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Abstract

Despite the important evolutions in few-shot
and zero-shot learning techniques, domain spe-
cific applications still require expert knowledge
and significant effort in annotating and label-
ing a large volume of unstructured textual data.
To mitigate this problem, active learning and
meta-learning attempt to reach a high perfor-
mance with the least amount of labeled data.
In this paper, we introduce a novel approach
to combine both lines of work by initializing
an active learner with meta-learned parameters
obtained through meta-training on tasks similar
to the target task during active learning. In this
approach we use the pre-trained BERT as our
text-encoder and meta-learn its parameters with
LEOPARD, which extends the model-agnostic
meta-learning method by generating task de-
pendent softmax weights to enable learning
across tasks with different number of classes.
We demonstrate the effectiveness of our method
by performing active learning on five natural
language understanding tasks and six datasets
with five different acquisition functions. We
train two different meta-initializations and we
use the pre-trained BERT base initialization
as baseline. We observe that our approach
performs better than the baseline at low bud-
get, especially when closely related tasks were
present during meta-learning. Moreover, our
results show that better performance in the ini-
tial phase, i.e., with fewer labeled samples,
leads to better performance when larger acqui-
sition batches are used. We also perform an
ablation study of the proposed method, show-
ing that active learning with only the meta-
learned weights is beneficial and adding the
meta-learned learning rates and generating the
softmax have negative consequences for the
performance.

1 Introduction

In recent years, transformer-based models such as
BERT (Devlin et al., 2018) have been very suc-
cessful in achieving high performance in natural

language processing (NLP) tasks. These results are
achieved by training with a significant amount of
labeled data, which is often necessary to optimize
a large number of weights in these types of models
during the fine-tuning stage. This is a major ob-
stacle because many machine learning applications
lack widely available labeled data and the labeling
task in high volumes can be tedious and expensive.

Two principal research areas to overcome this
obstacle are Active Learning (AL) and Few-Shot
Learning (FSL). Few-shot learning was initially
introduced to simulate the human ability to general-
ize quickly with only a few labeled examples (Yip
and Sussman, 1997). Thus, the goal is to reach the
highest possible performance with a small number
of labelled data points (e.g., 4, 8, 16, . . . ). The
field has made great progress after the introduction
of optimization-based few-shot learning (Ravi and
Larochelle, 2016) using the idea of meta-learning
(ML) (Schmidhuber et al., 1997). The basic princi-
ple of meta-learning in this context is to allow the
neural network to utilize the knowledge acquired
from multiple tasks, represented in the network by
its weights, for adaptation in new tasks. Hence, ini-
tializing the network with weights learned from a
variety of tasks can enable faster learning of similar
tasks.

The active learning field approaches this prob-
lem by only partially annotating the unlabeled
data while attempting to achieve the highest per-
formance. This is done by iteratively selecting a
subset of unlabeled data points to be annotated by
an "oracle" such that the selected points offer the
highest learning benefit according to some met-
ric, e.g., representativeness, diversity, uncertainty
(Cohn et al., 1996).

In this work, we introduce a novel method to
extend active learning with meta-learning to min-
imize the number of new data points that need to
be annotated for achieving good performance. We
do this by learning a favorable model initialization,
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via meta-learning, for the target task during active
learning. We show a general approach on what
to transfer to the active learning model and what
to leave out. We demonstrate the effectiveness
of our methodology by showing that it achieves
higher performance than the baseline initializa-
tion on different natural language understanding
tasks and datasets with the same number of annota-
tion queries to the oracle; or eventually performs
equally but by requiring fewer queries to the oracle.
These results also show that our approach offers
an advantage during active learning when larger
annotation queries are used. Importantly, we show
that performance improvement is significantly en-
hanced when tasks based on similar principle are
available, especially in a cold-start setting.

2 Related Work

Active learning research focuses on developing
novel acquisition functions for selecting data points
to be annotated by the oracle. The primary metrics
on which the acquisition functions act are uncer-
tainty (Gal et al., 2017), diversity (Zhdanov, 2019),
and representativeness (Sener and Savarese, 2017).
Furthermore, acquisition functions that incorporate
a multitude of metrics achieve better performance
(Yuan et al., 2020; Margatina et al., 2021). Nev-
ertheless, there is no capture function that consis-
tently performs the best across different datasets
or query sizes (Dor et al., 2020; Citovsky et al.,
2021). Which is why we implemented different
acquisition functions for our methodology.

Active learning and meta-learning have been
used in the same context before, but the role of
meta-learning has been treated as an acquisition
function (Contardo et al., 2017; Fang et al., 2017).
Several of these works show that meta-learned ac-
quisition functions are effective in a cold-start en-
vironment (Konyushkova et al., 2017; Shao et al.,
2019), which is mainly applied in computer vision.
In this work, meta-learning is used to initialize the
active learner and we show that it is effective in a
cold-start environment and in a low-budget setting.

There has been one similar work from Barrett
and White (2021), in the context of chemical pep-
tide design. The mentioned work focuses on twelve
different, but closely related tasks and uses meta-
learning to optimize the initial parameters for active
learning of the twelve tasks. However, the method-
ology is not entirely explained. In the current work,
we do give a clear methodology of combining meta-

learning and active learning, which is broadly ap-
plicable in the machine learning domain. We show
this within the NLP context using a wide range of
tasks.

A somewhat similar approach is using domain
adaption to improve active learning (Rai et al.,
2010; Su et al., 2020). The difference with our
proposed method is that meta-learning is able to
learn an initialization for fast adaptation using mul-
tiple tasks and domains. On the other hand domain
adaptation is only able to learn common features
between two domains in the same task and is there-
fore not comparable.

3 Method

3.1 Meta-Learning
To obtain a favorable initialization, we train a sin-
gular model, denoted f , over a set of tasks T using
few-shot meta-learning. Each task T consists of
k-shot n-way mini-datasets, meaning each mini-
dataset D consists of n classes with each class
containing k samples.

The specific meta-learning method we em-
ployed is called LEOPARD, introduced by Bansal
et al. (2019). LEOPARD is a BERT-based ap-
plication of the Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017) algorithm, which is
a model-independent second-order optimization-
based meta-learning method. The algorithm con-
siders the model fθ with parameters θ. These pa-
rameters θ are updated in an inner- and outer loop.
In the inner-loop, θ is updated into θ′i, by perform-
ing gradient descent with Dtr

i ∼ Ti:

θ′i = θ − α∇θLTi(fθ,Dtr
i ) (1)

This update is performed on i = 1, 2, . . . , t tasks,
this collection of tasks is denoted as a meta-batch
B. Each task Ti in B is selected using a predefined
distribution Ti ∼ P(T ). In the outer loop, the
parameters θ are updated via the meta-objective,
where the goal is to minimize the sum of the error
on Dval

i ∼ Ti for each task in the inner loop:

θ ← θ − β∇θ

∑

Ti∈B
LTi(θ

′
i,Dval

i ) (2)

Using the inner- and outer-loop, MAML is able to
learn a favorable initialization for few-shot adapta-
tion.

