
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4064–4085
December 7-11, 2022 ©2022 Association for Computational Linguistics

Improving Sharpness-Aware Minimization with Fisher Mask
for Better Generalization on Language Models

Qihuang Zhong1∗, Liang Ding2, Li Shen2, Peng Mi3, Juhua Liu4†, Bo Du1†, Dacheng Tao2

1 National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence, School of Computer Science

and Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, China
2 JD Explore Academy, China 3 School of Informatics, Xiamen University, China

4 Research Center for Graphic Communication, Printing and Packaging, and Institute of Artificial Intelligence, Wuhan University, China

{zhongqihuang,liujuhua,dubo}@whu.edu.cn, {dingliang1,shenli100}@jd.com, mipeng@stu.xmu.edu.cn, dacheng.tao@gmail.com

Abstract

Fine-tuning large pretrained language models
on a limited training corpus usually suffers
from poor generalization. Prior works show
that the recently-proposed sharpness-aware
minimization (SAM) optimization method can
improve the model generalization. However,
SAM adds a perturbation to each model param-
eter equally (but not all parameters contribute
equally to the optimization of training), which
we argue is sub-optimal and will lead to exces-
sive computation. In this paper, we propose a
novel optimization procedure, namely FSAM1,
which introduces a Fisher mask to improve the
efficiency and performance of SAM. In short,
instead of adding perturbation to all parame-
ters, FSAM uses the Fisher information to iden-
tity the important parameters and formulates a
Fisher mask to obtain the sparse perturbation,
i.e., making the optimizer focus on these impor-
tant parameters. Experiments on various tasks
in GLUE and SuperGLUE benchmarks show
that FSAM consistently outperforms the vanilla
SAM by 0.67∼1.98 average score among four
different pretrained models. We also empiri-
cally show that FSAM works well in other com-
plex scenarios, e.g., fine-tuning on generation
tasks or limited training data. Encouragingly,
when training data is limited, FSAM improves
the SAM by a large margin, i.e., up to 15.1.

1 Introduction

The “pretraining-finetuning” paradigm has become
the de facto standard for the community of natural
language processing (NLP) (Devlin et al., 2019;
Liu et al., 2019; Clark et al., 2019b; Raffel et al.,
2020; Brown et al., 2020; Lewis et al., 2020). Given
a pretrained language model (PLM), the dominant
fine-tuning manner is tuning the entire pretrained

∗ Work was done when Qihuang was interning at JD
Explore Academy.

† Corresponding Authors: Juhua Liu (e-mail: liu-
juhua@whu.edu.cn), Bo Du (e-mail: dubo@whu.edu.cn)

1 https://github.com/WHU-ZQH/FSAM4PLM

parameters for each downstream task (Radford
et al., 2018; Devlin et al., 2019). While fine-tuning
the entire PLM can improve performance on a wide
range of NLP tasks, it usually suffers from over-
fitting and poorer generalization ability (Xu et al.,
2021; Bahri et al., 2022), especially in the large-
scale PLMs and limited training data scenarios.

Hence, some existing efforts attempt to provide
more regularization in the fine-tuning stage (Zhang
et al., 2018; Müller et al., 2019; Xu et al., 2021),
among which the optimization of the training loss
is an intuitive and effective method. Specifically,
motivated by the finding (Keskar et al., 2016;
Neyshabur et al., 2017) that the smoother loss
landscape refers to the better model generalization,
Foret et al. (2020) propose the “sharpness-aware
minimization” (SAM) to simultaneously minimize
loss value and loss sharpness, where the sharpness
can be quantified as the maximized difference of
loss when a perturbation is added to the current
weights. In practice, SAM performs two forward-
backward computations for each optimization step,
where the first forward-backward is to obtain the
perturbation for each model parameter and the sec-
ond one is to update the parameters. Many prior
works (Wu et al., 2020; Zheng et al., 2021) show
the effectiveness of SAM in the vision domain, mo-
tivated by this, Bahri et al. (2022) first apply the
SAM to the language domain, more recently.

Although Bahri et al. (2022) empirically show
the remarkable performance of SAM on several lan-
guage understanding tasks, SAM calculates pertur-
bations indiscriminately for all parameters, which
is time-consuming and hinders the application of
SAM. Furthermore, inspired by the finding (Keskar
et al., 2016) that only about 5% of parameters are
sharp and rise steeply during optimization, we no-
tice that not all parameters contribute equally to
the optimization of training. Hence, this raises
a question that whether we can calculate pertur-
bations for only some individual parameters, and

4064

https://github.com/WHU-ZQH/FSAM4PLM

thus make the optimizer focus on these important
parameters.

