occurrences each
of the English causal connectives since, because
and given that in Europarl. The frequent causal
connective as was excluded because it is often used
in a non-connective usage. A more comprehensive
analysis that takes into account a larger range of



connectives and coherence relation senses in the
same text is critical to be able to get more insight
into the general translation patterns of connectives.
The current study explores the feasibility of using
automatic methods to identify and align discourse
connectives.

Automatic word alignment was an essential step
in statistical machine translation (Och and Ney,
2000). In the era of neural machine translation,
word alignment is often used for annotation pro-
jection, including the projection of English dis-
course annotations (Versley, 2010; Laali, 2017;
Sluyter-Githje et al., 2020). The focus of these
works is to associate discourse sense labels an-
notated for the DCs in English with the DCs in
the human or machine-translated texts, in order to
create discourse-annotated resources in the other
languages. In contrast, we use word alignments
to examine where the DC marking differs between
source and target languages, when DCs are inserted,
omitted or their specificity is changed.

Another line of work uses automatic word align-
ments to generate cross-lingual lexica of connec-
tives. For example, Bourgonje et al. (2017) extract
alignments between German and Italian adversative
connectives that are identified based on connective
lexicons of both languages. Ozer et al. (2022) link
the multilingual annotation of the TED-MDB cor-
pus (Zeyrek et al., 2019) to induce multilingual
connective lexicons. Robledo and Nazar (2023)
examine the mapping of English and Spanish con-
nectives in order to identify possible new categories
of relation senses. In this work, we use a similar
technique to investigate whether connectives are ex-
plicitated by insertion or specification. In contrast
to existing work, we also use language-specific
discourse parsers to identify connectives and ex-
clude tokens of non-discourse usage in English and
German texts. We then use a neural word aligner
which has reported lower error rates compared with
statistical aligners.

3 Methodology
3.1 Data

We analyze the parallel texts taken from the Eu-
roparl Direct Corpus (Cartoni and Meyer, 2012),
which are proceedings from the European Parlia-
ment. A total of 33 proceedings are used in the
analyses.” The data contains 171k tokens of En-

These 33 proceedings are selected because they overlap
with instances included in the discourse-annotated DiscoGeM
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glish texts and their German translation from 18
proceedings, and 95k tokens of German texts and
their English translation from 15 proceedings.

3.2 Identification and alignment of DCs in
English and German texts

We use two language-specific parsers to identify
and annotate the discourse relations in the English
and German texts. We use the Discopy parser
(Knaebel, 2021) to identify and classify DCs in the
English original and translated texts. This parser
considers the semantic representation of a connec-
tive token and its contexts. The classifier distin-
guishes discourse and non-discourse usage of the
connective and labels each with a sense label based
on the PDTB 2.0 framework (Prasad et al., 2008).
The reported accuracies are 97.20% for connective
identification, and 92.12% / 86.26% respectively
for 4-way coarse-grained / 14-way fine-grained
classification of the relation sense.

For the German texts, we use the German Shal-
low Discourse Parser (Bourgonje and Stede, 2018;
Bourgonje, 2021) to identify and classify DCs in
the German original and translated texts. The
parser is based on a BERT architecture with addi-
tional syntactic features and ambiguity knowledge
from the DimLex lexicon (Stede, 2002). It has been
trained on the Potsdam Commentary Corpus (PCC)
2.2 (Bourgonje and Stede, 2020) to predict a sense
labels defined in the PDTB 3.0 hierarchy (Webber
et al., 2019). The reported results on the accuracy
of this German parser regarding discourse-usage
identification is 87.57% and 85.63% / 80.57% re-
spectively for 4-way coarse-grained / 16-way fine-
grained classification of the relation sense.

We align the identified connectives cross-
lingually using the Awesome Align word alignment
model (Dou and Neubig, 2021), which extracts cor-
responding tokens (including m:n mappings and
“null" alignments) in a pair of bilingual sentences
based on multilingual embeddings of the tokens
and fine-tuned on parallel texts. An error rate of
15.1% is reported evaluating against human anno-
tation of English-German word alignments (of all
words, not just DCs), which out-performs statisti-
cal alignment models such as GIZA++ (Och and
Ney, 2000) and eflomal (Ostling and Tiedemann,
2016).

To ensure that the annotation tools produce reli-
able output for our data, we manually analyzed the

corpus (Scholman et al., 2022), which could be used in future
contrastive studies.



automatic annotations of 200 randomly extracted
connective pairs each from the English-German
and German-English translation data. The accu-
racy (precision) of connective identification and
4-way sense classification are 85% and 92% for
English and 83% and 90% for German. The align-
ment accuracy is 90%. Taking into account error-
propagation, in our analysis, we annotate DCs only
on one side and analyze their alignment to the other
side without considering whether the aligned words
are also identified as DCs. In addition, we improve
the automatic annotations by syntactic rules that
remove unlikely DC candidates (e.g. damit...,..zu..
is not a DC) and “unalign” tokens that cannot mark
connectives, such as ‘power’ or ‘reading’). We
analyze the alignments of the source/target English
and German texts respectively, in order to identify
explicitation and implicitation in both translation
directions.

3.3 Quantifying specificity of connectives

We determine the specificity level of each English
and German connective based on their manual an-
notation in existing discourse-annotated resources.
For English connectives, we extract the distribution
of sense labels (after removing the speechact and
belief tags) assigned to the explicit connectives in
PDTB3.0. We extract the sense distribution of each
German connective similarly based on their sense
annotation in the PCC2.0 corpus (Bourgonje and
Stede, 2020).

It is possible that the corpora from which we
extract the specificity information differ in domain
or aspects of how the annotation schemes were ap-
plied, such that in one language, a wider variety of
relations was annotated than in the other. In order
to remove such effects, we define the specificity
of each connective by the entropy of its sense dis-
tribution in relation to the entropy of all explicit
relations in the corresponding corpus. We further
round the values to 1 decimal place. We call this
measure relative entropy.

Overall, we assign relative entropy to 173 En-
glish and 126 German connective types. The av-
erage relative entropy of the English and German
connectives are 0.122 and 0.065 respectively.

Connectives that are aligned to “null” in the
target text are considered omissions, and connec-
tives that are aligned to “null” in the source text
are considered insertions. Similarly, connectives
in the source and target texts that are aligned to
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a less specific connective are identified as under-
specification and specification respectively.

4 Results

We first look at how connectives are implicitated
and explicitated in English and translations, and
then we will take a closer look at how the English
and German connectives correspond to each other.

4.1 Implicitation & explicitation of DCs

A total of 8058 English and 9739 German con-
nectives have been identified and annotated by the
discourse parsers and aligned. Table 1 shows the
proportions of automatically identified connectives
that are aligned to “null” or a DC of higher en-
tropy in the other language, grouped by four cat-
egories of relations as identified by the discourse
parsers. Alignments of connectives in the source
texts to “null” or a higher entropy DC means
omission and under-specification, while the cor-
responding alignments of connectives in the target
texts would mean insertion and specification in
translation.?

It can be observed that, when translating from
English to German (top sub-table), more DCs are
added than removed (26.1% vs 13.8%). The reverse
is observed in German to English translation (bot-
tom sub-table), where more DCs are removed than
added (21.6% vs 12.3%). The same tendency is
observed for under-specification and specification.
This confirms the previous qualitative conclusion
that German is more explicit in terms of discourse
relation marking (Becher, 2011b,a).

Zufferey and Cartoni (2014) and Zufferey (2016)
found that, based on the analysis of the translation
of a subset of connectives, explicitation is not a
general phenomenon. The roles of the source and
target languages, the type of relations, and the spe-
cific DCs all have influences. We also see different
patterns of explicitation depending on the transla-
tion directions and category of relations, e.g., CON-
TINGENCY relations are explicitated more often in
English than in German.

Moreover, our analysis of connectives typically
expressing all types of relation senses provides a

3The implicitation and explicitation proportions do not
add up to 100%, because: 1) the proportions are normalized
against the total connective counts of the each source/target
language; and 2) overall, 58.0% of the connectives have been
aligned to a connective of the same specificity level, and the
specificity scores of 22.7% of the identified connectives or the
aligned tokens is unknown (i.e. those tokens are not annotated
in PDTB3.0 or PCC2.0).



EN —DE EN original (171K tokens) DE translation (164K tokens)
align to a DC of align to a DC of
ttl. DC alignto ‘null’  higherrel. ent. | impl. || ttl. DC alignto 'null’  higher rel. ent. expl.
count (omission) (under-specif.) total count (insertion) (specification) total
EXPANSION 2329 13.1% 9.2% | 22.4% 2821 20.6% 31% | 23.7%
CONTINGENCY 906 16.8% 6.8% | 23.6% 1383 33.0% 18.7% | 51.8%
COMPARISON 978 7.5% 13.3% | 20.8% 979 24.9% 35.4% | 60.4%
TEMPORAL 426 25.6% 13.8% | 39.4% 505 40.2% 16.6% | 56.8%
Total 4639 13.8% 10.0% | 23.8% 5688 26.1% 13.7% | 39.8%
DE —EN DE original (95K tokens) EN translation (107K)
align to a DC of align to a DC of
ttl. DC alignto ‘null’  higherrel. ent. | impl. || ttl. DC alignto 'null’  higher rel. ent. expl.
count (omission) (under-specif.) total count (insertion) (specification) total
EXPANSION 1876 17.6% 3.0% | 20.7% 1605 13.8% 20.1% | 33.9%
CONTINGENCY 1146 24.5% 16.8% | 41.3% 831 10.5% 7.8% | 18.3%
COMPARISON 638 21.2% 32.1% | 53.3% 673 9.5% 15.9% | 25.4%
TEMPORAL 391 32.7% 6.4% | 39.1% 310 15.8% 41.9% | 57.7%
Total 4051 21.6% 11.8% | 33.4% 3419 12.3% 18.3% | 30.6%

Table 1: Proportions of connectives that are not aligned to any words in the target text (omission) or the source
text (insertion); and connectives that are aligned to a connective of higher relative entropy (rel. ent.) in the
target text (under-specification) or the source text (specification). Impl. and expl. totals are based on the sum
of omission/insertion and under-specification/specification respectively. Bolded proportions refer to proportions
of explicitation exceeding the proportions of implicitation of the same type in the opposite translation direction

(compared against the sub-table in diagonal).

Explicitation
EN—DE insertion
und (287), dann (121),
wenn (88), also (61)
damit (57), aber (52)
DE—EN insertion
and (158), also (26),
but (26), if (25)

when (25), so (13)
EN—DE specification
but— jedoch (89),
however— jedoch (82),
but— doch (70),
when— wenn (67),
although— obwohl (26)
DE—EN specification
auch — also (281),
dann— then (126),
sondern - but (86),
damit — so that (25),
sondern — rather (13)

Implicitation

EN—DE omission

and (177), also (69),
when (62), if (49),

but (43), so (41)
DE—EN omission

und (105), dann (105),
aber (78), sondern (68),
wenn (52), deshalb (49)
EN—DE under-specif.
also — auch (173),

but — sondern (113),
then — dann (54),
because — da (22),

so that — damit (16)
DE—EN under-specif.
aber — however (80),
wenn — when (67),
jedoch — however (32),
denn — for (30),
allerdings — however (12)

Table 2: The most freqent connective omissions, inser-
tions, under-specifications and specifications (counts in
brackets) in both translation directions.

more comprehensive picture. The results show that
the explicitation strategy also differs across differ-
ent relation senses and translation directions. For
example, relations are explicitated more by inser-
tion, while more relations in German translation,
in particular temporal relations, are explicitated by
specification in English. Within German transla-
tion, many CONTINGENCY (33.0%) and TEMPO-
RAL connectives (40.2%) are inserted, while com-
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paratively, COMPARISON relations are explicitated
more by specification (35.4%).

To find out whether these patterns can be ex-
plained by obligatory explicitations or translation-
inherent explicitions, we look at the connec-
tives that are most frequently omitted/inserted and
(under-)specified, see Table 2. It can be seen that
connectives that are most frequently added in the
translation, are also those that are most frequently
omitted in the opposite translation direction, con-
sistent with reports by Hoek et al. (2015) and sup-
porting the findings of Becher (2011b) that most ex-
plicitations are obligatory due to the cross-lingual
contrast of English and German.

Taking into account obligatory translation ef-
fects, we still find more explicitation in the trans-
lation than would have expected (see bolded fig-
ures in Table 1). In other words, the Explicitation
Hypothesis is quantitatively confirmed for both ex-
plicitation strategies, translation directions and all
categories of relations, save two exceptions: CON-
TINGENCY and TEMPORAL connectives are fre-
quently dropped in English to German translation
and they are not counter-balanced by the insertion
in German to English translation. Table 2 sug-
gests that the high rate of these omissions could
be attributed to the dropping of when, if and so in
English to German translation. Previous work has
found that CAUSAL DC:s like so are often omitted



due to processing ease (Hoek et al., 2017).

In addition, many of the explicitated COMPARI-
SON relations come from the translation of but and
however, which are ambiguous because they can
signal both CONTRAST and CONCESSION relations.
The German translation often specifically signals
CONCESSION, such as jedoch and allerdings. We
will analyze some of these cases in Section 5 to
see if such explicitation is obligatory or translation-
inherent.

4.2 Cross-lingual correspondence of DCs

Next, we look into the mutual correspondence be-
tween English and German connectives. Figure 1
shows the normalized distribution of the alignment
between each source connective (x-axis) and their
translation (y-axis; at least the top two most com-
mon translations are displayed). Higher numbers
/ darker colors represent more frequent translation
alignments.

It can be observed that some connectives have
one or two dominating translations (e.g. English:
also, and, if, then; German: auch, und, weil), while
others can have an even distribution of various
translations (e.g. English: so, but; German: de-
shalb). While many of the correspondences in
the two translation directions are asymmetrical
(e.g. 82% of auch is translated to also, but only
45% of also is translated to auch), some correspon-
dences are symmetrical, indicating that the pair of
connectives are of mutual correspondence (e.g. and
is frequently translated as und and vice versa; the
same goes for then and dann).

Figure 1 also suggests a general trend that En-
glish connectives are translated to a wider range
of German connectives, while German connectives
more often have one dominating English transla-
tion (more darker color cells in the bottom figure).
It is to be expected that English connectives are
more ambiguous than German, as English is less
explicit in terms of discourse markedness (House,
1997; Becher, 2011a). We quantify this observa-
tion by considering the cross-lingual specificity of
English and German connectives based on the di-
versity of their translations. This is calculated as
the entropy of the distribution of alignments of
each unique connective in the source texts (i.e. the
entropy of the distribution per column in Figure
1). Figure 2 shows the distribution of connectives
grouped by the entropy of their translation align-
ments. Connectives with less than 20 occurrences
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Figure 1: Alignment between connectives in the source
texts (x-axis) with their corresponding tokens in transla-
tion (y-axis); the first row _implicit_ means the connec-
tive is not aligned to any words in the target sentence,
and the last row _others_ refers to the proportions of
alignments to tokens that are not displayed on the y-
axis.

are not included since the alignment distributions
may divert from the actual distribution due to their
sample size. It can be seen that most English DCs
are more versatile and correspond to a wide range
of German DCs, while a normal distribution is ob-
served for the German DCs: some DCs have more
correspondences and some have less.

To summarize, the automatic connective annota-
tion and alignment procedure allows us to extract
the complex mapping between connectives empir-
ically and instantly. This enables us to identify
systematic patterns such as the overall specificity
of English connectives in terms of English-German
translation. We found empirical evidence that ex-
plicitations counter-balance and exceed opposite
implicitation.
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Figure 2: Distribution of connectives grouped by the
entropy of their translation alignment.

We however also note that one needs to con-
sider the effect of possible annotation errors using
such an automatic approach. Based on our manual
inspection of the 400 alignments, most of the er-
ror comes from the over-identification* of English
and and German und: these often did not function
as connectives, but were identified as such by the
parsers. In most of these cases, and and und were
aligned, which means that they were not counted as
explicitation nor implicitation. Consequently, our
reported explicitation / implicitation rate of EXPAN-
SION could actually be higher, because the sample
size should be smaller. Regarding errors specific to
the alignment of connectives, we found that most
alignment errors were false positives (i.e. a connec-
tive was aligned to a non-connective word, when in
fact it was supposed to align to null), meaning the
insertion / omission rates could actually be higher.>
Therefore, manual qualitative analysis is still nec-
essary to confirm the findings. This will also be
demonstrated in the next section.

5 Qualitative analysis

The qualitative results show that there are more
explicitations in translation after counter-balancing
implicitation in the other translation direction. Now
the question is, are these explicitations actually
coming from the nature of the translation process,
or are they due to the contrast between the two
languages or other reasons? We try to gain some
insights through a qualitative analysis.

“Note that the manual inspection did not include cases
where a connective was missed by the parsers.