However, a non-trivial problem is how to ap-
ply different tasks within MAML, since not every
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task has the same number of classes. In the work
of Bansal et al. (2019), they overcome this issue
by generating task-dependent softmax parameters.
This is realised by partitioning a mini-dataset Di

from Ti with Ni classes, where each partition Cn
i

contains samples xj from a corresponding class
n ∈ [Ni]. Each class partition is fed into the text-
encoder (BERT) hθ and then the encoded samples
undergo a non-linear projection gϕ. Resulting in a
representation for class n:

wn
i , b

n
i =

1

|Cn
i |

∑

xj∈Cn
i

gϕ(hθ(xj)) (3)

Here, gϕ is a simple Multi-Layer Perceptron (MLP),
where the parameters ϕ are meta-learned according
to the MAML algorithm. The softmax parameters
are then constructed by concatenating the class
representation in eq. (3), as such:

W i = [w1
i ; . . . ;w

Ni
i ] bi = [b1i ; . . . ; b

Ni
i ] (4)

These parameters are further adjusted during the
inner adaptation loop in MAML. Another exten-
sion LEOPARD implements is meta-learning the
learning rates (Li et al., 2017) in the inner loop,
i.e., α in eq. (1), on a per layer basis. For further
details, we refer the reader to Bansal et al. (2019).

3.2 Active Learning
The scenario we consider is pool-based sampling
AL, where a large data pool is readily available for
a given task T. It consists of an initial small set of
labeled data L of seed size s and a large pool of
unlabeled data U . In each AL iteration, a model f
is trained on L, then using some acquisition func-
tion a a batch Q of size q is selected from U . The
acquired samples are then annotated by some or-
acle and added to the L. In the next AL iteration,
model f is retrained from its initial parameter ini-
tialization with the new L. Retraining is done from
scratch to avoid overfitting from data samples in
previous AL iterations (Hu et al., 2019).

We considered the following acquisition func-
tions for our experiments:

• Random: q samples are selected randomly
from the unlabeled pool U .

• Entropy: An uncertainty-based acquisition
function that ranks all unlabeled samples
by their predictive entropy (Lewis and Gale,
1994) according to the model fθL trained on L,
and then selects the q highest-ranked samples.

• BADGE: Tries to select uncertain, yet diverse
samples, by calculating gradient embeddings
gx, and then performs k-MEANS++ using q
centers on gx for each unlabeled sample x.
The gradient embeddings contain information
about model confidence and hidden represen-
tations. So, by clustering uncertainty and di-
versity are included (Ash et al., 2019).

• ALPS: Is a model f independent acquisition
function that selects samples by calculating
surprisal embeddings sx for each unlabeled
sample x. sx is calculated by using a pre-
trained BERT to compute the masked lan-
guage modeling (MLM) loss on 15% ran-
domly chosen, unmasked tokens in x by eval-
uating their true token labels via cross-entropy
loss. Then k-MEANS clustering is performed
on sx with q centers and the closest unlabeled
sample to each center is selected to be anno-
tated (Yuan et al., 2020).

• CAL: Selects samples via contrastive exam-
ples by calculating the KL-divergence be-
tween an unlabeled sample x and its neigh-
bourhood, consisting of the four nearest la-
beled samples. Samples x with the highest
average KL-divergence are chosen for anno-
tation (Margatina et al., 2021).

Inner loop

Outer loop

Initialize BERT from with

Train with

Use to select samples from

Oracle annotates the samples

Update and

ML

AL

Figure 1: A block diagram of our approach. We first
meta-learn on set of tasks T and then initialize the active
learner fAL with the meta-learned parameters.

3.3 Meta-initializing of Active Learner
The first step in our methodology is to choose a set
of tasks T for meta-learning, that could benefit the
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target task T during active learning. We suggest
picking several tasks for T , preferably with sub-
stantial amounts of data, on how similar their objec-
tives are and how close the vocabulary domains are
to the target task. There are more rigorous ways to
choose between different tasks for transfer learning
(Poth et al., 2021).

Next is meta-learning the model fML
θ , with the

LEOPARD method as described in section. 3.1.
The meta-learning model consists of three different
layers:

fML
θ (x) = softmax{W ihθP (hθB (x)) + bi} (5)

where hθB is a pretrained BERT-base encoder (De-
vlin et al., 2018) and hθP is a pre-classification layer
consisting of two linear layers with a tanh activa-
tion function between them. W i and bi are gen-
erated by gϕ as in eq. (3) and (4), where gϕ has
the same structure as hθP . The model is trained
over M meta-iterations, i.e., M outer loops are per-
formed which are characterized by eq. (2). For
each meta-iteration, t tasks are sampled for the in-
ner loop, such that the probability of sampling a
task is the proportion of the square root of each
task size. For each task Ti, one Dgen

i is sampled
to generate the softmax weights with gϕ, m mini-
datasets Dtr

i for iteratively updating θ′i, and one
Dval

i for the meta-objective. When the model is
finished meta-learning, we choose the model fML

θ

with the highest average accuracy across all tasks
in T . The weights of this model are denoted by θ∗.

The active learning model fAL
φ has a similar

architecture as fML
θ :

fAL
φ (x) = softmax{hφC (hφP (hφB (x)))} (6)

The difference is that the fAL
φ does not generate

its softmax parameters, instead it has a basic clas-
sification layer hφC which is a simple linear layer.
Here we only transfer the weights θ∗P and θ∗B from
fML
θ∗ to the corresponding layers in fAL

φ :

fAL
φ (x) = softmax{hφC (hθ∗P (hθ

∗
B
(x)))} (7)

Figure 1 visualizes the initialization step. The de-
cision to not include the generated softmax layer
is due to its dependence on the availability of data
samples of every class in a task. Otherwise, the
weights created with eq. (4) will have incorrect
dimensions, since it lacks representations for one
or more classes. This scenario is probable when the
initial size of L is small and where the tasks have a

higher number of classes. Additionally, generated
softmax weights have a bias toward the samples
used to generate them, which can be detrimental
to the performance. Lastly, during active learn-
ing, there is only one target task T, so the main
advantage of learning across multiple tasks is un-
necessary. Unless it’s a multi-task active learning
scenario (Ikhwantri et al., 2018).

The meta-learned learning rates are also not in-
cluded, because they are trained in a strictly con-
trolled environment with balanced batches, where
each class is represented evenly and they are opti-
mized for fast adaption using only a few examples.
There is no guarantee that these learning rates are
optimal for larger amount of data and if the batches
are more random. In fact, these learning rates can
become negative during meta-training (Starshak,
2022). This is beneficial for meta-learning because
according to Starshak (2022) it pushes parameters
with negative learning rates to learn universal fea-
tures. However, it is obvious that during adaptation
to the target task, positive learning rates are re-
quired to learn (Bernacchia, 2021), but there is no
clear strategy on how to change the negative learn-
ing rates for adaptation. For these reasons, we opt
for a standard learning rate αAL for all parameters.

