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Abstract

Knowledge graph embedding (KGE) aims to
learn continuous vector representations of re-
lations and entities in knowledge graph (KG).
Recently, transition-based KGE methods have
become popular and achieved promising perfor-
mance. However, scoring patterns like TransE
are not suitable for complex scenarios where
the same entity pair has different relations. Al-
though some models attempt to employ entity-
relation interaction or projection to improve
entity representation for one-to-many/many-to-
one/many-to-many complex relations, they still
continue the traditional scoring pattern, where
only a single relation vector in the relation part
is used to translate the head entity to the tail en-
tity or their variants. And recent research shows
that entity representation only needs to consider
entities and their interactions to achieve better
performance. Thus, in this paper, we propose a
novel transition-based method, TranS, for KGE.
The single relation vector of the relation part
in the traditional scoring pattern is replaced
by the synthetic relation representation with
entity-relation interactions to solve these issues.
And the entity part still retains its independence
through entity-entity interactions. Experiments
on a large KG dataset, ogbl-wikikg2, show that
our model achieves state-of-the-art results.

1 Introduction

Knowledge graphs (KGs), such as Freebase (Bol-
lacker et al., 2008), Wikidata (Vrandečić and
Krötzsch, 2014), DBpedia (Lehmann et al., 2015)
and Yago (Rebele et al., 2016), play a very impor-
tant role in many fields, including question answer-
ing (Huang et al., 2019), semantic parsing (Yih
et al., 2015), information retrieval (Xiong et al.,
2017) and so on. KG, as a multi-relational graph,
is composed of entities as nodes and relations as
different types of edges. It is usually represented
as the form of triplets (h, r, t), i.e., (head entity,
relation, tail entity), where relation indicates the
relationship between the two entities.
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Figure 1: Examples from ogbl-wikikg2. It is difficult for
a single relation vector to represent different relations
between the same entity pairs.

Knowledge graph embedding (KGE) is an im-
portant and fundamental research topic in KG. It
aims to learn dense semantic representations of
entities and relations for downstream tasks such
as KG completion and link prediction. Generally
speaking, KGE methods can be roughly divided
into the following directions: translational distance
(Bordes et al., 2013; Wang et al., 2014; Fan et al.,
2014; Lin et al., 2015; Ji et al., 2015, 2016; Feng
et al., 2016), semantic matching (Nickel et al.,
2011; Bordes et al., 2011, 2014; García-Durán
et al., 2014; Yang et al., 2015; Nickel et al., 2016;
Balazevic et al., 2019) and neural networks (Socher
et al., 2013; Dong et al., 2014; Liu et al., 2016;
Dettmers et al., 2018; Nguyen et al., 2018). Be-
cause transition-based KGE method like TransE
(Bordes et al., 2013) is simple and effective, this
series of models are becoming more and more pop-
ular in both academia and industry. Specifically,
TransE makes the difference between two entity
vectors (h and t) approximate to the relation vector
(r), i.e., t− h ≈ r. That is to say, the relation r is
characterized by the translating vector r.
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However, TransE is not suitable to deal with com-
plex relations like one-to-many/many-to-one/many-
to-many. For example, in Figure 1, after graduat-
ing from Erasmus University Rotterdam, Pauline
Meurs became a professor at the same university.
And the composer, producer, screenwriter, editor
and director of the film, Indramalati, can be the
same person, Jyoti Prasad Agarwala. Although pre-
vious models (Wang et al., 2014; Lin et al., 2015;
Qian et al., 2018; Chao et al., 2021; Yu et al., 2021)
such as TransH/R/D have considered relevant is-
sues, they still focus on the entity-relation projec-
tion or interaction in the entity part and continue
the TransE pattern, Rt −Rh ≈ r, where Rt and
Rh is the deformation of t and h, Rt − Rh is
the entity part, and r is the relation part. Actu-
ally, recent research, InterHT (Wang et al., 2022),
shows that the entity part only needs to consider
the head and tail entities and their interaction in-
formation to achieve remarkable performance and
outperform previous TransX series models. Unfor-
tunately, it again ignores the problem of complex
relation representation. Therefore, from the per-
spective of interaction, how to solve the problem in
Figure 1 by introducing entity-relation interactions
in the relation part under the condition that only
entity-entity interactions are retained in the entity
part needs to be further considered.