5The relative entropy of the falsely aligned words would
most likely be “unknown”, so they are not counted as (under-
)specification.
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We analyze the alignment instances to see if
the explicitated translations are obligatory or
translation-inherent (see Sec. 2.1). This analysis
revealed various cases of obligatory explicitation.
First, Table 1 shows that TEMPORAL relations are
often specified in German to English translation.
Table 2 suggests that the high explicitation rate
of German TEMPORALS can be attributed to the
frequent specification of dann (which can signal
both TEMPORAL and CONDITIONAL according to
PCC2.0) to then (which dominantly signals TEMPO-
RAL in PDTB3.0). These explicitations are likely
to belong to obligatory explicitations, because then
is the only English DC that signals a PRECEDENCE
relation like dann does, and has a similar level of
markedness.

Second, for German translation, Table 1 also
reveals that COMPARISON relations are often speci-
fied. The high specification rate of English COM-
PARISONS comes from the frequent translation of
but to jedoch or doch, and however to jedoch, as
seen in Table 2. The translation of however to
Jjedoch might also be categorized as obligatory ex-
plicitation. The two connectives are very similar in
their meaning and usage (both are predominantly
be used to mark CONTRAST and CONCESSION),
but English however is also occasionally used to
mark SYNCHRONOUS relations among its many an-
notations in PDTB3.0 — this sense did not occur for
jedoch in the PCC2.0. Similarly, the frequent speci-
fication of wenn to when belongs to this case. Wenn,
which can ambiguously signal a CONDITION or
SYNCHRONOUS relation, often has to be translated
to the less specific when to mark a SYNCHRONOUS
relation naturally because of a lack of other suitable
DCs in English.

The translation of but to doch/jedoch differs
from the previously discussed obligatory explic-
itations and might actually be translation-inherent:
translators could have translated but to aber, which
matches but semantically and also in terms of
strength and specificity, instead of specifying the
relation with jedoch or doch. To gain further in-
sight into the reason for these explicitations, a
trained translator manually analyzed these cases
using a “substitution test": we produced an alter-
native translation using aber, making necessary
grammatical changes. If the resulting translation
is equally acceptable, then it could be a case of
translation-inherent explicitation.

We found that in 35% of the but-instances that



were translated into doch/jedoch, these more spe-
cific could have been chosen because the resulting
syntactic or stylistic structure is preferred; that is,
they do actually appear to be cases of obligatory
explicitation. For example:

It is important to have EU and national targets,
but it is also important to have a European direc-
tive...

Es ist zwar wichtig, Ziele auf EU- und einzel-
staatlicher Ebene zu setzen, doch ist es ebenso
wichtig, eine europdische Richtlinie zu schaffen...

In this case, having chosen zwar in the previous
clause, the translator likely used doch, because they
often occur together. But in 65% of the cases, the
use of aber is equally acceptable, and thus these
cases appear to represent translation-inherent ex-
plicitation. For example:

Its starting point is the European Year Against
Racism 1997 but the context has moved on sig-
nificantly.

Ausgangspunkt war das Européische Jahr gegen
Rassismus 1997, doch/aber der Kontext wurde
seither betrdchtlich weiterentwickelt.

Among these acceptable cases, in 38% of the total
cases, doch or jedoch sometimes fit better to the
formality of a parliament discussion, while but is a
lighter DC typical in spoken English, for example:

But as has been pointed out, the adoption of a
rigorous definition of the precautionary principle
is crucial.

Doch, wie bereits festgestellt wurde, ist dabei die
Verabschiedung einer strikten Definition des Vor-
beugeprinzips von entscheidender Bedeutung.

One possible explanation is the domain gap be-
tween the source and target texts. The source texts
of the Europarl corpus are prepared speeches of the
parliament, while the target texts are the published
translation of these scripts. In other words, the
source texts are prepared to be spoken while the
target texts are for reading. This could be a reason
that the discourse relations in the translated texts
of the Europarl corpus are more specified than the
original texts, corresponding to the situational and
translation-task variables as discussed in House
(2004). Analysis on data from another genre could
confirm this domain and genre effect.

6 Discussion

The current study investigated explicitation and
implicitation of discourse connectives in English-
German parallel texts. To gain a comprehensive
insight of the patterns underlying explicitation, we
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exploited an automatic approach to connective iden-
tification and alignment, which allowed us to study
a large variety of connectives (173 English and 126
German connective types) and many samples per
language (8058 English and 9739 German connec-
tives were identified in our dataset). We evaluated
the feasibility of this approach by first studying
whether we could replicate the established effect
of explicitation in translation between English and
German texts. We furthermore extended existing
findings by defining explicitation in a more fine-
grained sense as specification of the relation sense,
and investigating whether we can see a similar pat-
tern of explicitation of connectives for those con-
nectives that were already explicit in the source
text.

Our quantitative results provide strong evidence
for the Explicitation Hypothesis: taking into ac-
count the counter-balance of implicitation in the
opposite translation direction, there is still consid-
erable more explicitation in translation. Manual
qualitative analysis suggests that a domain effect
may have played a role. These findings are in line
with already established effects in prior work, and
thus support the reliability of the insights that the
automatic approach can provide.

We also propose a novel method of studying ex-
plicitation in translation, namely by considering
the relative entropy of corresponding connectives
in parallel text. Our results showed that the gen-
eral pattern of explicitation in translation replicates
to specification of connectives. Furthermore, we
found that English connectives are generally less
specific than German ones, considering all types of
connectives and their translation in our data. The
large-scale alignments provide additional insights,
such as the fine-grained interaction between rela-
tion type and explicitation strategy across different
languages. Such analyses would not have been pos-
sible without taking into account how all types of
DCs are translated within the same span of text and
a well-defined measure to identify cross-lingual
specificity gap.

We conclude that discourse relations indeed tend
to be explicitated in translation. Our proposed auto-
matic approach is feasible for studying translation
of connectives in parallel text. We were able to
replicate known effects for German-English trans-
lations and extend these findings to specification
of connectives using relative entropy. The cross-
lingual analysis in large scale allows us to identify



language-specific patterns in discourse production,
which is useful for the generation of multi-lingual
discourses. Future work will focus on applying a
similar methodolgy to less studied language pair-
ings to gain further insight into the generalizability
of DC translation and production patterns.
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Abstract

Despite recent advances in Natural Language
Processing (NLP), hierarchical discourse pars-
ing in the framework of Rhetorical Structure
Theory remains challenging, and our under-
standing of the reasons for this are as yet lim-
ited. In this paper, we examine and model
some of the factors associated with parsing dif-
ficulties in previous work: the existence of im-
plicit discourse relations, challenges in identify-
ing long-distance relations, out-of-vocabulary
items, and more. In order to assess the relative
importance of these variables, we also release
two annotated English test-sets with explicit
correct and distracting discourse markers asso-
ciated with gold standard RST relations. Our re-
sults show that as in shallow discourse parsing,
the explicit/implicit distinction plays a role, but
that long-distance dependencies are the main
challenge, while lack of lexical overlap is less
of a problem, at least for in-domain parsing.
Our final model is able to predict where errors
will occur with an accuracy of 76.3% for the
bottom-up parser and 76.6% for the top-down
parser.

1 Introduction

Powered by pretrained language models, recent ad-
vancements in NLP have led to rising scores on
a myriad of language understanding tasks, espe-
cially at the sentence level. However, at the dis-
course level, where analyses require reasoning over
multiple sentences, progress has been slower, with
generalization to unseen domains remaining a per-
sistent problem for tasks such as coreference reso-
lution (Zhu et al., 2021) and entity linking (Lin and
Zeldes, 2021).

One task which remains particularly challenging
is hierarchical discourse parsing, which aims to
reveal the structure of documents (e.g. where parts
begin and end, which parts are more important than
others) and make explicit the relationship between
clauses, sentences, and larger parts of the text, by
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Figure 1: An RST analysis of a viog excerpt. Tokens
highlighted in red are discourse markers associated with
relations in the tree, while tokens highlighted in blue
are distractors, with no corresponding relation.

labeling them as expressing a type of e.g. CAUSAL,
ELABORATION, etc. More specifically, hierarchi-
cal discourse parses identify connections between
elementary discourse units (EDUs, usually equated
with propositions) in a text or conversation, classify
their functions using a closed tag set, and form a
recursive tree structure, which indicates the locally
most prominent EDU in each tree or subtree. Fig-
ure 1 shows an example tree in the most popular
hierarchical discourse formalism, Rhetorical Struc-
ture Theory (RST, Mann and Thompson 1988), in
which the list of units 37-38 is the most promi-
nent (being pointed to by other units directly or
indirectly), and discourse relation labels such as
CAUSE are identified using edge labels, whose def-
initions in RST are based on the rhetorical effect
which the writer (or speaker) is thought to be con-
veying to the reader (or hearer).

There is by now substantial evidence show-
ing that even for a high resource language like
English, state-of-the-art (SOTA) neural RST dis-
course parsers, whether employing a top-down or a
bottom-up architecture, do not perform well across
domains (Atwell et al., 2021, 2022; Yu et al., 2022;
Aoyama et al., 2023), with some crucial tasks, such
as predicting the most prominent Central Discourse
Unit (CDU) of each document, performing at just
50% (Liu and Zeldes, 2023). At the same time,
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we do not have a good understanding of what ex-
actly prevents good performance—is it the fact
that some relations are well-marked (for example,
most CONTINGENCY relations are marked by the
discourse marker (DM) if, but most EVALUATION
relations lack a common marker)? Conversely, is
the presence of distracting markers not associ-
ated with the correct relation (e.g. an additional
temporal marker such as then inside a unit with
a non-temporal function)? Alternatively, is it the
difficulty in identifying high-level relations, be-
tween groups of multiple sentences or paragraphs,
compared to less tricky intra-sentential relations
between clauses? Or is it just the prevalence of
out-of-vocabulary (OOV) items in test data?

In this paper, we would like to systematically
evaluate the role of these and other factors con-
tributing to errors in English RST discourse parsing.
Our contributions include:

* Annotation and evaluation of the dev/test
sets of the English RST-DT (Carlson et al.,
2003) and GUM datasets (Zeldes, 2017), for
explicit relation markers, as well as distracting
markers not signaling the correct relation;

Parsing experiments with two different SOTA
architectures to examine where degradation
happens;

Development and analysis of multifactorial
models predicting where errors will occur and
ranking importance for different variables;

* Qualitative and quantitative error analysis.

Our results reveal that while explicit markers and
distractors do play a role, the most significant pre-
dictor of difficulty is inter-sentential status and the
specific relation involved. At the same time, our
error analysis indicates that distractors often cor-
respond to true discourse relations which are not
included in the gold-standard tree, but may be in-
cluded in alternative trees produced by other anno-
tators. In addition, we find that OOV rate plays only
a minor role, that architecture choice is presently
not very important, and that genre continues to mat-
ter even when all other factors are known. All code

and data are available at https://github.

com/janetlauyeung/NLPErrors4RST.

2 Related Work

2.1 Discourse Structure in Discourse Parsing

Discourse parsing is the task of identifying the co-
herence relations that hold between different parts
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of a text. Regardless of discourse frameworks
or formalisms, identifying intra-sentential, inter-
sentential, or inter-paragraph discourse relations
may pose different levels of difficulty to parsers
due to their various characteristics and levels of
explicitness (e.g. Zhao and Webber 2021; Dai and
Huang 2018; Muller et al. 2012). Intuitively, this
becomes increasingly important for discourse pars-
ing in a hierarchical framework such as RST, where
long-distance relations are more frequent.
Researchers have therefore been considering
ways of dealing with long-distance relations for
nearly twenty years, starting with the structure-
informed model proposed by Sporleder and Las-
carides (2004) to tackle local and global discourse
structures such as paragraphs. Other multi-stage
parsing models, for example, as developed by Joty
et al. (2013, 2015), have taken into account the dis-
tribution and associated features of intra-sentential
and inter-sentential relations, achieving competi-
tive results for English document-level parsing.
Later models expanded on these approaches
by incorporating paragraph information to better
capture high-level document structures. For in-
stance, Liu and Lapata (2017) proposed a neu-
ral model leveraging global context, enabling it
to capture long-distance dependencies and achiev-
ing SOTA performance. Yu et al. (2018) used
implicit syntactic features in a hierarchical RNN
architecture. Active research continues on devel-
oping multi-stage parsing algorithms aiming at
capitalizing on structural information at the sen-
tence or paragraph-levels (Wang et al., 2017; Lin
et al., 2019; Kobayashi et al., 2020; Nishida and
Nakayama, 2020; Nguyen et al., 2021).

2.2 Explicit and Implicit Relations in RST

Unlike in hierarchical RST parsing, work on shal-
low discourse parsing in the framework of the Penn
Discourse Treebank (PDTB, Prasad et al. 2014), in
which relations apply between spans of text with-
out forming a tree, has long distinguished explicitly
and implicitly marked discourse relations. Explicit
relations are signaled by connectives such as ‘but’
or ‘on the other hand’, while implicit ones lack such
marking. It is well-established that shallow pars-
ing of explicit discourse relations is substantially
easier due to the availability of connective signals,
which, although not unambiguous, narrow down
likely senses for relations. For example, the best
systems from Knaebel (2021) achieved an F1 score



of 62.75 on explicit relations and an F1 score of
40.71 on implicit relations for Section 23 of WSJ
using PDTB v2 (Prasad et al., 2008). The DISRPT
shared task created a relation classification task in
2021 (Zeldes et al., 2021), and the 2023 edition
(Braud et al., 2023) reported separate mean accu-
racy scores for explicit (79.32) and implicit (50.85)
relations across six datasets in 4 languages.

RST datasets used in hierarchical discourse pars-
ing do not make such a distinction, in part because
RST trees include very high-level relations between
entire sections of documents, which are less likely
to be marked by such items. As a result, such a
distinction is not available, meaning that we are in
the dark regarding the prevalence and importance
of such markers for RST parsing.

We are aware of two prior works analyzing con-
nectives for RST data: the RST Signalling Corpus
(RST-SC, Das et al. 2019) analyzes each relation
in the English RST-DT dataset, indicating which
relations were signaled by a DM (DMs roughly
include the same items as PDTB connectives; see
Webber et al. (2019) and Das and Taboada (2014)
for complete inventories of markers). However, the
data is limited to newswire material and does not
provide an alignment of analyses to actual tokens,
limiting the possibilities for model building (i.e. we
only know whether a DM was present somewhere,
but not which token in the text it was or in which
exact EDU it appeared). It also does not indicate
whether DMs were present which did not signal the
relation in the tree (i.e. distractors). Although pre-
vious efforts targeted DM tokens in RST-DT (Liu
and Zeldes, 2019) as well as such DM tokens in
non-newswire texts (Liu, 2019), no previous study
has examined the role of DMs in RST parsing.

Stede and Neumann (2014) enriched an RST
corpus of German with token-aligned connectives
and the relations they signal, allowing investigation
of their positions and the presence of distracting
connectives. However, the annotations were not
mapped to the RST relations in the corpus, making
exact inferences again tricky, and the size of the
corpus (32K tokens) precludes training high quality
models. This corpus too is limited to the newspaper
domain, which also motivates us to annotate genre-
rich data, described in the next section.

Finally we note that data in other frameworks,
including not only PDTB but also SDRT (Seg-
mented Discourse Representation Theory, Asher
and Lascarides 2003), contains multiple concurrent
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discourse relations, providing information about
the presence of competing or distracting relations.
However, SDRT data does not include connective
annotations, and apart from the coverage of RST-
SC’s overlapping data with the Wall Street Journal
(WSJ) in PDTB, there is no way to extract a map-
ping between connectives and RST relations in any
existing dataset (for attempts at aligning PDTB and
RST-DT, see Demberg et al. 2019).

In this paper, we therefore begin by creating
hand-annotated data (using rstWeb, Gessler et al.
2019) associating exact DM tokens with RST-style
relations, or indicating their status as distractors,
not associated with any relation in the gold tree.
These latter DMs are especially interesting, since
they could indicate that some parser errors are not
exactly errors, instead corresponding to concurrent
relations not present in the gold trees.

3 Data

To examine the role of explicit vs. implicit relations
in parsing errors, we first need to know which re-
lations were explicitly signaled. To that end, we
use PDTB’s methodology to define explicit connec-
tives. Note that RST papers often use the term DM
without clear inventories; from this point on we
will use ‘DM’ for brevity, but strictly adhere to the
PDTB English inventory. Specifically, we annotate
data from the two largest RST corpora for English,
covering the test set of RST-DT! (Carlson et al.,
2003) and the test and dev sets of GUM (Zeldes,
2017) , with 1) discourse markers (including ‘dis-
tractor’ DMs) and 2) associated relations, thereby
attaching DMs to each relation they signal, or no
relation. Table 1 gives an overview of the data.

| RST-DT  GUMvY
# of docs 385 213
train/dev/test 347/-/38 165/24/24
# of toks 203, 352 203, 780
# of EDUs 21,789 26, 310
# of genres 1 12
# of relation labels 78 32
# of relation classes 17 15
# of relation instances 18,630 23,451

Table 1: Overview of the Largest English RST Corpora.