To this end, we propose a novel optimization
approach, Fisher SAM (FSAM), which introduces
a Fisher mask to improve the efficiency and effec-
tiveness of SAM. In short, FSAM first uses the
Fisher information (Fisher, 1922) as the metric to
identify the sharper parameters2 and formulates
a binary Fisher mask correspondingly. Then, the
Fisher mask is multiplied with the perturbations
to obtain the sparse perturbations, which are lastly
used to perform regularization in the parameter
update. In this way, only parts of sharper parame-
ters will be added into the perturbations, and the
optimizer can thus focus more on these important
parameters. Also, the sparse perturbations could
ensure the training acceleration via sparse back-
propagation3. Moreover, one may concern that the
sparse Fisher mask would affect the convergence
rate of FSAM (Lin et al., 2019). Hence, we theoret-
ically provide the convergence analysis of FSAM,
ensuring that the convergence of FSAM is irrele-
vant to the Fisher mask.

We conduct a large-scale and systematic study
to evaluate the performance and effectiveness of
FSAM. Firstly, we apply SAM and FSAM to fine-
tune various PLMs on parts of GLUE and Super-
GLUE benchmarks, where the results show that
FSAM consistently outperforms the vanilla SAM
by 0.67∼1.98 average score among these PLMs,
and surpasses the Adam (Kingma and Ba, 2015)
optimizer by 1.41∼1.91 points. Secondly, we
conduct experiments on two popular generation
tasks (i.e., XSUM and CoNLL2014) and prove that
FSAM can deliver promising results against SAM.
Lastly, quantitative analysis and in-depth discus-
sion demonstrate the universality and effectiveness
of FSAM in various complex scenarios, and prove
that FSAM indeed brings better model generaliza-
tion. Specifically, we show that our Fisher mask
strategy not only works well in the SAM, but also
can be applied to other SAM variants.

To summarize, our contributions are two-fold:
(1) We propose a novel optimization approach
(namely FSAM) with theoretical convergence guar-

2 We refer to these parameters as the important ones, be-
cause they will rise steeply during optimization and affect the
model generalization significantly.

3 Since the fine-grained sparse training is limited to the
hardware, we do not achieve actual sparse speedup in this
work. Despite it, we still believe that FSAM has great potential
to achieve true training acceleration in the future, with the
development of hardware for fine-grained sparse operation.

antee for PLMs. Specifically, FSAM improves the
performance and efficiency of recently-proposed
SAM via a Fisher mask strategy, which can also be
applied to more SAM variants. (2) Extensive exper-
iments show that FSAM consistently outperforms
the SAM by a large margin on both language un-
derstanding and generation tasks. The systematic
study demonstrates the effectiveness and universal-
ity of FSAM on improving model generalization.

2 Related Work

SAM and its variants. Hochreiter and Schmid-
huber (1994) first show the strong correlation be-
tween the flat minima and the generalization of
a model, inspired by this, Foret et al. (2020) pro-
pose the SAM to find a flat minimum and thus
improve model generalization. While many ex-
isting works prove the effectiveness of SAM on
various computer vision tasks (Wu et al., 2020;
Chen et al., 2021; Zheng et al., 2021), the double
forward-propagation process of SAM brings more
computational cost. To this end, Du et al. (2021)
propose an Efficient SAM (ESAM) for reducing the
computational cost of SAM. Additionally, there are
also some efforts that focus on more efficient and
effective SAM optimization (Zhuang et al., 2021;
Kwon et al., 2021; Mi et al., 2022).

Improving Generalization. Recently, we have
witnessed numerous PLMs that achieved tremen-
dous success in the community of NLP (Yang et al.,
2019; Devlin et al., 2019; Brown et al., 2020; Lewis
et al., 2020; Raffel et al., 2020; Joshi et al., 2020;
He et al., 2020; Qi et al., 2021; Zhong et al., 2022).
The current dominant fine-tuning approach needs to
tune all pretrained parameters for each downstream
task, which makes the PLM easily memorize the
training data and thus leads to overfitting. To tackle
this issue, some works attempt to provide implicit
and explicit regularization into the training of mod-
els, such as dropout (Srivastava et al., 2014), label
smoothing (Müller et al., 2019), mixup (Zhang
et al., 2018) and other data-augmentation meth-
ods (Sennrich et al., 2016; Wang et al., 2018b;
Zhong et al., 2021; Wang et al., 2022; Ding et al.,
2022). On the other hand, motivated by the suc-
cessful applications of SAM in the vision domain,
Bahri et al. (2022) involve applying SAM to opti-
mize the T5 (Raffel et al., 2020) model on multiple
language tasks and show that SAM can improve
the generalization of PLMs effectively.

We depart from the prior work (Bahri et al.,

4065

2022) and ours as follows: 1) different motivations:
instead of verifying the effect of vanilla SAM on
several language understanding tasks, we aim to
improve the efficiency and effectiveness of SAM.
2) different contributions: our main contribution
is to propose a fisher mask strategy, which can be
applied to both SAM and its variants. 3) more anal-
ysis: we provide more experimental results and
analysis towards the effectiveness of our method in
more complex scenarios.