To this end, we propose a novel transition-based
knowledge graph embedding model, TranS, which
replaces traditional scoring pattern with synthetic
relation pattern, i.e., Rt −Rh ≈ r̄ + r + r̂. The
final relation representation is the sum of multiple
relation vectors. Two of them (̄r, r̂) are also re-
lated to the head entity h and the tail entity t in
addition to the relation r (orange solid lines denote
r, and blue dotted lines denote r̄, r̂ in Figure 1).
For one thing, in the entity part, instead of using
entity-relation interaction and projection, it focuses
only on entities and their interactions themselves
to guarantee their independence and effectiveness.
For another thing, different from other methods
that utilize entity-relation interactions in the entity
part, our method migrates their interactions to the
relation part and forms synthetic relation represen-
tation, which can effectively solve the problem that
a single relation vector cannot represent different
relations when facing the same entity pair. Exper-
iments on a large knowledge graph dataset, ogbl-
wikikg2, show that our proposed model achieves
the best results with fewer parameters.

2 Methodology

2.1 TranS
Our proposed TranS model first breaks the tradi-
tional scoring patterns Rt −Rh ≈ r in previous
models (Bordes et al., 2013; Wang et al., 2014; Fan
et al., 2014; Lin et al., 2015; Chao et al., 2021; Yu
et al., 2021; Wang et al., 2022). It replaces sin-
gle relation vector r with synthetic relation vectors
r̄+ r+ r̂, i.e., Rt−Rh ≈ r̄+ r+ r̂, where r̄ is an
adjoint relation vector related to the head entity and
r̂ is another adjoint relation vector related to the tail
entity. The illustration of TranS is shown in Figure
2 (f). Two entity and three relation representations
together make up our proposed scoring function
fr(h, t). That is to say, the synthetic relation rep-
resentation in the right relation part consists of the
sum of three different relation vectors. To make
full use of context information, we use adjoint vec-
tors and Hadamard product ◦ to interact with h, t,
r̄ and r̂ separately:

fr(h, t) = −||Rh −Rt +Rr||,
Rh = h ◦ t̃,
Rt = t ◦ h̃,
Rr = r̄ ◦ h+ r+ r̂ ◦ t,

(1)

where h, t and r denote main vectors similar to
those in traditional scoring patterns. h̃ represents
the adjoint head entity vector and t̃ represents the
adjoint tail entity vector. Accordingly, Rh is the
representation of the head entity that combines in-
formation of the tail entity, and Rt is the represen-
tation of the tail entity integrating information of
the head entity. r̄ ◦ h is the representation of the
adjoint relation with the head entity information,
and r̂ ◦ t is the representation of another adjoint
relation with the tail entity information. Thus, the
final equation can be represented as:

fr(h, t) = −||h ◦ t̃− t ◦ h̃+ r̄ ◦ h+ r+ r̂ ◦ t
::::::::::::::

||.
(2)

Following previous works (Yu et al., 2021; Wang
et al., 2022), we add an unit vector e to Rh and
Rt, i.e., h ◦ t̃ → h ◦ (̃t+ e), t ◦ h̃ → t ◦ (h̃+ e).
And considering the out-of-vocabulary problem,
we also use the NodePiece (Galkin et al., 2022) to
learn a fixed-size entity vocabulary.

2.2 Training
Inspired by previous works (Chao et al., 2021;
Zhang and Yang, 2021; Wang et al., 2022), we use
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Figure 2: Comparison of different transition-based KGE models.

the self-adversarial negative sampling loss (Sun
et al., 2019) as our loss function, which is defined
as follows:

L =− log σ(γ − fr(h, t))

−
n∑

i=1

p(h
′
i, r, t

′
i)log σ(fr(h

′
i, t

′
i)− γ),

(3)

where γ is a fixed margin, σ is the sigmoid function,
and (h′i, r, t

′
i) is the i-th of n randomly sampled

negative triplets. And the weights of this negative
sample p(h

′
i, r, t

′
i) can be calculated as follows:

p(h
′
i, r, t

′
i) =

exp fr(h
′
i, t

′
i)∑

j exp fr(h
′
j , t

′
j)
. (4)

2.3 Comparison
As shown in Figure 2, the main difference between
our model (f) and previous transition-based KGE
methods (a,b,c,d,e) is the synthetic relation rep-
resentation. That is to say, it changes single re-
lation representation r in traditional scoring pat-
tern Rt − Rh ≈ r to synthetic relation repre-
sentation r̄ + r + r̂ in our proposed new pattern
Rt −Rh ≈ r̄+ r+ r̂. Specifically, different from
InterHT (Wang et al., 2022), the relation part of
our scoring function is the sum of multiple relation

vectors Rr = r̄ ◦ h + r + r̂ ◦ t rather than sin-
gle vector r. Comparing with TripleRE (Yu et al.,
2021), where three relations are applied into three
parts (Rh = h ◦ rh, Rt = t ◦ rt , Rr = rm)
of traditional scoring patterns with addition and
subtraction operations, our proposed TranS only
applies synthetic relation vectors into the relation
part Rr = r̄ ◦ h + r + r̂ ◦ t of scoring functions
with addition operations.