Inter-Annotator Agreement To assess the reli-
ability and quality of the human annotations, we
conduct an inter-annotator agreement study on the
test set of RST-DT and report average mutual F1

'RST-DT has no established separate dev set.



scores. The use of RST-DT can also facilitate some
comparisons between the PDTB and RST frame-
works as a number of documents from the WSJ
section of the Penn Treebank (Marcus et al., 1993)
were annotated in both PDTB v3 and RST-DT. In
total, we double-annotated 38 documents, divided
to overlap among three annotators. For DMs, the
average F1 score was 95.2, and for associated rela-
tions, the average F1 score given a DM was 96.7.
These scores indicate a high agreement between
annotators for both tasks.

Automatic Parses In order to examine pars-
ing errors from different architectures, we select
two SOTA-performing parsers to obtain automatic
parses: a BOTTOM-UP one from Guz and Carenini
(2020), using their best SpanBERT-NoCoref
setting, and a TOP-DOWN one from Liu et al.
(2021) using XLM-RoBERTa-base (Conneau et al.,
2020). Following recommendations by Morey et al.
(2017), we use the more stringent original Parseval
metric on binary trees. Table 2 shows reproduced
5-run average scores on both test sets.” It is clear
that scores of both architectures are neck and neck,
which raises questions on whether, beyond numeric
scores, they find similar or different data difficult.

corpora ‘ GUM v9 ‘ RST-DT
metrics ‘ S N R ‘ S N R
BOTTOM-UP 54
Guz and Carenini (2020) ‘ 70.4  57.7 49.9 ‘ 76.5 65.9 54.
TOP-DOWN -

Liu et al. (2021) ‘ 71.9 589 517 ‘ 76.5 65.8 54.8

Table 2: Parsing Performance on GUM v9 and RST-
DT test with Gold EDU Segmentation (5 run aver-
age). S=Span (whether subtrees span the right EDUs);
N=Nuclearity (whether edges point the right way);
R=Relation (whether labels are correct).

4 Analysis

Strictly speaking, the types of errors that top-
down and bottom-up parsers make are not identi-
cal: while bottom-up, and in particular shift-reduce
parsers see analyzed preceding discourse units,
grouped in a stack, and remaining discourse units
in an upcoming queue, top-down parsers analyze
a domain of ungrouped tokens to be split and de-
termine the optimal split point and label for each
decision. Because we want to analyze what pro-
motes errors both across and for each architecture,

2Validation performance of each parser on both corpora is
provided in Appendix A.
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list

concession
manner

[24] The conJmunity must | | [25] as éhe United
support the Arab Nations does
world transition now in Libya .

[27] ahd will
be full
of challenges .

26] Thisperiod of
change may last
for some time

Figure 2: An Example of an RST Constituent Fragment
converted into the Discourse Dependency Structure fol-
lowing Li et al. (2014).

we adopt an output-centric view, analyzing EDUs
at which parsers do and do not make errors based
on their properties in the completed gold vs. pre-
dicted tree. At the same time, we do not want our
results to be swayed by coincidental variations in
neural models, which can have far-reaching conse-
quences due to cascading errors. Instead, we train
five models in each architecture, i.e. five training
runs, each with a different random seed produc-
ing a different initialization for the parser: if only
one model fails to predict a relation, it may not be
very hard, while 4-5 errors would be indicative of
genuinely hard relations.

Additionally, since models ultimately confront
different inputs as a result of such cascaded deci-
sions, we will use a dependency representation of
both the gold and predicted RST trees, following
the dependency conversion as defined by Li et al.
(2014),? as exemplified in Figure 2. Although RST
uses constituent discourse trees, focusing on each
EDU and its dependencies will make it possible to
make meaningful comparisons across models, and
to intuitively understand how challenging EDUs
are at any point in each document, regardless of
whether or not they head large constituent struc-
tures. In Section 4.2 we will also incorporate the
spanned domain of each head EDU’s constituent
block as an additional feature to assess the role of
block size in predicting errors.

4.1 Explicit vs. Implict Relations

Table 3 shows the distribution of explicit or
unmarked relations across the genres in the
dev+test sets of GUM v9 and in comparison
to RST-DT’s test set, for each relation class and
overall. The results for RST-DT are consistent with
previous work, with 17.0% of test data relations
being marked, similarly to the 18.2% identified
by Das and Taboada (2017) for the entire corpus
(but not anchored to specific tokens). An exami-

3The conversion code is available at ht tps://github.
com/amir-zeldes/rst2dep.



#of explicit  # of implicit  # of distractor

explicit prop. implicit prop. distractor prop.
RST-DT 398  17.0% 1948 83.0% 81 3.5%
GUM v9 1198  21.7% 4332 78.3% 174 3.1%
academic 73 16.1% 380 83.9% 13 2.9%
bio 66 18.4% 292 81.6% 11 3.1%
conversation 100 12.9% 674 87.1% 23 3.0%
fiction 116 23.7% 374 76.3% 15 3.1%
interview 80 20.2% 317 79.8% 8 2.0%
news 73 18.1% 331 81.9% 7 1.7%
reddit 147 28.3% 373 T1.7% 20 3.8%
speech 84 19.1% 356 80.9% 9 2.0%
textbook 95  21.3% 352 78.7% 9 2.0%
viog 180 35.8% 323 64.2% 38 7.6%
voyage 69  22.4% 239 77.6% 9 2.9%
whow 115 26.4% 321 73.6% 12 2.8%

mean ‘ 21.9% 78.1% 14.5 3.1%

Table 3: Distribution of Explicit and Implicit Relations
as well as EDUs with Distracting DMs in RST-DT
test and dev+test of GUM v9.

nation of distributions by genre in GUM reveals
some differences, highlighted in Table 3, with viog
exhibiting the most explicit relations, and conver-
sation the fewest, raising the possibility that it may
be more challenging for parsers. And in fact, Liu
and Zeldes (2023) pointed to conversation as the
worst-performing genre at all metric levels using
an older version of the corpus (v8), which had less
conversation data compared to GUM v9.

Looking at the presence of ‘distractor’ connec-
tives, which are not associated with one of the
gold relations in the tree, we see that vlog is the
most prone to such cases, again raising the question
of whether these may pose a problem for parsers,
which may identify a possibly correct relation
that is not prioritized by the gold tree. This situa-
tion appears to be infrequent in the WSJ data from
RST-DT, which has only 81 such cases (3.5%).
Taking a closer look at the types of distractors
across genres in GUM, we see that the most fre-
quent types are ‘and’, ‘but’, and ‘so’, which are
highly ambiguous and common in conversational
data such as vlog and conversation.

Regarding the most and least explicitly signaled
relation classes in GUM v9, Table 4 reveals that
CONTINGENCY is the most explicitly marked class
due to the use of the DM ‘if’, and that the least
explicitly signaled classes are ATTRIBUTION and
ORGANIZATION. The former is almost always
signaled by speech verbs (a verb such as ‘say’ or
‘argue’) and the latter mostly by document lay-
out and graphical features in written texts, or by
back-channeling in conversation data. It is also
worth noting that instances of EVALUATION, RE-
STATEMENT, and TOPIC (used predominantly for
question-answer pairs) are mostly not signaled by
a discourse marker.
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relation #of explicit  # of implicit
class explicit prop. implicit prop.
ROOT 0 0.0% 48 100.0%
ADVERSATIVE 222 55.5% 178 44.5%
ATTRIBUTION 0 0.0% 292 100.0%
CAUSAL 131 53.5% 114 46.5%
CONTEXT 143 31.8% 306 68.2%
CONTINGENCY 99  91.7% 9 8.3%
ELABORATION 64 5.8% 1049 94.2%
EVALUATION 4 1.7% 231 98.3%
EXPLANATION 44 12.5% 308 87.5%
JOINT 409  37.2% 689 62.8%
MODE 52 45.2% 63 54.8%
ORGANIZATION 0 0.0% 331 100.0%
PURPOSE 21 10.7% 176 89.3%
RESTATEMENT 6 3.8% 150 96.2%
SAME-UNIT 1 0.3% 289 99.7%
ToPIC 2 2.0% 99 98.0%

Table 4: Distribution of Explicit and Implicit Relations
across Relation Classes in dev+test of GUM v9.

With these descriptive statistics in hand, we
can examine each parser’s performance on ex-
plicit/implicit relations, as well as on EDUs with
a distracting DM in either the source or target of
the relation (we must consider both ends, since
many DMs can mark either a source or target such
as ‘but’ and ‘so’). Figure 3 shows the density of
relations incurring between 0 and 5 attachment er-
rors (disregarding labels) in each architecture for
GUM, broken down by whether a DM marks the re-
lation (top) and whether a distracting DM is present
(bottom). The figure reveals several important
facts: firstly, DMs are unsurprisingly associated
with fewer errors (t=—7.29, D=0.23, p<0.0001),
with lack of connectives affecting top-down models
slightly more severely (y%=3.95, ¢=0.14, p<0.05).
Secondly, lack of distractors is associated with hav-
ing fewer errors (t=5.0718, D=0.37, p<0.0001),
and this is more pronounced for the bottom-up ar-
chitecture, but the difference between architectures
is not significant here.* Figure 4 shows the same
kind of density plots for RST-DT.

Although it seems obvious that explicitness will
facilitate parsing and that distractors should be
harmful, it is an open question whether such mark-
ers will remain important once we know about
other factors known to cause problems, such as
OOV items, EDU text length, and intra-sentential
status. To compare these, we construct several re-
gression models predicting the number of errors.
Because the distribution of error numbers is U-

*That said, we recognize that there are also more differ-
ences between these parsers than just the top-down/bottom-up
distinction, so it is possible that with a broader sample of
parsers, more differences would emerge.
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shaped (many cases with zero or five errors, few in
the middle), as shown in Figures 3—4, we cannot
use traditional gaussian models, which assume a
roughly normal distribution of the data. Instead, we
use mixed effects Beta regression, which is suited
to U-shaped data, with a random effect for docu-
ment identity, and re-scale the number of attach-
ment or relation errors to the range 0-1, where
1 means the max 5 model errors. Table 5 shows
significance for each predictor in each model.’
Looking first at GUM on the left, Table 5 shows
that, when given only DMs and distractors, both
features are significant in predicting errors above
a per-document random effect baseline, for both

3 Significance for genre, a multi-nominal feature, is com-
puted via a likelihood ratio test comparing the model with and
without this predictor.
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architectures. In other words, predicting implicit
relations is unsurprisingly harder in RST, just as it
is for PDTB-style shallow discourse parsing, and
distractors make things even harder.

However, adding the subordination feature (the
second and third pairs of models from the left for
GUM v9), which indicates whether an EDU is in a
subordinate clause (and therefore likely to have an
intra-sentential relation), removes the significance
of the presence of a DM (but not of distractors).
This suggests DMs are less important in predicting
errors (or lack thereof) than intra-sentential status.
Adding some more predictors, a fuller model with
EDU length, OOV rate (the percentage of lexical
items not seen during training per EDU), and genre
does not remove the significance of subordination
status, and shows that OOV rate is not a significant
predictor in this setting. The more complex models
with 6 features also restore some significance for
DMs, albeit to a lesser degree than other predictors.

Moving to RST-DT, we see a similar pattern,
except for a surprising difference between archi-
tectures: in the mixed effects model, presence of
a DM is not a significant predictor for the bottom-
up architecture, while it is significant for top-down.
This pattern is repeated across all sets of features on
the right side of Table 5. For RST-DT, since we do
not have gold syntactic dependency trees, we use
gold intra-sentential relation status to represent the
subord feature. This feature remains highly sig-
nificant in all models across architectures. Finally,
adding all the features to the right-most models
(excluding genre, since RST-DT is all newswire),
OOV rate again fails to reach significance, while
all other features are significant, except for DMs
for the bottom-up architecture models.

These numbers suggest several things: first and
most important, while DMs may be somewhat
important, some representation of intra-sentential
status is the more robust predictor of parsing er-
rors. This effect persists even if we know about
other plausible features, such as EDU length and
OOV rate. This observation fits with the line of
work mentioned above on multi-stage models for
RST parsing, which attempt to learn separate mod-
els for intra-sentential and inter-sentential or inter-
paragraph models (e.g. Kobayashi et al. 2020). Al-
though joint models can perform well on all levels
regardless, we can confirm that there are substantial
differences between these types.

In terms of architecture differences, results for



corpus | GUM v9 | RST-DT

architecture ‘ bot-up top-down ‘ bot-up top-down bot-up top-down ‘ bot-up top-down bot-up top-down bot-up top-down
dm | <.001%#% <. 001%** 0.059 0.074 0.003** 0.005%* 0.988 0.002%#* 0.244 <.001%*** 0.445 <.001%**
distractor | <.001##* <. 001*#* | <001%** < 001*** | <.001*** <. 001*** | <.O00L*#* < O001*#* | <001*** < 001*** | <.001%** <.001%**
subord <.001%** <. 001%** | <.001#** < 00L%** <.001*#* <. 001%** | <.001##* < Q0L#H*
length <.001*** <. 001%** <.001##* <. 001%**

oov 0.115 0.262 0.944 0.563

genre <.001*#% < 001 %**

Table 5: Results of the Regression Models for GUM v9 and RST-DT from both Architectures.

RST-DT suggest more sensitivity to DMs for top-
down models, but this result is not reproduced in
GUM. Finally, all models are sensitive to distrac-
tors, which raises questions about the nature of
this sensitivity—what kinds of errors are parsers
making, and more specifically are they predicting
relations corresponding to distractor DMs? We
address these questions in the next sections.

4.2 Predicting Parsing Errors

The results in the previous section quantify the im-
portance of different characteristics of discourse
relations in promoting errors, and the relative dif-
ficulty of implicit relations in SOTA English RST
parsing.

However, the linear model comparing the signif-
icance of explicit DMs, distractors, and features
such as EDU length or OOV rate is rather naive
and leaves out a variety of potentially relevant prop-
erties of subtrees, such as total number of attached
discourse units (which could contribute to ambi-
guity), or the gold relation to be predicted—some
relations are easier to recognize or are less ambigu-
ous, and some relations have high prior likelihood,
making guessing them a safe bet. Although these
properties may not be useful for realistic prediction
of errors when we do not have a gold parse, they
can be of interest for understanding tree properties
which are difficult for parsers to get right.

To make matters even more complex, the fac-
tors mentioned above interact in subtle ways with
each other and with explicit marking status. For
example, CONTINGENCY relations are easy to rec-
ognize thanks to the reliable DM ‘if” as in (1), but
this is not always the case, as in (2) which uses
subject-verb inversion to mark a conditional. Some
relations are almost never marked by DMs, but may
still be easy, such as ATTRIBUTION, which can be
identified via speech verbs, as in (3).

ey

[Um if you don’t want to do a tour of Pittock

. 0ld: CONTINGENCY 5 . .
Mans1on,]g—>[I d still recommend like

taking the trail up there]cum_viog_portland
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2) [“Had it happened an hour Jater] S CONTINGENCY, p
would have been much worse]Gum news_crane
3) [Any judge in  this country  would
gold:ATTRIBUTION . .
agree] [that opening and closing

statements along are not a trial.]JGum_speech_impeachment

This complexity means that a realistic model of
difficult parsing environments may need to con-
sider more variables, and the interactions mean
that a simple linear model cannot capture the rich
patterns in the data. In this section, we therefore
use XGBoost (Chen and Guestrin, 2016), a highly
accurate ensemble gradient boosting framework
which is able to harness arbitrary interactions be-
tween features and is highly regularized to prevent
overfitting, meaning it can be expected to find a
near-optimal mapping of our variables to parser
error occurrences. For this experiment, we will
attempt to predict ‘hard” EDUs, which we define
as EDUs which most models predict incorrectly.

However, it is not immediately clear what kinds
of features we should allow the model to use: on
the one hand, we would like to know what constel-
lations in gold RST trees are difficult, including
the gold relation label or the relative importance of
being a leaf node vs. a hub with many dependents,
as well as the contributions of DMs and distractors.
On the other hand, in a realistic scenario we would
not be able to know whether a DM is a distractor
without knowing the gold relation, and we would
not know how many dependents a node really has.

We thus construct two models: the REALIS-
TIC model only has access to features that can
reasonably be predicted without the gold parse, in-
cluding EDU length in tokens, presence of DMs
(whether helpful or distracting), the incoming syn-
tactic dependency relation (which can be predicted
by a syntax parser), the OOV rate, and genre. The
FULL model, by contrast, has access to all gold fea-
tures, including the gold relation class, intra-/inter-
sentential status, DM vs. distractor presence etc.
The first model is more relevant for realistic scenar-
ios in which we want to diagnose where parser er-



rors are more likely (or how many we might incur),
while the second is more helpful for understand-
ing what is hard in an RST graph given the gold
graph itself. Note that neither model is fed features
from any outputs of the parser models above: the
parsers are only used to compute the number of
errors at each point, which the XGBoost model
attempts to predict. Figure 5 gives an analysis of
feature importances using classification gain® for
both the REALISTIC and the FULL models, which
score 67.3% and 76.3% respectively over a major-
ity baseline score of 58.3%, which predicts that
RST parsers will never be wrong, for the bottom-
up architecture. For top-down, the scores of the
two models are 65.3% and 76.6% respectively.
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Figure 5: Feature Importances for the REALISTIC (top)
and FULL (bottom) XGBoost Models for GUM from
both BOTTOM-UP (left) and TOP-DOWN (right) Archi-
tectures. Very important features are highlighted in teal.