In the ablation study, we compared the perfor-
mance between including and excluding the gener-
ated softmax weights and the meta-learned learning
rates.

4 Experiments

4.1 Training Tasks

For our experiments, we train two different meta-
initalizations with different sets of tasks. The first
initialization is trained with a set of tasks T con-
sisting of GLUE benchmark tasks: MNLI(m/mm),
SST-2, QNLI, QQP, MRPC, and RTE (Wang et al.,
2018) and the SNLI dataset (Bowman et al., 2015).
These diverse tasks have been considered to be
valuable for general language understanding and
have been useful for transfer and few-shot learning
across multiple domains (Poth et al., 2021; Bansal
et al., 2019) 1.

The tasks in T provide general linguistic knowl-
edge, however for topic classification it is essential
to extract relevant keywords or phrases for a spe-
cific topic. By adding topic classification tasks the

1These are the same tasks used in Bansal et al. (2019),
however, we do not modify SST-2 to learn phrase-level classi-
fication.
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model can learn a pooling strategy to create a vec-
tor that represent these keywords or phrases for
classification. Our second set of tasks T topic, there-
fore includes topic classification tasks by swapping
QNLI and MRPC for Yahoo! Answers and DB-
Pedia (Zhang et al., 2015). Yahoo! Answers is a
question and answer dataset with topic classes and
we use the question title for classification. DBPedia
is a dataset created with Wikipedia articles from 14
different topics.

4.2 Evaluation and baselines
To evaluate the meta-initialization with T , we
perform active learning on SciTaiL, (Khot et al.,
2018) (Saravia et al., 2018), AG news, Yelp Review
(Zhang et al., 2015), Amazon Kitchen Reviews2,
and TREC (Li and Roth, 2002). We modify the
Amazon Kitchen dataset to transform it into a sen-
timent analysis task by classifying the 1- and 2-star
reviews as negative, the 4- and 5-star reviews as
positive, and filtering out the 3-star reviews since
their sentiment is ambiguous. We keep the Yelp
review dataset unchanged as a rating task. We have
AG News and TREC as topic classification tasks,
using TREC’s fine-grained labels. SciTaiL is an
NLI task in the scientific domain and Emotion is a
task that classifies sentences by their emotion. All
training and evaluation datasets were downloaded
from the HuggingFace online datasets repository3.
In Appendix A are the dataset statistics in Table 2
and 3.

We use the pretrained BERT-base initialization
4 θBERT from Devlin et al. (2018) as our baseline
for all evaluation tasks and we also compare the
performance of meta-initialization T topic on the
topic classification tasks. For all target task T and
initializations, we perform active learning with the
five acquisition functions mentioned in section 3.2:
random, entropy, BADGE, ALPS and CAL.

4.3 Implementation Details
For training the two meta-based initialization θ∗T
and θ∗T topic , we use M = 100K meta-iterations
(i.e. outer loops), t = 4 task per meta-iteration,
m = 7 mini-datasets Dtr

i is sampled for each Ti in
the inner-loops. For all tasks, we always classify be-
tween every pair of labels, even for tasks with more
than 2 labels (Bansal et al., 2019). Therefore, each
mini-datasetD consists of n = 2 classes, with each

2We use the online HuggingFace version from this dataset.
3https://huggingface.co/datasets
4Pretrained BERT is used off-the-shelf (no fine-tuning).

class having k = 5 examples. The learning rate
for the outer-loop is β = 1e− 5 and the per-layer
learning rates in the inner-loop are initialized with
α = 1e− 5. These are the best hyper-parameters
given in Bansal et al. (2019). The weights are up-
dated using the Adam optimizer (Kingma and Ba,
2015) in the outer-loop and the inner-loop with
SGD (Ruder, 2016). The meta-trained models with
the highest average accuracy across all training
tasks are chosen for meta-initializing the active
learner.
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Figure 2: Results for AL on with s = 20 and q = 50
showing the mean accuracy (%). The mean is the aver-
age accuracy across all acquisition functions. The shade
is twice the std-dev, calculated separately for above and
under the mean. The meta-initialization θ∗T outperforms
the baseline SciTaiL consistently by a larger margin.
Whereas, for Emotion, θ∗T only outperforms the base-
line for the first 300 additional samples.

During active learning, we consider a low-budget
scenario, where a maximum of 1000 additional an-
notated data samples are acquired. We examine
several set-ups with seed data s = 20, 50, 100 and
acquisition sizes q = 50, 100 , constraining the
number of AL iterations to 20 and 10, respectively.
Any results not shown in Section 5, are shown in
Appendix C. In each AL iteration, we train each
model for 25 epochs on a given target task T and
choose the model with the highest accuracy on the
validation set to evaluate on the test set. We do this
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additional acquired samples