3 Experiments

3.1 Dataset and Metric
Ogbl-wikikg2 (Hu et al., 2020) is a large KG
dataset extracted from Wikidata (Vrandečić and
Krötzsch, 2014). It contains a set of triplet edges,
capturing the different types of relations between
entities in the world. The statistics of the dataset
are shown in Table 1. It contains 2,500,604 entities,
535 relation types and 17,137,181 edges. Follow-
ing official guidelines, we evaluate the KGE perfor-
mance by predicting new triplet edges according
to the training edges. The evaluation metric fol-
lows the standard filtered metric widely used in
KG. Specifically, each test triplet edge is corrupted
by replacing its head or tail with randomly sam-
pled negative entities, while ensuring the resulting
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Type Train Validation Test Nodes Relations Edges

#Number 16,109,182 429,456 598,543 2,500,604 535 17,137,181

Table 1: Statistics of the ogbl-wikikg2 dataset.

Model #Params #Dims Test MRR Valid MRR

TransE (Bordes et al., 2013) 1251M 500 0.4256 ± 0.0030 0.4272 ± 0.0030
RotatE (Sun et al., 2019) 1250M 250 0.4332 ± 0.0025 0.4353 ± 0.0028
PairRE (Chao et al., 2021) 500M 200 0.5208 ± 0.0027 0.5423 ± 0.0020
AutoSF (Zhang et al., 2020) 500M - 0.5458 ± 0.0052 0.5510 ± 0.0063
ComplEx (Trouillon et al., 2016) 1251M 250 0.5027 ± 0.0027 0.3759 ± 0.0016
TripleRE (Yu et al., 2021) 501M 200 0.5794 ± 0.0020 0.6045 ± 0.0024

ComplEx-RP (Chen et al., 2021) 250M 50 0.6392 ± 0.0045 0.6561 ± 0.0070
AutoSF + NodePiece 6.9M - 0.5703 ± 0.0035 0.5806 ± 0.0047
TripleREv2 + NodePiece 7.3M 200 0.6582 ± 0.0020 0.6616 ± 0.0018
TripleREv3 + NodePiece 36.4M 200 0.6866 ± 0.0014 0.6955 ± 0.0008
InterHT + NodePiece 19.2M 200 0.6779 ± 0.0018 0.6893 ± 0.0015

TranS + NodePiece 19.2M 200 0.6882 ± 0.0019 0.6988 ± 0.0006

Table 2: Results on the ogbl-wikikg2 dataset.

triplets do not appear in KG. The goal is to rank the
true head or tail entities higher than the negative
entities, which is measured by Mean Reciprocal
Rank (MRR).

We follow the original dataset partition. The
triplets are split according to time to simulate a real
KG completion scenario where missing triplets that
are not present at a specific timestamp need to be
filled. The training set contains 16,109,182 triplets,
the validation set contains 429,456 triplets, and the
test set contains 598,543 triplets.

3.2 Implementation Details

In our experiments, Adam (Kingma and Ba, 2014)
is used as our optimizer with 0.0005 learning rate.
The batch size of the model is set to 512. To prevent
overfitting, we use the dropout technique and set
it to 0.05. The negative sampling size is set to
128. And the dimension of each embedding vector
in Eq. 2 is set to 200. The maximum number of
training steps is 800 thousand. We validate the
model every 20 thousand steps. The number of
anchors for NodePiece is 20 thousand. And γ in
the loss function is set to 6. The final model is
evaluated with 10 different random seeds. Our
code is publicly available at the link: https://
github.com/xyznlp/TranS.

3.3 Results

The results are shown in Table 2. Our model
achieves 0.6988 (validation set) and 0.6882 (test
set) on MRR, which outperforms the previous best
model, TripleREv3, on the ogbl-wikikg2 dataset.
Especially, the parameters of our model (19.2M)
are about half of TripleREv3 (36.4M). So the exper-
imental results show that our proposed method can
improve the model performance effectively with
fewer parameters. Besides, we also construct a
38.4M TranS (large) model, the best score of which
can reach 0.7101 (validation set) and 0.6992 (test
set) on MRR. Comparing the two groups with sim-
ilar numbers of parameters, i.e., TranS versus In-
terHT and TranS (large) versus TripleREv3, we
can observe more significant improvements.