The XGBoost library’s plots automatically high-
light the most important features for both parser
architectures, which for the REALISTIC model
is only the syntactic function of the EDU. This
likely indicates the overwhelming importance of
knowing whether an EDU has a typical intra-
sentential role, such as a relative or adverbial
clause, which is likely to be predicted correctly.
The next features begin with length (short EDUs
are likely to have similar ones attested in training
data compared to long ones), then genre (since
some genres are harder), and only then the typical
NLP difficulty predictor, the OOV rate (which is

®Because XGBoost relies on gradient boosting with tree-
based learners, the effect of variable interactions is computed
within the classification gain metric, which is often used to
estimate feature importance (see e.g. Shang et al. 2019).
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slightly less useful when EDU length is also known,
since the two correlate). The last feature, presence
of DM, is still useful but less so, especially since
it folds in occurrences of helpful and distracting
DMs. There are no substantial differences between
top-down and bottom-up here for GUM v9.

Turning to the FULL model, we see that syntac-
tic function is still very important: it beats gold
label for bottom-up models and follows it for top-
down. Some relations are easier than others, or
different subsequent conditions apply to them, and
this matters about as much as the syntactic attach-
ment type. Number of children (a measure of tree
centrality vs. leaf status) is third, only then fol-
lowed by length and genre, which are still quite
helpful. Number of descendants (which is corre-
lated with children) follows for top-down, but is
far lower for bottom-up parsers. We then see OOV
rate outranking DMs, which outrank less impor-
tant features, such as the no longer crucial inter-
sentential/inter-paragraph status, which are also
highly correlated with some of the features above
(syntax for the former, number of children for the
latter, since many children are typical of paragraph
head units). Finally distractors are second to last,
far below DMs, also because they are rare.

These models indicate that predicting errors
without knowing the gold tree is challenging, but
a gain of 7-9% over baseline is still possible,
mainly by looking at syntactic structure, which
indicates inter-/intra-sentential status—a predictor
much more valuable than DM marking. By con-
trast, when looking at gold trees, hard parts can
most easily be associated with hard relations and
syntactic environments, but combining all of the
available features leads to an impressive ability to
predict where parser models will likely go wrong,
with ~18% gain over baseline.

4.3 The Nature and Meaning of Distractors

Although the previous results suggest distractors
play a minor role, their independent correlation
with errors and the fact that DMs are generally
relevant to discourse relations, raise questions re-
garding their very existence: why do they appear
and how exactly do they affect parsers?

To begin with the second question, we examined
the 174 distractors in GUM. For most bottom-up
models, 108/174 (62.1%) were still erroneous, and
107/174 (62.1%) instances from the top-down mod-
els were erroneous. We then decided to manually



label whether the majority model-predicted label
was consistent with the distractor: if the gold re-
lation is ELABORATION, the distractor is but, and
the prediction is ADVERSATIVE, then prediction is
consistent with the distractor, but if the prediction
is CONTINGENCY, then it is not. We use PDTB’s
mapping of connectives to classes to match DMs
to relations.

For 74/108 cases (68.5%) from the bottom-up
models and 68/107 cases (63.6%) from the top-
down models, the majority label was consistent
with the distractor—in other words, the parser may
be predicting based on a DM which would nor-
mally signal a competing relation. This brings us
to the second question: if the relations signaled
by distractors are incorrect, why are the distractors
present? As an example, we consider two such
cases from GUM, shown in (4)—(5).

gold:EXPLANATION

4 [if Steven didn’t see it as weird] [why
pred:CONTINGENCY
should it bother us?]gum_fiction_teeth
5) [so the reason seems to be that there are things

out there that put even these kaiju to shame

gold:EVALUATION .
= [But even this presents a problem
pred: ADVERSATIVE

]GUM?redditfmonslers

In (4), the gold tree has the ‘if’-clause as a jus-
tification for why it ‘shouldn’t bother us’, which
makes sense pragmatically; but formally, the clause
seems like a legitimate conditional marked by if,
and parsers predict CONTINGENCY. In (5), the
annotation focuses on the evaluative meaning of
the words ‘a problem’, while parsers, probably pro-
voked by But, predict ADVERSATIVE.

We thus suspect that multiple, concurrent rela-
tions may actually hold in data where distractors
appear, which is a standard possibility in frame-
works like PDTB, where relations are identified
based on the presence of DMs. If this applies in
RST as well, then in a sense, such parser errors
are not really errors at all. Because RST enforces a
strict tree constraint, the only way to find out would
be to look at alternative RST trees.

In order to do just this, we utilize RST-DT’s
official double-annotated subset, which has trees
from a second annotator for 53 documents. This
subset overlaps only 5 documents in the RST-DT
test set, which contain only 12 distractors, mean-
ing that the scope of this last analysis is limited;
however, in examining these 12 distractors, we dis-
covered that 75% (9/12) actually corresponded to
relations selected as the primary RST relations
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by the second annotator in the double annotated
data. In other words, the double annotated data
confirms that, at least in the case of the RST-DT
test set, a large majority of distractors do in fact
correspond to multiple concurrent relations, which
were identified by an experienced RST annotator.

5 Conclusion

This study has several important implications.
Firstly and unsurprisingly, the explicit/implicit dis-
tinction from shallow discourse parsing is mirrored
in RST parsing difficulty, and the dataset released
in this paper can help study it further. However,
explicit marking is clearly less consequential than
intra-sentential status, with which explicitness it
correlated. Secondly, OOV rate plays a less impor-
tant role than we initially suspected, while genre ef-
fects remain robust, suggesting that diverse genres
may matter more than subject matter. Our results
also indicate that current architectures do not differ
substantially in what they get right or wrong, and
with scores being so similar, differences reduce to
computational efficiency and personal preference.

Finally, the study of distractors suggest that
RST’s tree constraint may mix some cases of mul-
tiple concurrent relations with parsing errors, when
parsers are actually identifying viable relations.
This suggests that we may want to consider ways
of allowing and adding concurrent relations to RST
parses.

We also note that although the error prediction
models evaluated in Section 4.2 were primarily de-
veloped in order to gain a greater understanding
of the issues in discourse parsing, they could have
some practical applications.” Predicting regions
of low certainty in discourse parses can: 1) as-
sist by highlighting low confidence regions in user-
facing downstream applications; 2) flag potential
problems during annotation of resources, especially
when relying on NLP (Gessler et al., 2020) or less
trained annotators/crowd workers (Scholman et al.,
2022; Pyatkin et al., 2023); and 3) help guide ad-
ditional resource acquisition, either automatically
using active learning (to prioritize documents pre-
dicted to have parsing problems for manual anno-
tation, cf. Gessler et al. 2022) or using qualitative
evaluation in deciding what data to collect in terms
of the relative importance of genres, presence of
OOV items, etc.

"We thank an anonymous reviewer for noting this.
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A Validation Performance

Table 6 shows our reproduced 5-run average pars-
ing performance on the dev partition of each cor-
pus. GUM v9 has an established dev partition
following the UD English GUM treebank. While
RST-DT does not have an established dev parti-
tion, we followed previous work by taking 10% of
training data stratified by the number of EDUs in
each document (Guz and Carenini, 2020), which
remained the same in the training for both parsers.
The list of document names used as development
data can be found in the repository of the paper for
reproducibility purposes.

corpora GUM v9 RST-DT
metrics S N R S N R
76.0 64.9 552

Guz and Carenini (2020)

TOP-DOWN

Liu et al. (2021) 09.3 56.3 48.1

|
|
BOTTOM-UP ‘
‘ 75.0 64.6 55.7

|
|
67.9 64.8 46.8‘

Table 6: Validation Performance on GUM v9 and RST-
DT with Gold Segmentation (5 run average).
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Abstract

Following complex instructions in conversa-
tional assistants can be quite daunting due to
the shorter attention and memory spans when
compared to reading the same instructions.
Hence, when conversational assistants walk
users through the steps of complex tasks, there
is a need to structure the task into manageable
pieces of information of the right length and
complexity. In this paper, we tackle the recipes
domain and convert reading structured instruc-
tions into conversational structured ones. We
annotated the structure of instructions accord-
ing to a conversational scenario, which pro-
vided insights into what is expected in this set-
ting. To computationally model the conversa-
tional step’s characteristics, we tested various
Transformer-based architectures, showing that
a token-based approach delivers the best results.
A further user study showed that users tend
to favor steps of manageable complexity and
length, and that the proposed methodology can
improve the original web-based instructional
text. Specifically, 86% of the evaluated tasks
were improved from a conversational suitability
point of view.!

1 Introduction

Voice-based assistants can guide users through ev-
eryday complex tasks, such as cooking, crafts, and
home repairs. These conversational assistants need
to understand the users’ intention, find a specific
recipe, and communicate it in a structured and well-
paced manner. Supporting this type of task-guiding
interaction is a recent topic (Gottardi et al., 2022;
Choi et al., 2022; Strathearn and Gkatzia, 2022),
where conversational assistants must work hand-in-
hand with users in order to guide them throughout
the task execution.

We argue that most instructional texts found on-
line are structured in a non-optimal way for con-

"https://github.com/rafaelhferreira/
grounded_task_segmentation_cta
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Figure 1: Differences between web-based and dialogue-
suited recipes (i.e., ConvRecipes corpus) in terms of the
density distribution of tokens, verbs, and nouns per step.

versational assistants, due to the inherent differ-
ences between screen and voice-based interfaces.
Recipes are a great example where the decomposi-
tion of the recipe’s text into dialogue-suited steps
is critical (example in Appendix A) —as Gottardi
et al. (2022) observed, the user is dividing atten-
tion through various and possibly parallel actions.
Hence, and following previous knowledge (Miller,
1956; Cowan, 2001), we aim for steps that are struc-
tured and presented to the user in ordered pieces
of information, while dosing complexity, with the
aim of achieving an efficient task completion.

To tackle this new problem, we part ways with
topic-based segmentation methods (Koshorek et al.,
2018; Choi, 2000; Arnold et al., 2019) and propose
a novel human-focused methodology to convert
reading-structured instructions into conversational
ones. Figure 1 offers a clear view of the differ-
ences between the original web-based recipes and
their dialogue-suited counterparts. The distribution
of linguistic characteristics such as length, verbs
(which cover actions), and nouns (covering ingredi-
ents, tools, etc.), confirms that dialog-suited instruc-
tions should avoid overwhelming users’ short-term
memory (Miller, 1956; Cowan, 2001).

Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue, pages 43-54
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Our proposed methodology starts with the cura-
tion of a corpus which we call ConvRecipes, where
online recipes are segmented into recipes with steps
more suited to a conversational agent. Moreover,
we identify the key traits of a conversational step.
An example of this can be seen in Figure 2. This
example shows the need for models that can tackle
our task, in specific, in ”Step 2” of the task, where
it is noticeable that the step would be very difficult
to follow in a conversational assistant due to the
long sentence and the inherent complexity of its
actions.

To tackle this task computationally, we propose
the Dialogue-Task Segmenter Transformer (DTS-
Transformer), which follows state-of-the-art ap-
proaches in text-segmentation (Lukasik et al., 2020;
Lo et al., 2021; Solbiati et al., 2021) and adopts a
Transformer-based backbone (Vaswani et al., 2017).
Distinct from previous work, we follow a token-
level approach which by modeling steps’ text at a
finer granularity, is capable of better modeling the
inherent structural characteristics of conversational
tasks. Note that, we did not follow generative ap-
proaches and ground our task segmentation task
on the recipes’ original text. We do this to avoid
the risk of introducing hallucinations or mistakes
in step-by-step procedures (Choi et al., 2022).

Finally, we validated the proposed methodology
with automatic experiments, and, more interest-
ingly, with a user evaluation. We observed that
the best DTS model, a 75-3B Encoder backbone,
trained on the proposed ConvRecipes corpus, was
able to improve the conversational structure of 86%
of the evaluated tasks. This evidences both the con-
versational characteristics of the ConvRecipes cor-
pus and the effectiveness of the model’s approach
to the grounded conversational task segmentation
task.

Next, we will relate our contributions to previ-
ous corpus and methods. In Section 3, we carefully
detail the proposed methodology. Experimental
validation and user evaluations are presented in Sec-
tion 4, and we conclude with the final takeaways
and future work.

2 Related Work

Related Corpora. While conversational-suited
task segmentation is a novel task, multiple datasets
have been created to address article-based text seg-
mentation, with the earliest ones being the Choi
Dataset (Choi, 2000), where each document is
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Title: Baked Bananas Recipe
‘Web-based Recipe

Step 1: Preheat to 190 C. Spray a
with

Step 2: Arrange in the prepared
Drizzle over and top with
Bake in the until heated through, 10-15

Dialogue-suited Recipe

Step 1: Preheat to 190 C.

Step 2: Spray a with .
Step 3: Arrange in the prepared
Drizzle over and top with

Step 4: Bake in the until heated through 10-15

Figure 2: Example of conversion from web/reading-
based format to a dialogue-suited format. In blue and
orange, we highlight the verbs and nouns, respectively.

represented by the concatenation of 10 random
passages from a large corpus, and the RST-DT
dataset (Carlson et al., 2001), which focuses on
intra-sentente granularity on Wall Street Journal
articles. Topic and document-section-oriented seg-
mentation datasets such as Wiki-727 (Koshorek
et al., 2018) and WikiSection (Arnold et al., 2019)
are comprised of Wikipedia articles and focus on
topic and section-based text segmentation. Closer
to our domain, we highlight works with instruc-
tional text such as Task2Dial (Strathearn and
Gkatzia, 2022) and the Wizard of Tasks (Choi
et al., 2022), which rewrite the tasks’ text into
dialogue-suited steps. Our approach focuses on
grounded structuring of task instructions for dialog
while avoiding hallucination problems common in
generative/re-writing approaches. We also take a
step further by identifying the fundamental traits of
conversational-suited tasks, in a principled manner.

Methods and Models. Initial works for text seg-
mentation were mostly based on statistical and un-
supervised approaches, such as TextTiling (Hearst,
1997) and C99 (Choi, 2000). After these, super-
vised neural methods, particularly with the use of
RNNs were utilized. In (Badjatiya et al., 2018),
a CNN is used to generate sentence embeddings
in conjunction with an LSTM to keep sequential
information. Li et al. (2018) also presents an RNN-
based model with an additional pointing mecha-
nism and in (Koshorek et al., 2018) it is used a
hierarchical Bi-LSTM model.

Currently, the state-of-the-art is based on su-
pervised Transformer-based approaches (Lukasik
et al., 2020; Lo et al., 2021; Solbiati et al., 2021).
In (Lukasik et al., 2020), cross-segment and hierar-
chical models are proposed, where predictions are



made based on consecutive segments or sentence-
based representations of the segments. Lo et al.
(2021) presented a hierarchical approach combin-
ing sentence and cross-segment embeddings. Xing
et al. (2020) proposed a hierarchical BiLSTM to
complement BERT’s (Devlin et al., 2019) sentence
representations, aided by a coherence-related auxil-
iary task. Some approaches such as (Zhang et al.,
2021), tackle task structuring as a generation task,
where an end-to-end pipeline is proposed to gener-
ate day-to-day tasks. In a dialogue setting, Solbiati
et al. (2021) applied a BERT model for transcript-
based meetings segmentation (Janin et al., 2003;
McCowan et al., 2005) by calculating the similar-
ity between segment embeddings given by a pre-
trained model. Given the particular intricacies of
conversational-suited task structuring, while we
also adopt a Transformer backbone, we propose a
task segmentation model that makes decisions at a
token-level being able to consider the global task’s
structure.

3 Structuring Conversational Tasks

Our hypothesis is that the recipe instructions found
online are not suited for conversational assistants,
motivating both the task and the dataset collec-
tion efforts. To convert instructions from a read-
ing structure into a conversationally structured for-
mat, we followed a human-focused methodology.
First, we collected task instructions and ran a user
study to curate them as conversational instructions.
Second, we ask users to annotate the relevance of
various conversational instructions traits. Third,
we analyzed the linguistic characteristics of read-
ing instructions compared to conversational task
instructions. Finally, we modeled conversational-
steps computationally with various Transformer-
based (Vaswani et al., 2017) architectures.

3.1 A Conversational-Tasks Corpus

Currently, there are no explicit corpora for study-
ing the grounded segmentation of a recipe into
conversational-suited steps. The closest exam-
ples are either section-based document segmenta-
tion (Koshorek et al., 2018; Arnold et al., 2019)
or rewriting/generative approaches (Choi et al.,
2022; Strathearn and Gkatzia, 2022) which are
prone to hallucinations. In this section, we in-
troduce the methodology used to create the Con-
vRecipes corpus, consisting of recipes segmented
into conversational-suited steps.
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3.1.1 Tasks Collection and Annotation

To create the ConvRecipes corpus, we collected
recipes from a popular recipes website , where each
recipe is self-contained and composed of various
steps in English with arbitrary lengths. We started
by filtering out recipes with fewer than three steps
due to having a structure that is too simple. After
this, near-duplicate recipes were identified with
SimHash (Charikar, 2002) and removed.