Task s a∗ 0 200 400 600 800 1000

Scitail

20
Bbase 62.57±13.89 79.82±3.32 81.90±2.14 83.17±0.47 83.24±2.32 85.80±1.03

Bmeta 76.08±8.88 83.85±1.35 85.76±2.15 86.13±2.44 87.13±1.26 87.14±1.49

50
Bbase 75.86±8.30 80.30±2.71 80.22±4.87 84.40±2.89 84.33±0.91 84.66±0.97

Bmeta 78.27±14.57 84.45±2.95 86.40±1.37 86.98±2.07 86.96±1.51 86.96±1.87

100
Bbase 80.48±1.87 82.41±1.26 83.15±0.82 84.39±2.38 83.95±3.22 84.57±1.90

Bmeta 83.71±1.88 84.86±3.98 86.66±1.71 86.92±1.07 85.87±3.43 88.05±2.51

Amazon

20
Bbase 53.82±6.38 80.16±8.95 88.91±2.68 88.78±1.67 89.21±0.62 90.08±3.28

Bmeta 72.35±15.27 86.76±3.70 89.04±1.89 89.64±0.86 90.40±2.44 90.57±0.56

50
Ebase 52.27±1.76 85.86±7.58 87.21±3.34 89.01±1.35 89.35±1.83 89.82±2.05

Emeta 76.56±16.99 87.86±3.11 88.57±1.15 89.84±2.39 90.14±2.07 89.69±2.11

100
Ebase 64.60±24.02 85.68±2.31 85.82±4.28 88.26±2.58 91.00±0.89 89.76±1.22

Emeta 74.31±16.46 87.03±2.37 89.81±1.87 88.81±2.67 90.23±1.44 90.84±1.37

Yelp

20
Abase 23.28±6.09 41.56±7.90 49.30±2.91 51.12±2.29 51.33±0.70 52.38±2.41

Ameta 33.82±5.50 47.16±2.74 47.08±3.71 50.13±1.04 50.53±1.30 51.21±2.42

50
Abase 24.62±2.22 43.60±4.04 49.71±0.34 50.65±2.36 52.44±0.85 51.96±2.61

Ameta 37.81±3.97 48.21±1.53 49.72±3.29 50.31±1.95 51.66±1.78 51.61±0.70

100
Abase 31.39±6.93 47.36±4.50 50.07±1.07 51.40±1.01 51.59±1.00 52.68±2.18

Ameta 39.43±7.56 47.44±3.26 49.63±1.76 50.30±2.12 50.62±1.39 51.60±1.27

Emotion

20
Bbase 32.38±5.36 66.72±7.64 74.05±4.92 84.94±2.51 87.41±0.43 88.80±0.71

Bmeta 44.65±15.80 69.88±5.47 81.11±3.59 85.17±2.84 87.63±1.36 89.48±0.58

50
Cbase 41.11±6.46 66.26±4.35 79.21±2.66 84.76±3.18 87.55±1.26 88.97±0.72

Cmeta 52.28±1.98 70.47±6.00 81.63±1.57 84.68±2.72 88.37±1.24 89.46±2.09

100
Cbase 47.53±10.44 70.05±5.84 80.79±2.34 85.17±2.14 87.58±1.32 89.88±1.87

Cmeta 56.99±6.12 70.82±10.37 80.75±4.40 86.74±2.33 88.32±1.12 89.70±1.11

Table 1: AL performance between the base and meta-learned initialization across different tasks and seed sizes, with
acquisition size of q = 50. The table shows the accuracy at 0, 200, 400, 600, 800 and 1000 additionally acquired
samples for the best performing acquisition function a∗ on the base initialization in each specific scenario. Where
R = random,E = entropy,B = BADGE,A = ALPS and C = CAL. The table shows the performance
under an increase of annotated sample size.

for 4 different seeds: 41, 43, 47, and 53. The learn-
ing rate used is aAL = 2− e5 and the weights are
updated using the AdamW optimizer (Loshchilov
and Hutter, 2019) with epsilon 1e− 8. If the train-
ing set is larger than 100K samples we down-size
it to 20K to lessen the computational load. For ev-
ery dataset we used a maximum sequence length of
128. If there is no validation set or test set available
we randomly sample 10% or 20% from the training
set, respectively.

5 Results

5.1 Performance on NLP tasks

In Table 1 we present the results on the SciTaiL,
Amazon, Yelp, and Emotion datasets with q = 50,
with the acquisition function a∗ that performed the

best on the base initialization. This is to showcase
how the meta-initialized model performs in com-
parison with the baseline over different seed sizes
and additionally acquired samples. In most of the
scenarios, the meta-initialized model outperforms
the baseline and in the remaining, it has a very sim-
ilar performance to the baseline. To see the full
results see Appendix C.

The θ∗T initialization outperforms the baseline
on SciTaiL and Amazon datasets consistently as
shown in Table 1. Since T contains four NLI tasks
(MNLI, QNLI, RTE, and SNLI), θ∗T must have
learned the semantic relationships required for the
NLI task. As a result, the difference between the
two initialization decreases slowly, but stays signif-
icantly larger, as can be observed in Figure 2a. In-
terestingly, the same is true for the Amazon dataset,
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while T only contains one sentiment classification
task (SST-2). It seems that SST-2 in combination
with general NLU tasks provides sufficient informa-
tion to learn how to discriminate between negative
and positive sentiment.

The same is less pronounced for Yelp and Emo-
tion. After about 400 to 600 annotated samples,
the gap between the two initializations becomes
smaller and eventually negligible, as shown in Fig-
ure 2b for Emotion. T does not contain a task that
is in the same domain as Yelp or Emotion. How-
ever, SST-2 is somewhat related because Yelp is
a fine-grained sentiment classification task, and
emotions are often expressed in terms of positive
and negative emotions. Therefore, T only provides
the model with information about intermediate fea-
tures needed for the downstream task of Yelp and
Emotion.

The key observation is that the meta-
initialization θ∗T always performs better than
the baseline on average for 200 or fewer samples
sampled, and almost always for 600 or fewer
acquired samples. Especially, when less seed data
is available. This shows that meta-initialization
provides a competitive advantage over baseline in
a low-budget and cold start setting by being able to
learn in a few-shot steps.

However, the difference in performance shrinks
as more samples are acquired. This trend is ex-
pected because the ability to learn rapidly is the
most useful when less information is available.
When enough information is obtained the same
performance can be achieved by learning with a
large number of data. Crucially, this means that
learning fast with θ∗T is not detrimental when a
large number of data is available. This is generally
what Table 1 shows, when the base initialization
performs better at 600 or more acquired samples,
often by a small margin

Additionally, learning slows down for both when
the proportion q

|L| becomes smaller. Each newly
acquired batch of annotated sample provides less
and less new information as L grows larger, which
might mask some difference in performance be-
tween the two initialization at larger L.

We also notice that the best acquisition function
for the baseline θBERT mostly coincides with the
best acquisition function for θ∗T . It is an indication
that selecting the best acquisition function is mostly
dataset dependent.

5.2 Topic Classification

The set of tasks T does not contain any topic clas-
sification tasks or any related tasks, consequently
in Figure 3, it shows that θ∗T is actually detrimental
for AG news and provides no significant advan-
tage towards TREC. So, for the proposed method
it is essential to have similar or related tasks for
meta-training the initialization.
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Figure 3: Results for AL with s = 20 and q = 50 show-
ing the mean accuracy (%) of all acquisition functions.
The baseline outperforms the meta-initialized model.
However, the initialization with θ∗TTopic

outperforms the
baseline. Showing the importance of task selection.

This necessity is clearly portrayed in Figure 3,
since by active learning with θ∗TTopic

the perfor-
mance is improved by a significant amount for both
tasks, by adding two topic classification task dur-
ing training. TREC performs increasingly better
than θ∗T and θBERT as the number of annotated
samples grows. For AG news the difference in per-
formance is immediately noticeable at low amounts
of annotated samples, due to Yahoo and DBPedia
containing similar topics as AG news. Although,
the performance reaches a plateau at around 500
additional samples, most likely due to new samples
not providing a critical amount of information as
mentioned in Section 5.1.
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5.3 Query size

In the previous two sections we have only consid-
ered the results with a query size of q = 50. When
compared to the results with q = 100 another ad-
vantage is exposed. If we compare Figure 2 and
Figure 4 , we see that T with q = 100 perform con-
sistently better than θBERT , as opposed to q = 50,
where their performance become indistinguishable
around 300-400 additional samples. This advan-
tage is important when the amount of AL iterations
is constraint (Bullard et al., 2019).
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Figure 4: Results for AL on Emotion with s = 20
and q = 100 showing the mean accuracy (%) of all
acquisition functions. The meta-learned initialization
outperforms the baseline more consistently on Emotion.

The meta-initialization θ∗T works better with a
larger q compared to θBERT , since the initial per-
formance gain implies a better representation of
the samples in the encoded space. This directly
benefits the acquisition functions that depend on
the encoded space, such as CAL . BADGE and en-
tropy benefit indirectly, as their evaluation method
is affected by how well the samples are represented
by the model in action. Similarly, when using a
more advanced text encoder architecture (Lu and
MacNamee, 2020). In short, the model-dependent
acquisition functions score unlabeled samples more
accurately, and by accumulating better-annotated
samples, the meta-initialised active learner outper-
forms the baseline at larger query sizes q.