4 Related Work

Recently, graph structures are used widely in natu-
ral language processing, recommendation and other
areas (Zhang, 2020; Zhang et al., 2021). KG, as
one of the graph structures, uses triples consisting
of head nodes, tail nodes and relation edges to rep-
resent structured knowledge. To further compare
different transition-based knowledge graph embed-
dings, we summarize related methods in Table 3
with reference to recent research (Ji et al., 2021).
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Model Embedding Scoring Function Pattern

TransE h, t ∈ Rd, r ∈ Rd −∥h+ r− t∥1/2 T
TransR h, t ∈ Rd , r ∈ Rk,Mr ∈ Rk×d −∥Mrh+ r−Mrt∥22 T
TransH h, t ∈ Rd, r,wr ∈ Rd −

∥∥(h−w⊤
r hwr

)
+ r−

(
t−w⊤

r twr

)∥∥2
2

T
ITransF h, t ∈ Rd, r ∈ Rd

∥∥αH
r ·D · h+ r−αT

r ·D · t
∥∥
ℓ

T
TransAt h, t ∈ Rd, r ∈ Rd Pr (σ (rh)h) + r− Pr (σ (rt) t) T
TransD h, t,whwt ∈ Rd, r,wr ∈ Rk −

∥∥(wrw
⊤
h + I

)
h+ r−

(
wrw

⊤
t + I

)
t
∥∥2
2

T
TransM h, t ∈ Rd, r ∈ Rd −θr∥h+ r− t∥1/2 T

TranSparse
h, t ∈ Rd, r ∈ Rk,Mr ∈ Rk×d −∥Mr (θr)h+ r−Mr (θr) t∥21/2 T
h, t ∈ Rd,M1

r ,M
2
r ∈ Rk×d −

∥∥M1
r

(
θ1r
)
h+ r−M2

r

(
θ2r
)
t
∥∥2
1/2

T

PairRE h, t ∈ Rd, rH, rT ∈ Rd −||h ◦ rH − t ◦ rT|| T
TripleRE h, t ∈ Rd, rH, rT, rM ∈ Rd −||h ◦ rH − t ◦ rT + rM|| T
InterHT h, t,ha, ta ∈ Rd, r ∈ Rd −||h ◦ ta − t ◦ ha + r|| T
TranS h, t, h̃, t̃ ∈ Rd, r, r̄, r̂ ∈ Rd −||h ◦ t̃− t ◦ h̃+ r̄ ◦ h+ r+ r̂ ◦ t

::::::::::::::
|| S

Table 3: Summary of transition-based knowledge graph embedding models. T represents the traditional scoring
pattern −||Rh −Rt + r||. And S represents our proposed new scoring pattern −||Rh −Rt + r̄+ r+ r̂||.

Transition-based methods measure the plausibil-
ity of fact triples (h,r,t) as the distance between
entities. TransE (Bordes et al., 2013), as a rep-
resentative method, models relationships by in-
terpreting them as translations operating on the
low-dimensional embeddings of the entities, i.e.,
t−h ≈ r. Although it is simple and efficient, it can-
not handle complex relations. Thus, several TransX
models (TransH (Wang et al., 2014), TransR (Lin
et al., 2015), TransD (Ji et al., 2015)) are proposed
based on hyperplane or multiple embedding spaces
for these issues. For example, TransR (Lin et al.,
2015) projects entities from entity space to cor-
responding relation space and builds translations
between projected entities. And recent works also
begin to utilize multiple vectors to represent entities
and relations and conduct their interactions. For
example, PairRE (Chao et al., 2021) and TripleRE
(Yu et al., 2021) employ two and three relation
vectors to represent relation information, respec-
tively. Especially, InterHT (Wang et al., 2022) out-
performs previous models only with two head and
tail vectors and their interactions in the entity part.
But InterHT again ignores the problem of complex
relation representation. Different from previous
models, from the perspective of interaction (Zhang
et al., 2022; Zhang and Wang, 2020; Zhang, 2019),
our proposed TranS introduces entity-entity inter-
action in the entity part like InterHT and migrates
entity-relation interaction from the entity part to

the relation part. It can not only preserve the inde-
pendence of entity representation, but also utilize
entity-relation interaction in the relation part to
solve the above problem.

5 Conclusion

In this paper, we propose a novel transition-based
knowledge graph embedding model, TranS, to
solve the representation problem of complex sce-
narios where the same entity pair has different re-
lations. TranS replaces the single relation vector
of the relation part in traditional scoring patterns
with synthetic relation representation. It not only
retains the independence of entity interaction in the
entity part, but also introduces entity-relation inter-
action in the relation part. Experiments on a large
KG dataset, ogbl-wikikg2, show that our model
achieves the best results with fewer parameters.

Limitations

Although our model has achieved the best perfor-
mance on relevant datasets, it still focuses on cur-
rent or local KG triples to learn entity and relation
representations. Actually, in large-scale knowledge
graphs, neighborhoods can provide extra informa-
tion for entity representation or initialization like
NodePiece. Thus the performance of our model
can be further improved by exploring additional
neighbor information and encoding methods.
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