Conversation-Steps Annotation. Even though
recipes are human-edited, we argue that they are
written for a reading-based setting, making them
ill-suited to be used in a conversational setting.
Hence, to create grounded conversational instruc-
tions, we conducted a user study. In total, we had 8
annotators, 6 male and 2 female all Computer Sci-
ence MSc. and or Ph.D. students. All annotators
had experience with both conversational assistants
and cooking applications, making them particularly
suited for this annotation task.

The annotators were shown the original recipes
and asked to propose (or not) changes to make the
recipes dialog-suited, either by adding and/or re-
moving steps. Figure 2 illustrates the annotation
process process: given a recipe formatted for the
Web, the goal is for the annotator to identify the
structure that is better suited for a conversational
setting. This approach makes the segmentation
grounded on the original task, avoiding the intro-
duction of mistakes prone to happen when using
rewriting approaches.

3.1.2 On the Traits of a Conversational Step

After the annotation process described in the previ-
ous section, the annotators were asked to quantify,
on a Likert scale of 1 to 5, the importance of various
conversational traits. In particular, we considered:
Complexity, Clarity, Length and #Steps, Ability to
Farallelize Tasks, and Naturalness. For the exact
description of these traits refer to Appendix B. This
evaluation of the traits aims to further inform us
what users value in this conversational task-guiding
assistance setting (Gottardi et al., 2022).

Table 1 shows the results of the analysis of the
traits. The results reveal that although all traits
have some importance, users mostly focus on the
complexity and length of the steps, which are gen-
erally connected with each other. This means that
managing complexity and ensuring a balance in the
information given to the user is paramount. On the
other hand, the naturalness and the ability to per-



Conversational-Step Trait Importance
(1) Complexity 4.5
(2) Step Length & #Steps 4.2
(3) Clarity 3.8
(4) Naturalness 3.6
(5) Ability to Parallelize Tasks 34

Table 1: Trait importance on a 1 to 5 scale. A higher
value represents higher importance.

Reading Dialog

Avg. # Tokens 135
Avg. # Sentences 9.3

Avg. #Steps 380 585
Avg. # Tokens step 35.44  23.03
Avg. # Sents. step 244 1.59
Avg. # Verbs step 4.23 2.75
Avg. # Nouns step 9.92 6.44

Table 2: Comparison between the 300 original reading-
based recipes and the manually annotated set.

form parallel tasks were considered less important
traits, which seem to indicate that users are not so
concerned with language naturalness given that the
step should be short and not too complex.

3.2 ConvRecipes Corpus Analysis

After preparing and curating the task instructions,
we analyzed and compared the original to the cu-
rated data in order to understand how the language
differs from a web/reading setting to a conversa-
tional setting.

3.2.1 Reading-suited vs Dialog-suited

In total, 300 recipes were annotated, where 59
recipes were left without changes, and the remain-
ing 241 (80.3%), had at least one new step added,
with one, two, and three or more breaks added 75,
60, and 47 times, respectively. Only one recipe was
annotated with fewer steps than the original. This
result shows that the reading-based instructions
are not optimal for a conversational setting, gen-
erally missing critical segmentations. Table 2 fur-
ther evidences the difference between the original
and the conversational-suited instructions, where
it is clear that there is a preference for shorter seg-
ments with fewer actions. These results correlate
with the importance of the conversational traits (Ta-
ble 1), which showed that the complexity and num-
ber of steps are particularly important in this setting.
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Figure 3: ConvRecipes statistics: conversational-steps
per task (top-left), sentences per task (top-right), nouns
per conversational-step (bottom-left), and verbs (bottom-
right) per conversational-step.

Thus, ConvRecipes presents a step forward in dis-
covering the optimal structure for instructional text
in a conversational scenario.

3.2.2 Linguistic Style of Conversational-Steps

Figure 3 shows the corpus’s distribution of conver-
sational steps, sentences, nouns, and verbs. The
figure indicates that there is a lot of variability that
needs to be correctly addressed, due to each recipe
having a particular structure.

In contrast to other corpora (Koshorek et al.,
2018; Choi, 2000), ConvRecipes is written in an
instructional/imperative format, using actionable
verbs mostly related to the cooking domain such
as “stir”, “bake” and “mix”. Analyzing how steps
start and end, can also bring some insights into
the segmentation behavior, so we examined the
most common starting and ending n-grams of each
step. The top-20 starting and ending tri-grams are
available in Figure 4. This showed that many of
the steps have temperature mentions, e.g. “preheat
oven to”, or time aware mentions e.g., “for [N] min-
utes” ([N] is a placeholder replacing the number).
These indicate a start/end of an action which in
turn reflects a new step. It is important to note that
the majority of both bi-grams (65%) and tri-grams
(80%) are only used once, which shows the diver-
sity of actions available, creating a more complex
challenge for data-driven approaches.

3.2.3 Corpus Processing.

Annotating a large number of recipes is labor-
intensive and expensive. Thus, we use the 300
manually annotated recipes as the test set and cre-



‘preheat oven to'
‘bake in the'
‘preheat the oven'
'in a large'
'bake in preheated'
'‘preheat an outdoor'
'in a medium'
‘bake for [N]'
'bring a large'
'bake at [N]'
'in a small'
'heat olive oil'
‘heat oil in' 4
‘cook and stir' 4
'‘preheat an oven'4
‘cook on low'
'in a separate' q
‘roast in the'
‘melt butter in'
‘preheat grill for' 4

Starting Tri-gram
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'[N] degrees c'
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‘prepared baking dish'
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Figure 4: Distribution of the top-20 most frequent starting (left) and ending (right) tri-grams.

ate the training and validation splits automatically,
by using the average number of sentences per step
of the annotated set (1.59, Table 2) as a maximum
threshold to choose recipes from a non-annotated
set. These non-annotated recipes use the original
step information as the ground-truth step labels, in
a similar way as the section markers in the Wiki-
727 dataset (Koshorek et al., 2018). This resulted
in a dataset with 1930, and 424 recipes for train-
ing and validation, respectively. As mentioned be-
fore, the test set is composed of the 300 annotated
recipes.

To conclude, the aim of this corpus is to create
models that learn how to identify steps and segment
a task into grounded dialogue-suited steps. Hence,
we concatenate all the steps together, resulting in
an unstructured text with no segment-identifying
structure. Step annotations are then used as labels
to train and evaluate the models.

3.3 Dialog-Task Structuring Transformer

To learn the structure of a conversational task, we
processed the entire task’s text as a whole. By
explicitly receiving the entire input sequence, we
aim to take into account the size and position of
each segment token relative to all the other tokens.
Consequently, with a single pass over the input,
this approach is able to output all segment predic-
tions, making it more efficient than sentence-based
embedding models that output a prediction per sen-
tence (Lukasik et al., 2020).

Given the characteristics of the Transformer
model (Vaswani et al., 2017), we use it as the basis
for our Dialogue-Task Structuring (DTS) model.
In particular, we feed the model with the complete
recipe, allowing it to create contextualized token
representations of the entire recipe. This allows the
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model to consider all of the tokens in the recipe via
the self-attention mechanism.

After the input has been processed by the Trans-
former, we apply a binary segment-break predic-
tion head, i.e., a linear layer followed by a softmax
to the embedding of each segment identifying to-
ken (emb,), outputting the probability of a token
(t) being a segmentation token:

Pseg(ti) = softmazx(FFNN(emby,)), (1)
To identify these end-of-segment tokens, gener-
ally punctuation marks (e.g. “.”, “!1”, “;”), we use
Spacy (Honnibal and Johnson, 2015) to perform
basic sentence segmentation over the recipe’s text.
Finally, we train the model using the cross-entropy
loss between the model predictions, ¢, and the bi-
nary segmentation labels, y, as the following:

Leg=y-logg+(1—-y)-log(1-79), 2

4 Experiments

In this section, we demonstrate how the proposed
framework tackles the challenge of structuring task
instructions in a conversational setting. Experimen-
tal validation was done with both automatic metrics
and human evaluation.

4.1 Metrics

We use Precision, Recall, and F-score to mea-
sure the detection of the correct location of a con-
versation step following Li et al. (2018). More-
over, we followed (Koshorek et al., 2018; Arnold
et al., 2019), and used the text segmentation met-
ric P, (Beeferman et al., 1999), which compares
the predicted segmentation with the ground-truth la-
bels, where a lower value represents a better model.



4.2 DTS Backbones and Implementation
Details

As the basis for our models, we used pre-trained
Transformer models. We tested with the encoder-
only model BERT (Devlin et al., 2019), the
encoder-decoder model TS5 (Raffel et al., 2020)
in both an encoder-decoder (Enc-Dec) setting and
in an encoder-only (Enc-only), i.e. decoder is not
used. When using an E-D model, the input se-
quence of the decoder is the same as the encoder
as in (Lewis et al., 2020) for the extractive QA task
(i.e. there is no actual decoding). To identify the
candidate segments, we used Spacy (Honnibal and
Johnson, 2015), to be more robust than a simple
punctuation-based approach. We evaluated in the
test set the model with the best performance in
the validation set in terms of F-Score. Additional
information about model training is provided in
Appendix C.

4.3 Baselines

As baselines, we considered random and uniform
approaches, a classic method (Hearst, 1997), and a
strong baseline based on a cross-encoder (Lukasik
et al., 2020):

Rand,, and Every,,: unsupervised methods which
use Spacy (Honnibal and Johnson, 2015) to iden-
tify sentences. p is the probability of breaking at
each sentence, and n is the number of consecutive
sentences to break.

TextTiling (Hearst, 1997): one of the earliest
text segmentation methods based on lexical co-
occurrence.

Cross-Segment (CrossSeg) (Lukasik et al., 2020):
BERT-Base (Devlin et al., 2019) model with a clas-
sification head that predicts if a pair of input sen-
tences should be segmented.

4.4 Results and Discussion

In Table 3, we present the results of the baselines,
along with the results of the proposed DTS models.

Importance of Conversational-Aware Corpora.
We trained the same DTS model with a BERT-
Base backbone: one on all crawled raw recipes
(20.000 recipes), identified as (All*), and one on
the ConvRecipes training set (BERT-Base). The
results on Table 3, show that BERT-Based (All*)
obtained the highest Precision (93.4), since its train-
ing samples have fewer breaks, the model makes
less, but correct, break predictions. On the other

48

hand, it achieved the lowest Recall of all supervised
methods. More importantly, the results clearly
show the importance of training models with suited
data, yielding a Py relative improvement of 15%
(Bert-Base). This result indicates that the Con-
vRecipes dataset is constructed in a way that em-
beds the traits of conversational task instructions
(Section 3.1.2).

General results. In Table 3, we observe that the
baselines Rand,,, Every,, and TextTiling do not gen-
erally break the steps at the correct locations as in-
dicated by their low precision (< 62%). However,
since it implicitly enforces a step distribution that
resembles the dataset, Every; achieves a fairly good
P, while also achieving a recall close to 100% due
to breaking at every sentence (it is # 100% due
to errors in Spacy’s sentence identification algo-
rithm). TextTiling, which decides the task structure
through lexical overlap, performs poorly and does
not appear to be a good option for this task. This
is because recipe steps are not structured based on
overlap, but rather in a sequence of sub-actions,
which TextTiling overlooks.

The CrossSeg achieved a Pi. of 19.5 which is al-
ready a significant improvement over the best unsu-
pervised baseline which achieved 23.3. This trans-
lates into an F1 score improvement from 73.8% to
76.5%. Regarding the DTS models, the most solid
fact that emerges from Table 3 is that, regardless
of the backbone, our DTS approach consistently
outperforms all the baselines.

In general, the results of the baselines illustrate
the difficulty of the problem we are trying to solve.
Moreover, there is a clear divide in terms of P be-
tween previous baselines and the proposed DTS
framework, which is consistently below 20 Py,
highlighting the importance of capturing the rela-
tions between the task and the conversational steps.

Encoder vs Encoder-Decoder Backbones.
Comparing the encoder-only model BERT (Devlin
et al., 2019) with T5 (Raffel et al., 2020) (Enc-only)
or the full encoder-decoder (Enc-Dec) model, in
situations with a comparable number of parameters,
we see that 75 outperforms BERT. This might be
explained by the different pre-training approaches
used in TS5 (Raffel et al., 2020), which are better
suited for our task. Comparing the encoder-only
(Enc-only) with the encoder-decoder (Enc-Dec)
in the same models, we see an improvement
in T5-Large, but a decrease in performance in



Model # Params Pyl Precision? Recallt F11
Randg 5 - 3544+£03 599+05 497+£08 51.7+06
2 Rando.75 - 283+05 612+£04 750+£09 652+£0.6
£ Every; - 23.3 60.9 98.8 73.8
%’ Everys - 37.9 59.6 37.9 44.9
-] TextTiling - 28.4 58.7 67.7 61.4
CrossSeg 110 M 195+04 775£09 795+16 765+£04
& BERT-Base (All*) 110M 2254+03 934+01 587+£04 69.6+04
é E BERT-Base 110M 19.1+£04 758+0.7 83.6+07 77.5+£04
t = BERT-Large 340 M 184+02 77.0+17 83.6£28 781+05
5 5:3 T5-Base (Enc-only) 110 M 177402 779+07 8424+05 79.0+0.1
% SE’ T5-Base (Enc-Dec) 220 M 181+£0.6 779+03 829+16 785+08
A g  T5-Large (Enc-only) 335M 181£02 774+£04 84.1+£04 78.6+£03
»»  T5-Large (Enc-Dec) 770 M 1774+02 791+08 8194+09 785£02
T5-3B (Enc-only) 15B 170 £ 04 783+1.0 859+09 80.0+0.2

Table 3: Results on the ConvRecipes’s test set from an average of 3 runs per model. All* indicates that the model
was trained on the set of all recipes crawled, in their original form.

T5-Base. This result implies that the use of the
decoder part of 75 might not be necessarily needed
for this particular task.

DTS Model Size Influence. Having established
the performance range of DTS, we examined the
relationship between model size and performance.
Results show that increasing the model size can
bring improvements, in particular, from BERT-Base
to BERT-Large, however, in the case of 75-Base for
T5-Large, we notice an improvement in the Enc-
Dec model and a decrease in performance in the
encoder-only (Enc-only) model. Nonetheless, the
best results by a significant margin in P, and F1 are
obtained with the largest model 75-3B (Enc-only),
showing that the use of larger models can bring an
improvement as evidenced in (Raffel et al., 2020;
Chowdhery et al., 2022).

Main Takeaways. Results indicate that the pro-
posed models are capable of capturing the intrin-
sic relations of the steps and extract them cor-
rectly when trained on high-quality conversation-
ally structured task instructions. We also observe
that our DTS-Transformer approach gives the best
results in this setting. A fundamental difference
between DTS and other supervised approaches is
that it tackles the conversational recipe structur-
ing task at a token-level granularity. As a conse-
quence, it abstracts less information than previous
approaches (Lukasik et al., 2020; Lo et al., 2021),
such that at each Transformer layer, intermediate to-
ken embeddings are contextualized on the full-task
sequence. Despite working at a finer granularity
(token-level), DTS is both faster to train and per-
form inferences. This makes it highly suited to
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be applied in a real setting, to structure tasks into
conversational steps.

4.4.1 Conversational Tasks Statistics

The recipe task structuring results led us to further
examine the resulting conversational steps statistics.
These are shown in Table 4, where we contrast the
# Steps and # Tokens statistics with the human-
annotated set. Specifically, we observe that Exact
Match segmentation is higher (17.0%) in the DTS
T5-3B (Enc-only) model due to its greater ability
to capture the segmentation patterns. It is also
interesting to note that all methods have a tendency
to overestimate the number of steps. Finally, for
ASteps< 1 — the percentage of examples where
the model predicts less than one step of difference
with the test set — we see an equivalent performance
within the supervised baselines.

Overall, by examining these task structuring
statistics, we observe that although the average
number of steps (# Steps column) is acceptable
for most methods, when we look at the finer-grain
statistics, we see that there is a non-trivial balance
between step length, number of steps, and content
of each step. Hence, it is not a sufficient condition
to optimize a single statistic but rather a combina-
tion of these.

4.4.2 User Evaluation

To compare the model’s performance to the origi-
nal web-based instructions, we asked 6 annotators
from the same pool of Section 3 to annotate which
segmentation was the best considering a conversa-
tional setting.