6 Ablation study

6.1 Generated Softmax and Learning Rates

To see the effects of using the generated softmax
weights and the meta-learned learning rates α dur-
ing active learning, we perform the active learn-
ing experiment with these elements included and
initialized with θ∗T , where s = 100, q = 50
and the BADGE acquisition function. As men-
tioned in Section 3.3, α can become negative dur-

ing meta-learning and Figure 5 shows that there
are a high density of negative learning rates after
meta-learning on T . For these experiments, we set
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Figure 5: Meta-learned learning rates α from LEOP-
ARD trained on T and shows negative learning rates.

any negative learning rate to α = 2e− 5.
The results are shown in Figure 6. Here, we

observe that after an initial gain in performance,
the model seems to stop to learn. The average per-
formance fluctuates around accuracy of 83%. We
suspect this is caused by learning with learning
rates above 1e− 4 (see Figure 5) with imbalanced
batches during the start of training. For example,
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Figure 6: Results for AL on SciTaiL with s = 100 and
query size q = 50 with BADGE, showing the mean ac-
curacy (%) across four runs. Gensoft-meta is initialized
with θ∗T and includes generated softmax weights and
meta-learned learning rates. The gensoft-meta perfor-
mance does not improve with more annotated samples.

when there is a sufficient amount annotated sam-
ples its probable to have consecutive batches which
all consist of samples of the same class. Thus,
pushes the active learner rapidly towards biased
learning, that it cannot even recover when trained
with a large amount of samples. A solution could
be learning with more balanced batches at the start
of training, this we will leave as future work.

6.2 Additional Comparisons
To further demonstrate the effectiveness of meta-
learning the initial parameters for active learning,
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we provide two additional baselines. In the ex-
periments of Section 5, the baseline initialization
was used off-the-shelf and has not seen any data
from tasks T used in meta-learning. Meaning that,
the meta-learned initialization has seen 10 million
more datapoints. To make a more even comparison,
we fine-tune the baseline by performing Masked
Language Model (MLM) training on the datapoints
in task T to provide equal data support. Then, we
perform active learning on SciTail with the entropy
acquisition function with s = 20 and q = 50.
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Figure 7: Results for AL on SciTail with s = 20 and
query size q = 50 with entropy, showing the mean
accuracy (%) across four runs. The MLM trained BERT
initialization performs better than the baseline, but not
the meta-learned initialization.

Figure 7 shows that the MLM trained initializa-
tion performs moderately better than the default
baseline, but significantly performs worse than the
meta-learned initialization. This shows that the per-
formance gain by meta-learning an initialization is
not simply due to a larger data support, but due to
its ability to few-shot learn.

The second additional comparison we make,
is fine-tuning the baseline initialization by pre-
training on the DBPedia dataset and then perform
active learning on AG News to show that our
methodology is more beneficial than simple trans-
fer learning. This experiment is performed with
s = 20 and q = 50 with the entropy acquisition
function.

We see that by simply pre-training on DBPe-
dia the baseline is able to perform closely to the
topic meta-initialization. However, if we put more
emphasis (80%) on the topic tasks in T topic we
can outperform both initializations significantly, as
shown by topic-meta80 in Figure 8. This shows
that the distribution of tasks during meta-learning
is an important factor that can impact the learning
capabilities given a target task.
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Figure 8: Results for AL on AG News with s = 50
and query size q = 50 with entropy, showing the mean
accuracy (%) across four runs.

7 Conclusion

In this work, we have shown how to initialize the
active-learner with meta-trained parameters on re-
lated tasks. This method provides a significant
boost in performance in a low-budget setting. This
effect is exaggerated during the early stages of ac-
tive learning, due to fast adaptation capabilities by
being able to few-shot learn. Furthermore, the abil-
ity to few-shot learn provides better representations
in the encoded space, making the scoring from
implemented acquisition functions more accurate.
Which consequently, results in better active learn-
ing performance using larger acquisition batches.

8 Limitations

An obvious limitation is that the proposed method
likely does not provide a significant advantage in
performance when applied in a high-budget situa-
tion, where large amounts of data points are anno-
tated. One way it might have a noticeable effect is
to start with a smaller acquisition/query size and
increase it during the active learning process, with
the assumption that with a high budget, a larger
acquisition size is used. This could leverage the
better encoding space that few-shot meta-learning
provides to improve the selection of samples to be
annotated in the early stages. Possibly, resulting in
a cumulative advantage in performance.

Another limitation is that closely related tasks
might be nonexistent or rare. This would be detri-
mental, because if there are no related tasks in the
meta-learning process, our method is worse than
the BERT baseline, as shown with AG News.
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Dataset Task Labels Training Validation

MNLI(m/mm) NLI 3 392702 19647

SST-2 SA 2 67349 872

QNLI QA/NLI 2 10473 5463

QQP PP 2 363846 40430

MRPC PP 2 3668 408

RTE NLI 2 2490 277

SNLI NLI 3 550152 10000

DBPedia TC 14 560000 70000

Yahoo TC 10 1400000 60000

Table 2: Statistics for datasets used during training. NLI
stands for Natural Language inference, SA for Senti-
ment Analysis, QA for Question and Answering, PP for
ParaPhrase and TC for Topic Classification. The test
set is excluded because it was not used during meta-
learning. If there was no validation set we used the test
set as validation set.

Dataset Task Labels Training Validation test

SciTaiL NLI 2 23097 1304 2126

Amazon SA 2 4880466 - -
Yelp FSA 5 130000 - 10000

Emotion E 6 16000 2000 2000

AG News TC 4 120000 - 7600

TREC TC 47 5452 - 500

Table 3: Statistics for datasets used during evaluation /
Active Learning. The task shorthands are the same in
Table 2, with one addition: FSA meaning Fine-grained
Sentiment Analysis. ‘-’ means that the set was not
available

A Data

A.1 Statistics

B Model Parameters and Computation
Time

B.1 Model Parameters

The model fML and fAL both use the BERT-base
text-encoder, which has roughly 110M parameters
(Devlin et al., 2018). The pre-classification and
softmax-generating layers consists of two linear
transformation layers, with 768 × 384 = 294912
and 384× 256 = 98304 parameters. The classifi-
cation layer consists of two linear transformation
layers with 256× |C| parameters, where |C| is the
number of classes. Lastly, fML learns 209 learning
rates for the inner loop.
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B.2 Computation Time
Training with LEOPARD is computationally ex-
pensive. For every task Ti the gradient needs to
be calculated 8 times for all parameters, and there-
fore 32 times per meta-batch. The average time to
train on one meta-batch B or meta-iteration with 4
tasks using LEOPARD is 3.8 seconds. Therefore,
training with 100K meta-iterations takes roughly
105 hours. By using parallelization across the 4
tasks, the time should be able to be brought down
to about 30 hours.

During AL, at most|Lmax| = 1100 are avail-
able if a seed size s = 100 is used. A full epoch of
training with Lmax annotated samples through fAL

takes roughly 15.5 seconds. The largest dataset we
perform our experiments on is SciTaiL, because
other datasets above 100K are downsized to 20K
as mentioned in Section 4.3. We measure the time
it takes to acquire q = 50 samples for 20 itera-
tions up to a 1000 additional annotated samples
for each acquisition function with SciTaiL. The
time to update the L and U and process the sam-
ples is included. For random it takes 694 seconds,
entropy 1672 seconds, BADGE 1794 seconds,
ALPS 1812 seconds and for CAL 1762 seconds.

The training of the meta-learned models is run on
a single Nvidia Tesla V100 GPU and each active
learning experiment is run on four Nvidia Tesla
V100 GPUs.

C Additional Results

C.1 General NLP tasks
The results for all acquisition functions from Table
1 for each s = 20, 50, 100 with q = 50 can be
found in Table 4, 5 and 6, respectively. Similarly,
we also show here the graphs for all tasks discussed
in Section 5.1 with s = 20 and q = 50 in Figure 9.
We observe the same trends as described in Section
5.1.

C.2 Topic Classification
In Figure 10 and 11, we see that even starting with
larger seed data that the meta-initialization θ∗TTopic

still outperforms the baseline as in Section 5.2.
For AG News we observe that the performance be-
comes equal faster as the seed size becomes larger.
However, the learning plateaus at around the same
number of annotated samples. Indicating that the
model is reaching its limit in performance or needs
to learn with a larger L, e.g, L = 2000, 4000, to
reach a significantly higher performance.

For TREC we observe in Figure 11 that the
difference in performance stays constant for all
seed sizes and even with a large amount of anno-
tated samples. Showing that the meta-initialization
θ∗TTopic

has gained knowledge on how to extract
relevant keywords and phrases, therefore giving it
a consistent performance advantage.

C.3 Query Size
In Figure 12 we see that using a larger query size
the meta-initialization θ∗T outperforms the baseline
more consistently for SciTaiL and Emotion com-
pared to in Figure 9. However, we do not see the
same trend for Amazon and Yelp. For Yelp the rea-
son might be that fine-grained sentiment classifica-
tion task is too complex for the model to represent
in its encoded space. random and ALPS often
reach the highest performance, as shown in Table 4,
5 and 6. Showing that model-independent acquisi-
tion functions are preferable. This is an indication
that the representations in the encoded space are
unreliable. Therefore, the advantage of the meta-
initialization the model at larger q = 100 does not
materialize. For Amazon we do not observe a sig-
nificant difference between the two scenarios, it
might be that the task is too simple and the differ-
ence in the encoded space between meta-initialized
active learner and the baseline are not noticeable
when picking 50 or 100 samples.
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Figure 9: AL results on s = 20 and q = 50 showing the mean accuracy (%) across all acquisition functions. The meta-
initialization in general outperforms the baseline, especially up to 300-400 additional annotated samples. For 400 or more the
baseline and meta-initialization become or less equal, for Yelp and Emotion.
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Figure 10: AL results for AG News with q = 50 and s = 20, 50, 100 showing the mean accuracy (%) across all acquisition
functions. The meta-learned initialization with topic classification tasks outperforms the baseline, while without these tasks it
performs worse.
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Figure 11: AL results for TREC with q = 50 and s = 20, 50, 100 showing the mean accuracy (%) across all acquisition
functions. The meta-learned initialization with topic classification tasks outperforms the baseline, while without these tasks it
performs worse.
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Figure 12: AL results on s = 20 and q = 100 showing the mean accuracy (%) across all acquisition functions. The meta-
initialization seems to have an additional advantage at larger queries.
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additional acquired samples