In total, 50 recipes were randomly selected from



# Steps # Tokens Exact Match =# Steps -+ #Steps — #Steps ASteps< 1
Human Annotation 5.86 19.21 - - - - -
< Every: 9.29 12.11 5.00% 5.33% 94.67% 0.00% 24.00%
S TextTiling 6.32 17.80 7.00% 24.00% 49.33% 26.67% 58.67%
§ CrossSeg 6.08 18.53 13.33% 30.67% 36.22% 33.11% 68.11%
DTS T5-3B (Enc-only)  6.48 17.37 17.00% 27.56% 46.44% 26.00% 68.44%

Table 4: Detailed conversational task structuring statistics for the ConvRecipes test set (human annotated). Exact
Matches is the percentage of predictions exactly matching the ground-truth. (=, + and -) # Steps represent the
percentage of predictions that have equal, more, or less steps than the ground-truth. ASteps< 1 indicates the
percentage of times the difference between the # Steps predicted and the ground-truth is < 1 step.

Web-based T5-3B (E-only)

Rating 1 18.0% 3.3%
Rating 2 36.0% 12.7%
Rating 3 18.7% 20.7%
Rating 4 20.0% 35.3%
Rating 5 7.3% 28.0%
Best 14.0% 86.0%
Conv. Suitability 2.63 3.72

Table 5: User study results comparing the original web-
based segmentations with T5-3B (Enc-only) model pre-
dictions. (Conversation Suitability is givenona 1to 5
scale.

the test set in their original web-based format (i.e.,
without human annotations). These recipes were
then compared to the predictions of the best model
DTS T5-3B (Enc-only). Examples can be seen in
Appendix D. For each recipe, we collected 3 anno-
tations, resulting in an inter-rater agreement of 73%
w.r.t. binary preference. Additionally, the annota-
tors were also asked to grade each segmentation
(web and model) on a 1 to 5 Likert scale according
to the suitability for a conversational agent.

Table 5 shows the results of the user evaluation.
We observe a preference for the model’s segmenta-
tion (86%) since it was trained on a conversational-
based data distribution which more accurately re-
flects the user’s preference in this setting. We
also analyzed that the annotators had a preference
for recipes with more segments 88% of the time.
Notwithstanding, it is important to note that break-
ing too often may result in a sub-optimal expe-
rience and in incomplete steps, as shown by the
Every; baseline of Table 3.

Considering the 1 to 5 rating of suitability for a
conversational agent, the model’s prediction scores
were much higher (3.72) than the original recipes
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(2.63). These ratings further reinforce our hypothe-
sis that the original recipes are not dialogue suited,
and that the model is able to greatly increase the
suitability of a recipe to a conversational-friendly
format.

To conclude, these results indicate that the model
is able to capture segmentation patterns, showing
an ability to improve the suitability of a recipe for
a conversational assistant. This, in turn, brings
advantages to the user experience by providing a
grounded conversationally-suited segmentation.

5 Conclusions

In this paper, we proposed a methodology to tackle
the problem of converting web/reading structured
instructions into conversationally structured ones,
using a task-grounded segmentation by consider-
ing the original task’s steps. In summary, the key
contributions are as follows:

ConvRecipes Corpus. This corpus enables a bet-
ter understanding of the problem. Its analysis
showed that instructional text as it is presented
online is not optimal for a conversational setting.

Dialogue-Task Structurer (DTS). We proposed
several methods that can effectively capture seg-
mentation linguistic patterns. The best-performing
method was a T5-3B (Enc-only) model, a token-
level Transformer.

Real-World Improvement. The user evaluation
showcased the model’s ability to improve over
the original segmentation (86%), which brings ad-
vantages in user experience in a conversational-
assistant scenario.

For future work, we intend to assess how seg-
mentation influences the user’s perception of a
recipe’s quality and generalize our experiments to
different domains such as DIY tasks and tutorials.
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A Task Grounded Dialogue Segmentation
Example in Conversation

In Table 6, we show an example dialog between a
user and a conversational assistant. It is clear that
segmenting a task is critical to managing the user’s
cognitive load, and allows for a better understand-

ing of the recipe’s multiple steps.

Table 6: Example of a dialogue-suited segmented recipe
in the context of a conversational task assistant.

System

User

Hello! I am your cooking assistant! Try ask-
ing me things like: How to make lasagna?
or How to bake a cake?

I want to make a
Tiramisu.

Sure, I found this very tasty: "Classic

Tiramisu". Do you want to try it?

Sure.

Step 1. Separate eggs. Whisk egg yolks
with confectioner’s sugar until pale and
fluffy.

How many eggs
should I use?

This recipe uses 2 eggs. Next.
Step 2. Sure, let’s keep going. Add Next Step.
Amaretto and mascarpone. Whisk until

smooth.

Step 3. Beat egg whites with a pinch of salt ~ Go ahead.
until stiff peaks form. Slowly whisk in the

remaining confectioner’s sugar.

Step 4. We are halfway through the task. Next Step.

Now, carefully fold beaten egg whites into
mascarpone cream.

Step 5. Combine espresso and remaining
Amaretto in a shallow dish. Dip ladyfingers
in espresso mixture and then layer soaked
ladyfingers in bottom of the serving dish.

What are ladyfin-
gers?

Glad you ask! Ladyfingers are low-density,
dry, egg-based, sweet sponge cake biscuits
roughly shaped like large fingers.

Next Step.

Step 6. Cover with a layer of mascarpone
cream and top with a fine layer of grated
chocolate.

I’m done.

Step 7. Repeat layering process until all
ingredients are used up. Finish up with a
layer of mascarpone cream and dust with
unsweetened cocoa powder.

Next.

Step 8. This is the last step of this
recipe.Refrigerate for at least 3 hours be-
fore serving.

Next.

Excellent work, we just finished Classic
tiramisu together! Hope you had fun with
me today!

Goodbye!

B Conversational Steps Traits Description

The following traits where classified in a 1 to 5
Likert scale considering their importance in a task-
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guiding setting:

* Step Complexity - Was the complexity of the
step an important factor to segment?

Step Clarity - Was the clarity of a step impor-
tant, i.e. information was clear, organized and
well delimited in each step?

Step Length and Number of Steps - Did the
length of the steps and the total number of
steps influence your decision?

Ability to Parallelize Tasks - Were you con-
cerned that the segmentation should allow the
user to parallelize multiple tasks/steps?

Naturalness - Was the naturalness of each
step important for your decision? i.e., sounded
close to a person explaining the task?

C Model Training and Hyperparameters

We trained every model for 20 epochs and evalu-
ated in the test set the model with the best perfor-
mance in the validation set in terms of F-Score. We
used a batch size of 16, a learning rate of 575 and
the Adam optimizer (Kingma and Ba, 2015). All
models were trained on a single NVIDIA A100
GPU, except for T5-3B (Enc-only), which used 4
NVIDIA A100 GPUs. We also highlight that these
models are faster to train compared to the cross-
segment model (Lukasik et al., 2020), due to each
training sample only predicting one segmentation,
instead of all segments as in DTS.

D Model Output Examples

Table 7 shows examples comparing the original
web version of a recipe with the output of the T5-
3B (Enc-only) DTS model. As we can observe, the
model outputs a larger number of breaks comple-
menting our findings in this conversational scenario.
The model is also able to keep a notion of the sub-
task being performed, for instance in Example-3
Step-4, the model does not segment the sentences
into multiple steps.



Example 1 - Soy Garlic Steak (Web)

Model Output

1. In a small bowl, mix vegetable oil, soy sauce, vinegar, ketchup,
and crushed garlic. Place flank steak in a large resealable plastic
bag. Pour the marinade over steak. Seal, and marinate in the
refrigerator at least 3 hours.

2. Preheat grill for high heat.

3. Oil the grill grate. Place steaks on the grill, and discard
marinade. Cook for 5 minutes per side, or to desired doneness.

1. In a small bowl, mix vegetable oil, soy sauce, vinegar, ketchup,
and crushed garlic.

2. Place flank steak in a large resealable plastic bag. Pour the
marinade over steak. Seal, and marinate in the refrigerator at
least 3 hours.

3. Preheat grill for high heat.

4. Oil the grill grate. Place steaks on the grill, and discard
marinade. Cook for 5 minutes per side, or to desired doneness.

Example 2 - Blueberry Yogurt Pops (Web)

Model Output

1. Combine all ingredients in blender. Cover; blend on high
speed 15 to 20 seconds or until smooth.

2. Pour into 8 frozen pop molds (2.5 ounces to 3 ounces each).
Cover, insert craft sticks, and freeze for 2 hours or until com-
pletely firm.

3. To serve, dip outsides of molds into warm water to loosen.

1. Combine all ingredients in blender. Cover; blend on high
speed 15 to 20 seconds or until smooth.

2. Pour into 8 frozen pop molds (2.5 ounces to 3 ounces each).

3. Cover, insert craft sticks, and freeze for 2 hours or until
completely firm.

4. To serve, dip outsides of molds into warm water to loosen.

Example 3 - Quinoa Salad with Roasted Yams (Web)

Model Output

1. Preheat oven to 350 degrees F (175 degrees C). Line a baking
sheet with aluminum foil; add yams.

2. Bake in the preheated oven until yams are tender and wrinkled
at the edges, about 20 minutes. Cool to room temperature, about
15 minutes

3. Bring water to a boil in a large saucepan. Add quinoa, stirring
once; return to boil. Cook uncovered until water is absorbed,
10 to 12 minutes. Strain, shaking the sieve well to remove all
moisture. Transfer to a mixing bowl.

4. Stir cucumbers, yams, parsley, olive oil, onion, lemon juice,
red wine vinegar, salt, and pepper into the quinoa. Garnish with
endive spears.

1. Preheat oven to 350 degrees F (175 degrees C).
2. Line a baking sheet with aluminum foil; add yams.

3. Bake in the preheated oven until yams are tender and wrinkled
at the edges, about 20 minutes. Cool to room temperature, about
15 minutes

4. Bring water to a boil in a large saucepan. Add quinoa, stirring
once; return to boil. Cook uncovered until water is absorbed, 10
to 12 minutes.

5. Strain, shaking the sieve well to remove all moisture. Transfer
to a mixing bowl.

6. Stir cucumbers, yams, parsley, olive oil, onion, lemon juice,
red wine vinegar, salt, and pepper into the quinoa. Garnish with
endive spears.

Table 7: Examples comparing original web recipe and the T5-3B (Enc-only) DTS model outputs.
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Abstract

Topic distribution matrices created by topic
models are typically used for document clas-
sification or as features in a separate machine
learning algorithm. Existing methods for eval-
uating these topic distributions include met-
rics such as coherence and perplexity; however,
there is a lack of statistically grounded evalua-
tion tools. We present a statistical method for
investigating group difference in the document-
topic distribution vectors created by latent
Dirichlet allocation (LDA). After transforming
the vectors using Aitchison geometry, we use
multivariate analysis of variance (MANOVA)
to compare sample means and calculate effect
size using partial eta-squared. We report the
results of validating this method on a subset of
the 20Newsgroup corpus. We also apply this
method to a corpus of dialogues between Autis-
tic and Typically Developing (TD) children and
trained examiners. We found that the topic dis-
tributions of Autistic children differed from
those of TD children when responding to ques-
tions about social difficulties. Furthermore, the
examiners’ topic distributions differed between
the Autistic and TD groups when discussing
emotions and social difficulties. These results
support the use of topic modeling in studying
clinically relevant features of social communi-
cation such as topic maintenance.

1 Introduction

Throughout the course of a dialogue many differ-
ent topics are traversed with varying frequencies,
and many analytical tasks depend on the ability
to meaningfully quantify or otherwise characterize
these patterns. For example, a system designed to
automatically summarize meetings might need to
detect when a new topic has been introduced; in
a clinical context, we might wish to characterize
the topics discussed during a patient visit to facil-
itate some sort of downstream analysis involving
clustering or classification.
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Topic modeling techniques such as latent Dirich-
let allocation (LDA; Blei et al., 2003) allow us to
capture and quantify the topic distributions across
a collection of language samples. Typical methods
for evaluating the resulting topic distributions use
intrinsic metrics such as within-topic coherence;
however, to our knowledge there remains a short-
age of methods for statistically comparing the topic
distributions produced by a model.

The application of topic modeling methods in
clinical research has become more common in re-
cent years (Hagg et al., 2022; Boyd-Graber et al.,
2017; Jelodar et al., 2019). While topic modeling
approaches have advanced significantly over the
last twenty years, evaluation methods have lagged
behind (see Hoyle et al., 2021 for a recent survey of
methods). Current metrics tend to focus on intrinsi-
cally assessing model performance (via perplexity
on held-out data) or on attempting to measure the
quality of the topics that a model produces using
metrics based on constructs such as human inter-
pretability of the topics themselves (sometimes re-
ferred to as “coherence”). In a clinical research
setting, however, the topic distributions produced
by a model are themselves often meant for use in
meaningfully quantifying differences between clin-
ical populations. In such a scenario, usefully eval-
uating the quality of a topic model’s “fit”, or com-
paring that “fit” to that of another model (perhaps
trained via a different algorithm, or with a differ-
ent choice of hyperparameters) becomes a question
of extrinsic evaluation, as intrinsic metrics such as
perplexity or coherence are unlikely to be sufficient.
Additionally, in clinical research, topic models are
typically one piece of a larger analytical puzzle,
one which often depends on traditional hypothesis-
driven inferential statistical approaches (rather than
stand-alone evaluation or use, as is more typical
with topic models in machine learning scenarios).

In this paper, we outline a statistical approach
to explore and quantify group differences in topic
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distributions captured by topic models and demon-
strate its application using LDA and two differ-
ent corpora. First, we validate our method on the
20Newsgroup corpus, a widely-used reference cor-
pus for developing and evaluating topic modeling
algorithms (Mitchell, 1997), by comparing topic
distributions between groups of documents that
we expect to be similar and groups that we expect
to be different. Second, we use our method on a
corpus of language samples of Autistic! and Typi-
cally Developing (TD) children. Based on previous
clinical evidence, we expect the topic distribution
vectors of Autistic children to differ from those of
the TD children. Our proposed method allows for
a robust and statistically meaningful evaluation of
the output of a topic model in both clinical and
non-clinical contexts.

1.1 Topic Maintenance in ASD

Autism Spectrum Disorder (ASD) is a developmen-
tal disorder that is characterized by difficulties with
social communication and restricted repetitive be-
havior (RRB) (American Psychiatric Association,
2013). These social communication difficulties
sometimes include problems with topic mainte-
nance (Baltaxe and D’ Angiola, 1992; Paul et al.,
2009), with Autistic children having more difficulty
staying on topic than TD children. This difference
may result in a signal that could be captured by a
topic model as TD and ASD children would have
different proportions of their speech assigned to
different topics. In an effort to investigate this dif-
ference, we applied our statistical approach using
LDA and a corpus of transcribed conversations be-
tween Autistic and TD children and trained exam-
iners that were recorded during administration of
a standard clinical assessment tool, the Autism Di-
agnosis Observation Schedule (ADOS, described
further in section 3.2.1). Previous work with ADOS
language samples (Salem et al., 2021; Lawley et al.,
2023; MacFarlane et al., 2023) has shown that com-
putational methods are able to capture a variety of
differences in the language used by Autistic chil-
dren from such dialogue samples, but to date have
not focused on topic-level features. Our hypothe-
ses for this experiment are two fold: (1) Autistic
children will have different topic distributions than
the TD children (i.e., talk about different topics

'We are using identity-first language (i.e., Autistic chil-
dren) here instead of person-first language (i.e., children with
Autism) as the former is the current preference among many
Autistic individuals (Brown, n.d.).
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than the TD children); (2) examiners will have sim-
ilar topic distributions regardless of whether they
are talking with Autistic children or TD children,
as the ADOS task is designed (and examiners are
trained) so as to ensure uniformity of delivery on
the part of the examiner irrespective of the child’s
diagnostic status.

2 Statistical Motivation

LDA is a unsupervised, generative probabilistic
model that is used on a corpus of text documents
to model each document as a finite mixture over k
topics (Blei et al., 2003). Each document is treated
as a bag-of-words (i.e., order does not matter) and
is represented as a set of words and their associated
frequencies. Given M documents and an integer
k, LDA produces a M x k document-topic ma-
trix (6). LDA also produces a k x V' topic-word
matrix (5), where V' is the total number of unique
words across the entire corpus of documents. Since
we will not be using the topic-word matrix in this
analysis, from this point forward, we will use the
phrases “LLDA model” and “document-topic matrix”
interchangeably.

In the document-topic matrix, each row
represents a single document and each col-
umn represents one topic. The elements
O1,1,-..,0;j,...,00 ) are the estimated propor-
tion of words in a document that were generated by
a topic. From this matrix, each document can now
be represented as a k-dimensional topic distribution
vector.

These LDA-derived topic distribution vectors of-
ten serve as useful document representations for
downstream analyses, such as a feature vectors for
documentation classification or clustering. They
are also commonly used as proxies for document
content in more qualitative analyses of the composi-
tion of text corpora. To our knowledge, a statistical
method for comparing topic distribution vectors
between groups of documents has not yet been pro-
posed.

One reason for this is due to the numerical prop-
erties of the resulting topic distribution vectors
(each component 6; is bounded between {0,1}
with the further constraint of Zle 6; = 1), which
render them unsuitable for use with many para-
metric statistical methods. This is an important
limitation, because as previously mentioned, as the
applications of topic modeling methods expand in
clinical and behavioral research, the need for statis-



tically based evaluation tools grows.