Task Init a 0 200 400 600 800 1000

Scitail

BERT

R 62.57±13.89 79.32±6.85 80.56±3.72 82.77±2.62 84.14±2.08 84.09±2.26

E 62.57±13.89 78.85±2.42 77.87±4.30 81.17±3.37 80.81±5.63 81.50±1.54

B 62.57±13.89 79.82±3.32 81.90±2.14 83.17±0.47 83.24±2.32 85.80±1.03

A 62.57±13.89 79.39±4.10 81.86±2.65 84.23±3.24 83.12±1.79 84.82±2.14

C 62.57±13.89 79.61±5.89 80.13±6.37 83.66±1.68 84.68±1.17 85.68±2.89

meta

R 76.08±8.88 84.24±2.27 84.51±1.61 86.21±2.97 85.93±1.84 85.90±1.95

E 76.08±8.88 84.80±1.04 85.68±0.97 86.69±2.54 86.42±2.12 87.21±2.33

B 76.08±8.88 83.85±1.35 85.76±2.15 86.13±2.44 87.13±1.26 87.14±1.49

A 76.08±8.88 84.99±1.22 85.56±1.51 85.79±3.39 86.74±1.35 85.90±1.19

C 76.08±8.88 85.08±1.84 85.50±3.13 85.99±4.49 86.07±8.92 87.38±2.23

avg. diff. +13.51 +5.19 +4.94 +3.16 +3.26 +2.33

Amazon

BERT

R 53.82±6.38 71.94±18.18 78.88±5.23 84.33±3.63 86.89±1.34 87.85±4.27

E 53.82±6.38 79.28±5.38 87.87±4.86 89.02±2.25 87.90±4.03 89.91±2.31

B 53.82±6.38 80.16±8.95 88.91±2.68 88.78±1.67 89.21±0.62 90.08±3.28

A 53.82±6.38 64.06±5.89 83.68±3.33 83.39±9.64 85.59±5.74 84.52±6.46

C 53.82±6.38 78.35±8.31 84.57±1.68 88.90±0.66 90.08±1.49 89.86±2.11

meta

R 72.35±15.27 85.66±6.67 87.69±5.33 88.83±1.30 89.15±1.41 89.41±2.82

E 72.35±15.27 79.86±31.49 89.26±1.43 89.95±1.73 90.16±0.62 90.16±1.25

B 72.35±15.27 86.76±3.70 89.04±1.89 89.64±0.86 90.40±2.44 90.57±0.56

A 72.35±15.27 83.01±6.09 85.26±5.37 86.55±3.92 89.33±1.25 88.84±2.52

C 72.35±15.27 86.88±2.23 88.69±2.32 89.75±1.80 89.60±3.56 90.68±1.37

avg. diff. +18.54 +9.68 +3.21 +2.06 +1.79 +1.49

Yelp

BERT

R 23.28±6.09 41.53±3.02 47.42±3.08 50.37±0.91 51.95±0.61 52.32±2.01

E 23.28±6.09 44.25±5.16 43.78±4.83 49.43±1.48 48.07±4.19 51.43±1.06

B 23.28±6.09 40.93±9.06 45.02±3.00 49.97±0.30 51.93±1.67 52.49±1.08

A 23.28±6.09 41.56±7.90 49.30±2.91 51.12±2.29 51.33±0.70 52.38±2.41

C 23.28±6.09 42.52±4.05 44.48±11.30 50.01±2.55 50.81±1.88 51.93±0.82

meta

R 33.82±5.50 47.19±3.24 49.89±0.99 50.00±1.72 51.85±1.30 51.82±1.28

E 33.82±5.50 43.15±8.19 48.49±3.10 49.03±1.91 50.66±3.02 50.99±2.86

B 33.82±5.50 46.40±4.84 50.03±0.53 51.68±1.99 51.87±1.98 51.11±1.44

A 33.82±5.50 47.16±2.74 47.08±3.71 50.13±1.04 50.53±1.30 51.21±2.42

C 33.82±5.50 45.02±3.01 47.83±3.44 49.23±3.62 51.49±1.54 52.17±1.24

avg. diff. +10.54 +3.63 +2.67 -0.16 +0.46 -0.65

Emotion

BERT

R 32.38±5.36 62.84±3.36 77.12±2.03 81.27±2.90 84.92±1.74 86.59±1.04

E 32.38±5.36 63.21±2.81 77.21±3.76 82.71±2.17 84.36±5.03 88.57±1.34

B 32.38±5.36 66.72±7.64 74.05±4.92 84.94±2.51 87.41±0.43 88.80±0.71

A 32.38±5.36 63.21±11.16 77.56±1.42 81.48±1.86 85.34±0.90 86.18±0.98

C 32.38±5.36 58.67±12.06 67.14±18.84 82.77±4.38 87.45±2.49 89.13±1.59

meta

R 44.65±15.80 70.06±3.88 78.43±0.74 82.12±0.20 83.93±1.43 85.71±1.17

E 44.65±15.80 60.10±17.44 76.74±2.20 80.35±5.07 84.84±1.55 87.11±3.12

B 44.65±15.80 69.88±5.47 81.11±3.59 85.17±2.84 87.63±1.36 89.48±0.58

A 44.65±15.80 67.49±6.55 76.36±3.84 81.08±0.97 83.82±0.96 85.39±1.04

C 44.65±15.80 56.20±24.42 72.97±10.00 81.53±3.59 87.37±1.19 89.12±0.77

avg. diff. +12.27 +1.82 +2.51 -0.58 -0.38 -0.49

Table 4: AL performance between the base and meta-learned initialization θ∗T across different tasks, seed size
s = 20 and acquisition size of q = 50. The table shows the accuracy at 0, 200, 400, 600, 800 and 1000 additionally
acquired samples. Where R = random,E = entropy,B = BADGE,A = ALPS and C = CAL.

1131



additional acquired samples

Task Init a 0 200 400 600 800 1000

Scitail

BERT

R 75.86±4.15 79.11±3.53 81.86±1.24 81.91±0.56 83.86±0.51 83.79±0.71

E 75.86±4.15 79.83±2.50 81.10±2.79 82.13±1.26 82.31±0.89 81.95±1.97

B 75.86±4.15 80.30±1.36 80.22±2.43 84.40±1.44 84.33±0.45 84.66±0.48

A 75.86±4.15 81.45±1.97 82.38±1.35 82.98±1.22 83.02±2.35 85.38±0.90

C 75.86±4.15 78.17±5.31 81.19±1.07 84.02±0.64 83.75±0.87 85.21±0.86

meta

R 78.27±7.28 84.52±1.53 85.47±0.57 86.26±0.34 87.14±1.10 87.06±0.79

E 78.27±7.28 80.37±8.07 85.96±0.30 86.17±0.36 85.86±0.50 86.87±1.04

B 78.27±7.28 84.45±1.47 86.40±0.69 86.98±1.03 86.96±0.75 86.96±0.93

A 78.27±7.28 85.31±0.74 87.19±1.35 86.74±0.40 86.91±1.00 87.73±1.46

C 78.27±7.28 74.57±18.85 83.81±3.42 86.83±0.52 87.79±0.60 87.95±1.23

avg. diff. +2.41 +2.07 +4.42 +3.51 +3.48 +3.12

Amazon

BERT

R 52.27±0.88 76.35±6.03 85.69±1.73 88.12±0.51 88.81±1.13 89.55±0.37

E 52.27±0.88 85.86±3.79 87.21±1.67 89.01±0.68 89.35±0.91 89.82±1.02

B 52.27±0.88 82.89±5.58 86.72±1.58 88.25±1.06 88.67±1.66 90.12±0.72

A 52.27±0.88 65.38±8.02 82.49±6.23 85.83±2.17 86.65±1.80 87.11±1.68

C 52.27±0.88 81.78±4.87 87.18±2.13 89.21±0.94 90.21±0.38 89.65±0.67

meta

R 76.56±8.50 83.93±6.39 88.14±1.23 86.51±3.32 88.66±1.44 88.59±0.87

E 76.56±8.50 87.86±1.56 88.57±0.58 89.84±1.20 90.14±1.03 89.69±1.06

B 76.56±8.50 87.08±2.00 88.96±0.85 89.86±0.84 90.59±0.63 90.38±0.96

A 76.56±8.50 84.22±1.85 86.19±1.94 87.60±1.93 88.22±1.09 89.19±0.64

C 76.56±8.50 89.04±1.04 87.84±1.68 88.90±2.00 90.59±0.43 91.31±0.24

avg. diff. +24.30 +7.97 +2.08 +0.46 +0.90 +0.58

Yelp

BERT

R 24.62±1.11 43.07±3.32 49.67±1.18 48.31±3.52 51.72±0.63 51.13±1.74

E 24.62±1.11 40.47±1.06 47.55±1.83 47.81±3.64 50.84±1.22 49.79±3.01

B 24.62±1.11 42.72±2.52 49.16±0.75 50.81±0.57 51.91±1.04 52.01±1.39

A 24.62±1.11 43.60±2.02 49.71±0.17 50.65±1.18 52.44±0.42 51.96±1.30

C 24.62±1.11 40.95±3.63 48.85±1.64 49.38±3.55 51.49±1.11 51.88±1.16

meta

R 37.81±1.99 47.39±2.27 50.23±0.87 50.99±0.74 51.96±0.73 51.35±0.60

E 37.81±1.99 42.79±3.09 48.01±2.48 49.06±1.20 51.77±0.97 51.17±1.46

B 37.81±1.99 45.96±1.22 48.86±2.17 50.87±1.40 52.06±0.76 52.63±0.95

A 37.81±1.99 48.21±0.76 49.72±1.64 50.31±0.98 51.66±0.89 51.61±0.35

C 37.81±1.99 45.87±1.59 48.80±2.76 49.33±1.76 51.79±0.98 51.98±0.31

avg. diff. +13.18 +3.88 +0.13 +0.72 +0.17 +0.40

Emotion

BERT

R 41.11±3.23 64.36±1.36 76.62±1.60 83.03±0.67 85.90±0.50 87.14±0.74

E 41.11±3.23 68.55±1.68 76.80±3.07 83.65±1.25 85.69±1.07 87.54±1.66

B 41.11±3.23 63.88±6.51 77.24±2.14 84.03±1.44 88.19±0.43 89.12±0.37

A 41.11±3.23 63.13±4.80 78.87±1.92 83.15±1.70 84.91±0.83 86.49±0.60

C 41.11±3.23 66.26±2.17 79.21±1.33 84.76±1.59 87.55±0.63 88.97±0.36

meta

R 52.28±0.99 69.55±1.62 78.07±1.29 82.87±1.34 85.10±0.52 86.33±0.86

E 52.28±0.99 68.64±2.57 74.42±4.15 80.27±4.04 86.44±1.40 89.05±0.81

B 52.28±0.99 71.49±2.13 80.08±1.71 85.07±1.27 87.45±0.23 89.27±0.44

A 52.28±0.99 71.42±1.99 78.30±0.88 82.56±1.11 84.48±0.48 86.57±0.91

C 52.28±0.99 70.47±3.00 81.63±0.79 84.68±1.36 88.37±0.62 89.46±1.05

avg. diff. +11.17 +5.08 +0.75 -0.63 -0.08 -0.29

Table 5: AL performance between the base and meta-learned initialization θ∗T across different tasks, seed size
s = 50 and acquisition size of q = 50. The table shows the accuracy at 0, 200, 400, 600, 800 and 1000 additionally
acquired samples. Where R = random,E = entropy,B = BADGE,A = ALPS and C = CAL.
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additional acquired samples

Task Init a 0 200 400 600 800 1000

Scitail

BERT

R 80.48±0.94 82.32±0.99 83.21±0.25 84.35±0.83 83.48±3.36 83.82±1.65

E 80.48±0.94 80.41±0.44 80.55±1.76 82.53±0.99 82.26±0.98 83.29±0.72

B 80.48±0.94 82.41±0.63 83.15±0.41 84.39±1.19 83.95±1.61 84.57±0.95

A 80.48±0.94 80.86±1.19 82.40±0.83 83.30±1.43 83.88±0.29 84.37±0.97

C 80.48±0.94 79.42±1.86 81.64±1.88 83.19±1.18 83.73±1.26 84.89±1.02

meta

R 83.71±0.94 84.89±1.09 86.59±1.21 86.75±0.44 87.53±0.83 86.84±0.77

E 83.71±0.94 84.26±1.31 85.78±1.32 85.95±0.99 86.36±1.13 86.58±0.82

B 83.71±0.94 84.86±1.99 86.66±0.85 86.92±0.54 85.87±1.72 88.05±1.26

A 83.71±0.94 86.46±1.46 87.00±0.61 86.53±0.90 87.41±0.29 87.72±0.74

C 83.71±0.94 81.94±3.24 86.25±0.80 83.65±4.91 87.50±1.07 88.48±0.98

avg. diff. +3.22 +3.40 +4.26 +2.41 +3.47 +3.35

Amazon

BERT

R 64.60±12.01 81.20±5.13 86.19±2.28 85.56±2.49 87.69±1.57 88.82±0.89

E 64.60±12.01 85.68±1.16 85.82±2.14 88.26±1.29 91.00±0.45 89.76±0.61

B 64.60±12.01 84.46±2.05 86.63±2.31 88.44±2.84 90.15±0.25 89.32±0.84

A 64.60±12.01 73.95±10.25 83.73±4.22 86.55±2.30 87.46±1.57 88.37±1.89

C 64.60±12.01 80.69±4.46 86.01±2.70 89.39±0.84 90.15±0.45 90.44±0.80

meta

R 74.31±8.23 88.09±1.75 87.36±1.34 89.13±0.58 89.66±0.29 89.76±0.80

E 74.31±8.23 87.03±1.19 89.81±0.94 88.81±1.34 90.23±0.72 90.84±0.69

B 74.31±8.23 88.89±1.23 88.98±0.92 90.11±0.37 90.13±0.85 90.04±0.62

A 74.31±8.23 85.77±2.37 86.18±1.89 87.58±1.79 89.91±0.79 88.80±1.45

C 74.31±8.23 88.15±0.99 89.13±1.46 89.85±0.74 90.56±1.10 90.40±0.53

avg. diff. +9.71 +6.39 +2.61 +1.46 +0.86 +0.63

Yelp

BERT

R 31.39±3.46 45.60±3.07 48.00±1.23 51.88±0.87 52.04±0.80 52.40±0.86

E 31.39±3.46 42.69±1.80 49.05±0.82 51.05±0.65 50.64±1.64 51.59±0.52

B 31.39±3.46 48.01±0.78 49.35±2.22 50.78±0.49 51.74±0.68 52.54±1.13

A 31.39±3.46 47.36±2.25 50.07±0.54 51.40±0.50 51.59±0.50 52.68±1.09

C 31.39±3.46 42.92±4.38 48.91±0.36 50.47±1.43 50.31±3.43 51.14±1.71

meta

R 39.43±3.78 47.66±1.29 49.24±1.47 50.74±0.78 51.05±1.12 52.58±1.00

E 39.43±3.78 46.24±2.13 47.68±2.90 51.15±1.90 50.25±2.77 51.33±1.58

B 39.43±3.78 45.26±4.15 50.82±0.69 51.32±0.75 51.94±1.24 52.54±1.05

A 39.43±3.78 47.44±1.63 49.63±0.88 50.30±1.06 50.62±0.70 51.60±0.64

C 39.43±3.78 44.09±3.50 49.13±1.75 50.36±1.17 51.98±0.61 51.96±0.55

avg. diff. +8.04 +0.82 +0.22 -0.34 -0.10 -0.07

Emotion

BERT

R 47.53±5.22 69.46±1.89 78.78±1.03 82.83±1.51 85.55±0.70 86.73±0.94

E 47.53±5.22 69.87±2.96 75.81±5.00 84.08±0.80 86.70±1.23 89.30±0.28

B 47.53±5.22 68.37±0.77 80.98±1.50 85.67±1.09 88.62±1.18 89.30±0.47

A 47.53±5.22 72.22±3.09 78.73±2.20 84.27±0.55 85.32±0.84 86.84±0.36

C 47.53±5.22 70.05±2.92 80.79±1.17 85.17±1.07 87.58±0.66 89.88±0.94

meta

R 56.99±3.06 71.68±0.66 80.01±1.10 82.68±0.57 84.69±0.79 86.51±0.61

E 56.99±3.06 67.59±6.82 80.82±1.48 82.84±1.39 85.25±3.50 88.44±1.50

B 56.99±3.06 72.71±1.68 82.24±1.15 85.69±0.96 88.08±0.34 89.58±0.51

A 56.99±3.06 74.37±1.13 80.02±1.29 83.26±1.15 85.74±0.46 86.81±0.32

C 56.99±3.06 70.82±5.19 80.75±2.20 86.74±1.16 88.32±0.56 89.70±0.56

avg. diff. +9.46 +1.44 +1.75 -0.16 -0.34 -0.20

Table 6: AL performance between the base and meta-learned initialization θ∗T across different tasks, seed size
s = 100 and acquisition size of q = 50. The table shows the accuracy at 0, 200, 400, 600, 800 and 1000 additionally
acquired samples. Where R = random,E = entropy,B = BADGE,A = ALPS and C = CAL.
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