We realized that since the components in a topic
distribution vector are proportions and all sum to
one, they meet the definition of “compositional”
data as formalized by Aitchison (1982), who also
proposed a family of statistical approaches for
such data. Compositional data are vectors of posi-
tive numbers that together represent parts of some
whole: e.g., the demographic profile of a city or the
mineral compositions of rocks.

There are three linear transformations that can be
performed on compositional data: additive logratio
(ALR), center logratio (CLR), and isometric logratio
(ILR) transformation. The ILR transformation was
introduced by Egozcue et al. (2003) in an effort to
broaden the range of statistical methods that can
be applied to compositional data by mapping com-
positonal data into real space. This transformation
maps a composition from its original sample space
(the D-part simplex) to the D — 1 Euclidean space
(ILR: SP — RP~1) with all metric properties pre-
served. Once the compositions are in RP—1 we are
able to use classical multivariate analysis tools such
as multivariate analysis of variance (MANOVA) to
explore group differences (Egozcue et al., 2003;
van den Boogaart et al., 2023).?

MANOVA is used to compare multivariate sam-
ple means and examines the effect of one discrete,
independent variable on multiple continuous, de-
pendent variables. For the analyses described in
this paper, the independent variable is topic label
when using the 20Newsgroup corpus and diagnosis
(ASD, TD) when using the clinical corpus. The de-
pendent variables in both analyses are the various
topic distribution probabilities in the document-
topic matrix created by LDA: 0; 1,0;2,...,0; .1
where i = 1,2..., M. It is important to note that
a different discrete variable can be used as the inde-
pendent variable, as long as it separates the docu-
ments into groups (e.g., author if modeling a corpus
of newspaper articles); if one wished to incorporate
multiple independent variables, one could could in-
stead use MANCOVA. Since we used a k of 20 in
both of our analyses and one dimension is removed
during the ILR transformation, there are a total of
19 dependent variables.

In the case that we do find a significant group
difference, the next step is to find out the magni-
tude of the effect. After MANOVA, we can use

2Qur ability to use MANOVA here is contingent on statis-
tical assumptions that must be met before proceeding. These
assumptions are discussed in more in detail in section 4.3.
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partial eta-squared (n?) to calculate effect size. Par-
tial n? tell us what proportion of variance of the
linear combination of the topics can be explained
by the independent variable (Tabachnick and Fidell,
2013).

MANOVA is a compelling choice for this anal-
ysis for several reasons. As detailed above, it en-
ables us to statistically determine whether the topic
distributions learned by our topic model are signifi-
cantly associated with our other variables of inter-
est (group membership, etc.) under a conventional
hypothesis-testing framework. Second, MANOVA
allows us to calculate interpretable measurements
of effect size, which in turn facilitate comparison
between different models (even if they are trained
using different modeling algorithms). Third, this
framework enables us to incorporate additional co-
variates as independent variables (via upgrading
to MANCOVA), in a way that a more traditional
classification-centric downstream task would not.
Lastly, MANOVA is a well-characterized and well-
established statistical method and as such has nu-
merous useful extensions; for example, it can be
combined with post-hoc Roy—Bargmann stepdown
procedure (Tabachnick and Fidell, 2013) which
enables detailed statistical analysis of the relation-
ship between individual topics (or combinations
of topics) and our independent variable, thereby
facilitating a far richer quantitative interpretation
of our topic model’s output than other methods.
Note, however, that this would be slightly com-
plicated under our protocol due to our use of ILR,
which results in the loss of a dimension into a new
feature space that is decoupled from the original
topics learned by the model (but which preserves
important semantic properties of the original fea-
ture space). In this work, we explore only the first
two points mentioned, leaving the rest for future
work.

3 Corpora

We demonstrate our approach on two separate cor-
pora: a subset of the 20Newsgroup corpus and a
corpus of transcribed natural language samples of
ASD and TD children.

3.1 20Newsgroup corpus

The 20Newsgroups corpus is a collection of approx-
imately 18,000 posts from twenty different Usenet



newsgroups,® and is a classic and widely-used
dataset for text classification and analysis (Mitchell,
1997). We used the version of the 20Newsgroups
corpus that is available through the Python library
scikit—-learn (Pedregosa et al.,, 2011). For
this analysis, we used documents from the fol-
lowing topic labels: comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, rec.sport.baseball, and
rec.sport.hockey. Documents that contained less
than 500 characters were omitted. All utterances
were tokenized, converted to lowercase, and lem-
matized (e.g., "troubling" and "troubles" both be-
come "trouble"). Stop words and fillers (e.g., "uh-
huh", "mmhmm", "hmm", etc.) were dropped.4

3.2 Clinical corpus

The data used to in our second analysis consists of
transcribed natural language samples of 117 ASD
children and 65 TD children between the ages of 4
and 15 years old. All participants were native En-
glish speakers and had an IQ of > 70. Sample char-
acteristics for all 182 participants are summarized
in Table 1. Intellectual level was estimated using
the Wechsler Preschool and Primary Scale of Intel-
ligence, third edition (WPPSI-III; Wechsler, 2002),
for children younger than 7 years old. For children
7 years and older, the Wechsler Intelligence Scale
for Children, fourth edition (WISC-IV; Wechsler,
2003), was used. Language ability and pragmatic
and structural language skills were estimated using
the Children’s Communication Checklist, version
2 (CCC-2; Bishop, 2003).

3.2.1 Language samples

The language samples are transcribed dialogues
between the child and an examiner during the con-
versation activities in the Autism Diagnostic Obser-
vation Schedule (ADOS) (Lord et al., 2000). The
ADOS is a semi-structured interview that is de-
signed to provide opportunities to observe speech
and behavior that are characteristic of ASD as de-
fined by the DSM-IV-TR (American Psychiatric
Association, 2000). All participants were admin-
istered the ADOS-2, Module 3, which is designed
for children and adolescents with fluent speech.
Sessions were scored using the revised algorithms
(Gotham et al., 2009).

3Usenet was an early internet-based network of
hierarchically-organized discussion groups where users could
post messages about a given topic.

*We used the lexicon of stop words provided in the tidytext
package (Silge and Robinson, 2016).

58

Audio files were transcribed by a team of trained
transcribers who were blind to participants’ diag-
nostic status and intellectual abilities. Transcrip-
tion was completed following modified Systematic
Analysis of Language Transcripts (SALT) guide-
lines (Miller and Iglesias, 2012). Both the child
and examiner speech were transcribed.

For this analysis, we used the transcribed dia-
logues from the four ADOS conversation activi-
ties: Emotions; Social Difficulties and Annoyance;
Friends, Relationships, and Marriage; Loneliness.
These activities were chosen for this analysis be-
cause of their conversational structure and natu-
ralistic dialogue. Other ADOS activities, such as
Description of a Picture and Telling a Story From
a Book, were omitted. For each conversation ac-
tivity, examiners are instructed to ask the child a
series of questions, such as "What do you like do-
ing that makes you feel happy and cheerful?" and
"Do you have some friends? Can you tell me about
them?". We followed same text preprocessing steps
as described in section 3.1.

4 Methods

Figure 1 shows an example workflow for our
method using LDA and a k of 5. All analyses were
completed using the statistical programming lan-
guage R (R Core Team, 2020). LDA models were
estimated using the the topicmodels package
(Griin and Hornik, 2011). The ILR transforma-
tion was performed using the compositions
package (van den Boogaart et al., 2023). Box’s M
Test was performed using the heplots package
(Friendly et al., 2022) and partial eta-squared was
calculated using the ef fect size package (Ben-
Shachar et al., 2020). Our code for the 20News-
group analysis is available online.’

4.1 20Newsgroup

Using the documents from four different topics, we
fit a single LDA model with a &k value of 20. After
transforming the topic distribution vectors using the
ILR transformation, we performed seven MANOVA
tests. First, we compared the topic distributions
between the broader comp.sys.* and rec.sport.*
categories, where the former is composed of
the documents from comp.sys.ibm.pc.hardware
and comp.sys.mac.hardware and the latter of
those from rec.sport.baseball and rec.sport.hockey.

Shttps://github.com/gracelawley/lawley-sigdial-2023



ASD (n =117, 98 males)

TD (n = 65, 37 males)

min max  mean s.d. min max  mean s.d. p
Age in years 454 156 10.03 282 421 145 822 2.83  <.001
1Q 72 138 102.19 1577 90 147 11694 12.37 <.001
ADOS SA 3 19 9.18 3.48 0 8 0.95 1.47 <.001
ADOS RRB 0 8 3.59 1.53 0 2 0.45 0.64 <.001
ADOS Total 7 24 1277 3.3 0 10 1.40 1.79 <.001
CCC-2 Pragmatic 1.5 108 4.96 1.69 75 158 12.05 173 <.001
CCC-2 Structural 1 12 7.01 229 85 15 11.73 1.57 <.001
CCC-2 GCC 45 103 7513 11.0 87 143 115.18 12.09 <.001

Table 1: Demographic and clinical sample characteristics. Abbreviations: ADOS = Autism Diagnostic Observation
Schedule; SA = Social Affect; RRB = Restricted and Repetitive Behavior; CCC-2 = Children’s Communication
Checklist, version 2; GCC = Global Communication Composite.

Documents

LDA
(k=15)

Document-topic matrix (6)

_—

Transformed topic
distributions

ILR

transformation
—— MANOVA

Figure 1: Example workflow for the described statistical approach described to explore and quantify group
differences in topic distributions captured by topic models.

We hypothesize that the topic distributions be-
tween these groups will be very different.
Second, we compared topic distributions be-
tween subcategories: comp.sys.ibm.pc.hardware
vs. comp.sys.mac.hardware; rec.sport.baseball vs.
rec.sport.hockey. We hypothesize that these groups
will also be different, but not as different as the
previous comparison. Third, we compared the
topic distributions within each of the four topics
by randomly splitting each topic into two groups
(e.g., rec.sport.baseball.1 vs. rec.sport.baseball.2).
Since the documents are from the same topic, we
hypothesize that there will be no difference be-
tween the topic distributions. For all of the above
MANOVA tests, the independent variable is the
topic label and the dependent variables are the topic
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probability values from the document-topic vec-
tors.

4.2 Clinical corpus

Since our plan involves analyzing the child and ex-
aminer speech separately, we created two separate
LDA models: one containing only the child speech
and one containing only the examiner speech. In
both models, we define a document as all words
said by a speaker during a single ADOS conver-
sation activity. Since there are four activity types,
within each model each child-examiner conversa-
tion is associated with four, distinct documents.
We used a k value of 20 for both models. This
decision was informed by prior knowledge of the
type and quantity of questions the examiners are



instructed to ask during the ADOS conversation ac-
tivities. Hyperparameter estimation was done using
the variational expectation-maximization (VEM)
algorithm with a starting « value of 50/k (Griin
and Hornik, 2011; Griffiths and Steyvers, 2004).

For each of our MANOVA tests, the independent
variable is diagnosis (either ASD or TD) and the
dependent variables are the topic probability values
from the document-topic vectors. Since we used
a k of 20 in our analysis and one dimension was
lost during the ILR transformation there are 19 de-
pendent variables. The null hypothesis is that the
multivariate means of the ASD and TD groups are
equal.

4.3 MANOVA assumptions

Before proceeding further with MANOVA, there
are multiple assumptions that must be met (Tabach-
nick and Fidell, 2013). First, each combination
of independent and dependent variables should be
multivariate normally distributed. Since there are
more than 20 observations for each dependent x
independent variable combination the Multivariate
Central Limit Theorem holds so we can assume the
multivariate normality assumption holds.

Second, dependent variables should have a linear
relationship with each group of the independent
variable. This assumption was initially not met
since each topic distribution vector summed to 1.
However after performing the ILR transformation
described in section 2, this is no longer the case.

Third, variance-covariance matrices for depen-
dent variables should be equal across groups. This
can be tested using Box’s M test (Box, 1949),
which tests the null hypothesis that the matrices
are equal. For our data, Box’s M test yielded p-
values of p < 0.001 for each topic for the 20News-
groups documents and also for each conversation
activity for both child and examiner speech, and
thus this assumption (of equal covariance matrices)
was not met. However, MANOVA is robust to un-
equal covariance matrices when Pillai’s criterion
is used (Tabachnick and Fidell, 2013; Pillai, 1955),
and as such we are able to proceed .

Lastly, there should be no extreme outliers in
the dependent variables. Extreme outliers can be
identified by calculating the Mahalanobis distance
for each observation and then performing a chi-
squared test (using df = k — 1) to calculate the
corresponding p-values. The null hypothesis is
that the observation is not an outlier. We repeated
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analyses with identified outliers excluded and saw
no difference in results. The results presented here
are with these outliers included.

5 Results

The first part of our analysis was to demonstrate the
application of our approach on the 20Newsgroup
corpus, a popular corpus for topic modeling. The
results for the MANOVA tests are reported in Ta-
ble 2. There was a significant difference between
the topic distributions from the comp.sys.* and
rec.sport.* categories, F'(19,1710) = 414.240,
p < 0.001, with a large effect size, partial 7?> =
0.82. Between the comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware subcategories, topic distri-
butions were significantly different, £'(19,795) =
15.008, p < 0.001, with a large effect size, par-
tial n> = 0.26. Topic distributions were also sig-
nificantly different between the rec.sport.baseball
and rec.sport.hockey subcategories, F'(19,895) =
15.008, p < 0.001, with a large effect size, partial
n? = 0.57. When comparing topic distributions
within each topic (by randomly splitting the docu-
ments into two groups), there were no significant
differences found.

For the second part of our analysis, we com-
pared the children’s topic distribution vectors be-
tween diagnostic groups (ASD, TD). The results
of the MANOVA tests for each ADOS conversa-
tion activity for child speech are reported in Table 3.
The children’s topic distributions were significantly
different between the Autistic and TD children
within the Social Difficulties and Annoyance activ-
ity, F'(19,169) = 2.055, p = 0.0083, with a large
effect size, partial n? = 0.19. There was no signifi-
cant group difference in topic distributions within
the other three conversation activities (Emotions;
Friends, Relationships, and Marriage; Loneliness).
To address potential Type I error from multiple
comparisons, p-values can be evaluated using a
Bonferroni adjusted o of 0.0125. When evaluat-
ing the results using the adjusted « of 0.0125, the
significant result within the Social Difficulties and
Annoyance conversation activity remains.

Lastly, the results of the statistical analyses per-
formed on the examiner speech are reported in Ta-
ble 4. The examiners’ topic distributions differed
significantly between ASD and TD groups within
three of the four conversation activities examined:
Emotions, F(19,175) 2.235, p 0.0035,
with a large effect size, partial n> = 0.20; So-



topics n df Pillai approx. F df;  dfs p partial n?

comp.sys.* 815 1 0.822 414.240 19 1710 <0.001 0.82

rec.sport.* 915

comp.sys.ibm.pc.hardware 447 1 0.264 15.008 19 795 <0.001 0.26

comp.sys.mac.hardware 368

rec.sport.baseball 423 1 0571 62.722 19 895 <0.001 0.57

rec.sport.hockey 492

comp.sys.ibm.pc.hardware 219 1 0.020 0460 19 427 0976 0.02
" 228

comp.sys.mac.hardware 198 1 0.044 0.840 19 348  0.659 0.04
" 170

rec.sport.baseball 206 1 0.041 0.903 19 403 0.579 0.04
" 217

rec.sport.hockey 247 1 0.029 0.738 19 472  0.780 0.03
" 245

Table 2: 20Newsgroups, comparison of LDA topic distribution vectors between and within topics.

df Pillai approx. F' df; dfy D partial 7?
Emotions dx 1 0.093 0.941 19 175 0.5334 0.09
Social dx 1 0.188 2.055 19 169 0.0083 0.19
Friends dx 1 0.131 1.388 19 175 0.1381 0.13
Loneliness dx 1 0.135 1.275 19 156  0.207 0.13

Table 3: Child speech, comparison of LDA topic distribution vectors between ASD and TD groups.

cial Difficulties and Annoyance, F(19,174)
3.858, p < 0.001, with a large effect size, partial
772 = 0.30; Friends, Relationships, and Marriage,
F(19,176) = 1.833, p = 0.0224, with a large
effect size, partial > = 0.17. There was no signifi-
cant difference between groups for the Loneliness
conversation activity. A Bonferroni adjusted o of
0.0125 can be used to address potential Type I error
from multiple comparisons. With this adjusted «,
a significant group difference within the Emotions
and Social Difficulties and Annoyance activities
remains; however, the previous group difference
within Friends, Relationships, and Marriage is no
longer significant.

6 Discussion

The Autistic children and TD children had signif-
icantly different topic distributions for one of the
four conversation analyzed: Social Difficulties and
Annoyance. We expected to observe a group differ-
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ence in all four of the conversation activities instead
of only one. Incorporating additional participant-
level information such as IQ and age or examining
other measures of conversational reciprocity such
as the length and complexity of utterances may
help shed some light as to why a group difference
was only seen in one of the four activities analyzed.
In addition, further investigation into sampling con-
text differences between the conversation activities
is needed before conclusions can be drawn. This
finding illustrates the value of our proposed statisti-
cal approach, in that we have numerous ways we
could incorporate these additional covariates into
our analysis in quantitatively useful ways within
the same statistical framework.

The examiners’ topic distributions differed sig-
nificantly between the ASD and TD groups for two
of the four activities: Emotions and Social Diffi-
culties and Annoyance. This is surprising as our
initial hypothesis was there would not be any sig-



df Pillai approx. F' df; dfy D partial 7>
Emotions dx 1 0.195 2.235 19 175 0.0035 0.20
Social dx 1 0.296 3.858 19 174 <0.001 0.30
Friends dx 1 0.165 1.833 19 176 0.0224 0.17
Loneliness dx 1 0.151 1.557 19 167 0.0726 0.15

Table 4: Examiner speech, comparison of LDA topic distribution vectors between ASD and TD groups.

nificant group differences for the examiners’ topic
distributions. ADOS examiners are instructed to
cover the same questions for each child, regardless
of diagnosis, and are trained to a high standard
of consistency and repeatability, as the assessment
is meant for clinical use. Since one goal of the
conversation activities is to foster a dialogue, the
examiner would likely avoid actions that could dis-
courage the child from conversing and sharing their
interests. It may be the case that the examiners are
mirroring the topics introduced by the children dur-
ing the activities and those topics are being picked
up by the topic distributions created by LDA.6 This
could be explored in the future by investigating
pairwise group differences.

7 Conclusion

In this paper we presented a novel application of ex-
isting statistical methods to evaluate the document-
topic distribution vectors created by topic models in
order to investigate group differences. By treating
the document-topic distribution vectors as compo-
sitional data (Aitchison, 1982), we are able to use
the ILR transformation (Egozcue et al., 2003) to
map the vectors from their original sample sample,
the D-part simplex, into the D — 1 Euclidean space
(ILR: SP — RP~1). Once in RP~!, we are able
to use classical multivariate analysis tools such as
MANOVA (Egozcue et al., 2003).

When applied to an LDA model fitted to the
20Newsgroups corpus, our method successfully
identified that the topic distributions for documents
from different categories (computer hardware vs.
sports) and also documents from related subcate-
gories (PC hardware vs. Macintosh hardware; base-
ball vs. hockey) were significantly different. The
effect size, measured with partial 772, also varied

®An anonymous reviewer brought to our attention that
interviewers have been found to adjust their conversational
patterns when speaking to patients with other cognitive condi-
tions, such as Alzheimer’s disease (Nasreen et al., 2021).
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across these comparisons, with the effect size being
the largest when comparing computer hardware vs.
sports and smallest when comparing Macintosh vs.
PC hardware. Furthermore, our method did not
find that topic distributions are significantly differ-
ent when comparing groups of documents from the
same category.

We also demonstrate the application of this
method using LDA and a corpus of child-examiner
dialogues of Autistic and TD children, where prior
clinical research gave us reason to expect to find
group differences. We found that the topic distribu-
tions of Autistic and TD children were significantly
different during one of the four ADOS conversation
activities examined. This result aligns with prior
clinical research that Autistic children often have
difficulties with topic maintenance in a conversa-
tional context. Interestingly, we also found that
examiners’ topic distributions were significantly
different whether they were conversing with an
Autistic child or a TD child for two of the four
ADOS conversation activities examined. This may
indicate that although the examiners are trained to
ask the same set of questions irrespective of diagno-
sis status, tangential topics introduced by the child
during the conversation may be mirrored by the
examiner and thus are reflected in the associated
topic distributions.

There are a few points about the statistical ap-
proach outlined in this paper that should be high-
lighted. Although we demonstrate this method
using the document-topic distribution matrix cre-
ated by LDA, this method can be extended to any
topic modeling algorithm that outputs a topic dis-
tribution that can be treated as a composition. We
decided to use LDA here as it is a well-established
technique that has been extended and built upon
many times over since it was first introduced in
2003. Another important point to highlight is that,
although not shown in here, this analysis has the po-
tential to be extended further with a post-hoc Roy-



Bargmann step down procedure to explore how
much each topic (or combination of topics) con-
tributes to the significant effect of the independent
variable (Tabachnick and Fidell, 2013). However,
as previously mentioned, the loss of a dimension
during the ILR transformation would need to be
addressed first. Overall, the statistical approach
presented in this paper represents a very promising
direction for methods of making topic models more
interpretable in a quantitative way, beyond human
inspection of topics. In the future we would like to
extend this specific analysis to include additional
participant-level, independent variables (e.g., age,
sex, IQ) by using multivariate analysis of covari-
ance (MANCOVA). Since social communication
skill level can vary throughout the ASD spectrum
(Tager-Flusberg and Kasari, 2013), we would also
like to look at differences within the ASD group
by exploring within group variance metrics. We
would also like to explore the use of other methods
of topic modeling, beyond LDA, for this applica-
tion.

As the application of topic modeling methods
continues to grow into areas such as clinical and be-
havioral research, so does the need for statistically
based methods for evaluation and comparison. Our
hope is that the statistical approach described in
this paper contributes to bridging that gap by focus-
ing on improving evaluation metrics for existing
topic modeling methods.

Limitations

There are several limitations of this analysis that
should be mentioned. First, the decision to set k to
20 was specific to the particular clinical discourse
corpus used. Our decision was informed by of the
type and quantity of questions the examiners are
instructed to ask during the ADOS conversation
activities; however, it may not always be possible
to choose a value for k using existing knowledge of
the corpus. Second, as mentioned in section 2, after
performing the ILR transformation we lose one di-
mension from our original topic model’s output and
go from k to k — 1 elements in each vector. A con-
sequence of this is that there is no direct mapping
between dimensions of the ILR-transformed R*~!
vector and the original & topics after the transfor-
mation, though the new dimensions retain the infor-
mation contained in the original data (as shown by
their ability to be used via MANOVA). Depending
on the nature of the analysis that one is conducting,
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this may or may not be an issue; it was not during
the present analysis, since we were interested in the
overall topic distributions of each document (rather
than in specific document-topic associations) but
this may not always be the case. A possible direc-
tion for future work would be to draw further upon
statistical methods from compositional spaces to
assist with this issue.
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Abstract

When searching for products, the opinions of
others play an important role in making in-
formed decisions. Subjective experiences about
a product can be a valuable source of informa-
tion. This is also true in sales conversations,
where a customer and a sales assistant exchange
facts and opinions about products. However,
training an Al for such conversations is compli-
cated by the fact that language models do not
possess authentic opinions for their lack of real-
world experience. We address this problem
by leveraging product reviews as a rich source
of product opinions to ground conversational
Al in true subjective narratives. With Opinion-
Conv, we develop the first conversational Al for
simulating sales conversations. To validate the
generated conversations, we conduct several
user studies showing that the generated opin-
ions are perceived as realistic. Our assessors
also confirm the importance of opinions as an
informative basis for decision making.

1 Introduction

In order to elucidate the mechanics of conversa-
tional product search, Kotler and Keller (2015)
delineated a five-stage process that encapsulates
customer decision making (see Figure 1, left). This
process suggests that the customer: (1) recognizes a
problem or need; (2) searches for information about
potential products or services that could resolve the
problem or fulfill the need, filtering them until a
manageable set of alternatives remains; (3) evalu-
ates and compares these alternatives against each
other with regard to personal preferences and third
party opinions to inform their decision making;
(4) proceeds to make a purchase decision predi-
cated upon this informed evaluation; and finally,
(5) exhibits post-decision behaviors that reflect
their satisfaction, which completes the process.
Typically, in-store shopping predominantly en-
gages with the second and third stages of this cus-
tomer decision process. Both the activities of reduc-
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ing the number of alternatives and evaluating their
merits and demerits are conducted in conversations
between customers and sales assistants. The ab-
sence of such interactions in online environments
is perceived as a deficiency in customer service es-
pecially with respect to the third stage (Exalto et al.,
2018). Customers derive post-purchase satisfaction
from personal exchanges, relating to others experi-
ence, and having the opportunity to ask questions
(Papenmeier et al., 2022). The considerable num-
ber of online product reviews available are not a
substitute for everyone, since many customers lack
the patience to examine many of them, leading to
post-purchase dissatisfaction and product returns.
Conversational Al has been suggested as a solution
(Gnewuch et al., 2017), with the goal of mimicking
the conversational strategies of sales assistants (Pa-
penmeier et al., 2022). But despite its importance,
previous research on conversational product search
almost entirely neglects the third stage, or rather its
opinionated aspects (Section 2).

Recent advances in large-scale conversational
language models, spearheaded by OpenAl’s Chat-
GPT, are driving a paradigm shift in the develop-
ment of conversational technologies. Nonetheless,
when it comes to expressing opinions pertaining to
real-world events or entities, these language mod-
els lack the necessary grounding in tangible reality.
For an individual to formulate an opinion on a par-
ticular subject matter, they require exposure to the
subject to relate the new experience to past ones,
and importantly, an emotional perception. A lan-
guage model is only capable of generating what
might be termed as a “statistical average” of third-
party opinions, if they have been part of its training
data. In the context of product search, such opin-
ions would be deemed unauthentic as they are not
based on real-world experiences or substantiated
knowledge. This lack of authenticity poses chal-
lenges to the effective utilization of these models
when (personal) opinions play an important role.

Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue, pages 66-76
September 11-15, 2023. ©2023 Association for Computational Linguistics



Customer decision process
(Kotler and Keller, 2015)

Generated opinionated conversation for product search
(S = sales assistant, C = customer)

Negotiation strategy
(Conversation template ID: 4)

Problem/need recognition ‘ (not relevant for conversation generation) f Initiative
Information search S: How may | help you? C: Can you find me a mobile phone? Search dialog
Example reproduced from S: Sure, what operating system do you prefer? C:|wantan Android. & | Sequence of questions and
Zhang et al., 2018, Figure 1. . . S | answers between the sales
S: OK, and any preference on screen size? C: Larger than 5inches. 2 | assistant S and the customer C
. . @ | about product features, until
S: Do you have requirements on storage capacity? C: | want at least 64 GB. g : s%l:aﬁ’ ggt f,’fc an‘;‘;’ngg‘;‘:s”” '
S: And any preference on phone color? C: Not particularly. = remains.
Evaluation of alternatives S: What about the Samsung Galaxy S67? It’s availabe for $228.89. Prompt S makes an offer.
Focus of this paper C: | like it’s design, but it costs too much. Do you have any cheaper ones? Price negotiation
S: Yes! | have this one for you. The Sony Xperia X. C asks for cheaper options,
It's cheaper; $117.13. S makes a cheaper offer.
C: Sounds good!
C: How does its operating system handle? Request—Inform
S: The Sony Xperia X is an excellent phone, good connectivity, C asks about a product feature.
operating system easy to handle, it takes highy-quality pictures, but S responds with a positive
it's battery life lacks a little. opinion about it.
C: What about the Oneplus 27 | don't know how they did it, but they 5 | Search-Warning
managed to create a phone with robust life and low battery drain. ,S C asks about an alternative
S: Yes, | agree. This phone might also be a good choice, but you hear g due t(;'ét‘ PfOSi:ive opinion on
Capiti nQ? . one of Its Teatures.
some cr|t|0|§m from tech “critics” on the web about its camera and the S responds with a negative
pixel density, etc. opinion on a different feature.
C: | see. The camera quality is important to me. Reaction C agrees.
C: Given th(_e price of the Sone Xperia X, | would have expected Deny-Disagreement
capacitive buttons. C voices a negative opinion
S: For a sim-free price under $200 it's one of the most affordable options asbc‘,’i‘;gargrec;d““ feature (price).
out there and a good smartphone. grees.

Purchase decision

Post purchase behavior ‘

‘ C: Alright, I'll buy the Sony Xperia X.

‘Decision C decides.

(not relevant for conversation generation)

Figure 1: A grounded opinionated conversation generated by OpinionConv based on Conversation Template 4.

In this paper, we focus on the third stage of the
customer decision process, for which we contribute
the first approach to generate grounded opinionated
statements (Section 3). We conceive and opera-
tionalize the generation of grounded opinions by
positing that a grounded opinion about a product is
an opinion which has been verifiably expressed by a
minimum of one individual in a product review that
specifically discusses the product under scrutiny.
Our approach, OpinionConv, combines a product-
specific index of reviews for a cohort of products of
the same kind with a mechanism to generate real-
istic opinionated conversational exchanges. While
carefully tuned, our approach must still be con-
sidered an early prototype. Consequently, before
asking real customers to use it, its fundamental ca-
pabilities must first be established. We therefore
simulate in-store dialogues between a customer and
a sales assistant, where both parties incorporate
grounded opinions. These conversations are then
systematically evaluated in an experimental setup
that ascertains the perception of human readers re-
garding the realism of these dialogs (Section 4).!

!Code and data: https://github.com/caisa-lab/OpinionConv
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2 Related Work

Three lines of research are related to ours: opin-
ionated question answering, conversational product
search, and review-based conversation generation.

2.1 Opinionated Question Answering

While factoid Question Answering (QA) systems
have a long tradition and some even outperform
humans, non-factoid questions, such as opinions,
explanations, or descriptions, are still an open prob-
lem (Cortes et al., 2021). Cardie et al. (2003)
employed opinion summarization to help multi-
perspective QA systems identify the opinionated
answer to a given question. Yu and Hatzivas-
siloglou (2003) separated opinions from facts and
summarized them as answers. The linguistic fea-
tures of opinion questions have also been studied
(Pustejovsky and Wiebe, 2005; Stoyanov et al.,
2005). Kim and Hovy (2005) identified opinion
leaders, which are a key component in retrieving
the correct answers to opinion questions. Ashok
et al. (2020) introduced a clustering approach to an-
swer questions about products by accessing product
reviews. Rozen et al. (2021) examined the task of



answering subjective and opinion questions when
no (or few) reviews exist. Jiang et al. (2010) pro-
posed an opinion-based QA framework that uses
manual question—answer opinion patterns.

Closer to our work, Moghaddam and Ester
(2011) address the task of answering opinion
questions about products by retrieving authors’
sentiment-based opinions about a given target from
online reviews. McAuley and Yang (2016) address
subjective queries using relevance ranking, and
Wan and McAuley (2016) extends this work by
considering questions that have multiple divergent
answers, incorporating aspects of personalization
and ambiguity. AmazonQA (Gupta et al., 2019) is
one of the largest review-based QA datasets. Its
authors show that it can be used to learn relevance
in the sense that relevant opinions are those for
which an accurate predictor can be trained to se-
lect the correct answer to a question as a function
of opinion. SubjQA (Bjerva et al., 2020) includes
subjective comments on product reviews.

2.2 Conversational Product Search

Information is often gathered through conversa-
tions with a series of questions and answers. Con-
versational Question Answering (CQA) systems
engage in such multi-turn conversations to satisfy a
user’s information need (Zaib et al., 2021). Despite
the attention this task has received in e-commerce
(Ricci et al., 2011; Bi et al., 2019; Zhang et al.,
2018), building a successful conversational prod-
uct search system for online shopping still suffers
from the lack of realistic dialog datasets for model
training (Xiao et al., 2021).

2.3 Review-based conversation generation

Recently, multi-turn QA has grown more promi-
nent (Cambazoglu et al., 2020). Product reviews
are one of the sources of information that are be-
ing used for conversational product search. Penha
et al. (2022) generate review-based explanations
for voice-driven product search. Zhang et al. (2018)
builds a dataset to answer conversational questions,
as illustrated in Figure 1 (Stage 2 “Information
Search”). They extract feature—value pairs from re-
views and convert each review into a conversation
based on the mentioned pairs, but omit opinionated
statements. Xu et al. (2019) explores the possibility
of turning reviews into a knowledge source to an-
swer questions. Feature-related, non-opinionated
statements in reviews are flagged and appropriate
questions are formulated.
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3 Grounded Product Opinion Generation

This section introduces the OpinionConv construc-
tion pipeline to generate grounded opinionated con-
versations for product search based on product re-
views. Figure 2 gives an overview of the pipeline’s
individual steps, grouped into preprocessing, in-
formation search dialog generation (Stage 2 of the
customer decision process, which we reproduce
from Zhang et al. (2018)), and evaluation dialog
generation (Stage 3, our focus).

3.1 Data Source and Preprocessing

As a basis for grounded opinions, we utilize a crawl
of Amazon product data including their reviews cre-
ated by Ni et al. (2019).? The metadata enclosed
includes product descriptions, multi-level product
categories, and product information. For our proof-
of-concept, we focus on one of its 24 product cat-
egories, Cell Phones and Accessories. As a first
cleansing step, we reviewed the product data and
added missing product details. We found the re-
views to be of varying writing quality, especially
with respect to basic syntax conventions, like the
use of punctuation. We employed the model of
Alam et al. (2020) to restore the punctuation, which
enabled a more reliable sentence extraction and
thus benefited the subsequently applied models,
which were largely trained on “cleaner” data.

To extract the product features discussed in the
reviews, we use the extrac