3 Methodology

In this section, we first review the Sharpness-Aware
Minimization, and then propose our Sharpness-
Aware Minimization with Fisher mask, coined as
FSAM. Finally, we theoretically analyze the con-
vergence of FSAM with adaptive learning rate.

3.1 Sharpness-Aware Minimization
Preliminary. In this paper, we denote the weight
of a neural network as w ∈ Rd. Suppose the
training dataset S = {(xi, yi)}ni=1 i.i.d. drawn
from the distribution D. The object function of
the data xi from S is denote as fS(xi). Since the
Adam (Kingma and Ba, 2015) and its variants are
widely used in NLP tasks, the learning rate is esti-
mated via RMSProp/Adam style.

Sharpness-Aware Minimization. Foret et al.
(2020) propose the Sharpness-Aware Minimiza-
tion (SAM) to improve the generalization, which
is achieved by the following min-max problem:

min
w

max
||ϵ||2≤ρ

f(w + ϵ), (1)

where ρ is a predefined value to control the neigh-
borhood size, and the ϵ is the perturbation vector
on model weight. The optimization is expected
that the model loss will not significantly rise with
a certain amount of weight change controlled by ρ,
which is intuitively consistent with the generaliza-
tion capacity of model.

With the Taylor expansion, the perturbation vec-
tor ϵ could be achieved approximately:

ϵ∗ =argmax
||ϵ||2≤ρ

fS(w + ϵ) (2)

≈ argmax
||ϵ||2≤ρ

fS(w) + ϵ · ∇wf(w) (3)

=ρ · ∇wf(w)
/
||∇wf(w)||2, (4)

and the object function could be simplified as

min
w

f(w + ρ
∇wf(w)

||∇wf(w)||2
), (5)

The solution of the above function could be ob-
tained by a two-step gradient descent. In the first
gradient descent step, the perturbation vector ϵ is
calculated by Equation 2. The second gradient
descent step is the actual weight update.

However, despite the improvement of SAM on
many tasks, SAM requires a two-step gradient cal-
culation which leads to the double overhead com-
pared to the conventional optimizer, e.g., Stochastic
Gradient Descent (SGD) and Adam.

3.2 Sharpness-Aware Minimization with
Fisher Mask

In this subsection, we propose the Sharpness-
Aware Minimization with Fisher Mask (FSAM)
in detail, which reduces the computation of SAM
by sparse calculation.

To be specific, we compute only a fraction of the
elements in the perturbation vector ϵ, which would
be multiplied by a sparse binary mask m ∈ {0, 1}d.
To control the amount of perturbation, the sparse
mask m satisfies 1Tm = (1− s) · d, where the s
is the predefined sparse ratio and empirically set to
0.9. The objective function of FSAM is denoted as

min
w

fS(w + ρ
∇wf(w)⊙m

||∇wf(w)||2
), (6)

where⊙ is the Hadamard product, i.e., the element-
wise multiplication. For the stability of optimiza-
tion, we update the mask m with a fixed interval
(denoted as Fi) during training. The algorithm of
FSAM is shown in Algorithm 1.

To find the optimal mask during training, we
apply the Fisher information to achieve sparse
perturbation. The Fisher information is proposed
by (Fisher, 1922) to measures the information car-
ried by an observable random variable about the
unknown parameters of the distribution. The Fisher
information is defined by

F = Ex

[
Ey∇ log p(y|x)∇ log p(y|x)T

]
, (7)

where the p(y|x) is the output of model in machine
learning. However, due to the over-parameterized
model in deep learning, the computation of Fisher
information is unacceptable, i.e., F ∈ R|w|×|w|.
To save the computational effort, we approximate
Fisher information as the diagonal matrix, i.e., F ∈
R|w|. Consider the expectation in Equation 7, the
first one is the data distribution x ∼ p(x), which is

4066

Algorithm 1 Fisher SAM (FSAM)
Input: sparse ratio s, dense model w, binary mask m, update

interval Tm, base learning rate γ, v̂−1 = δ2, training set
S.

1: Initialize w and m randomly.
2: for epoch t = 1, 2 . . . T do
3: for each training iteration do
4: Sample a batch from S: B
5: Compute perturbation ϵ by Eq. 2
6: if t mod Tm = 0 then
7: Sample NFisher data from distribution S.
8: Compute Empirical Fisher by Equation 9.
9: m1← ArgTopK(F̂ , (1− s) · |w|)

10: m0← ArgTopK(−F̂ , s · |w|)
11: Update mask m by merging: m = m0 ∪m1.
12: end if
13: ϵ← ϵ⊙m
14: end for
15: Compute SAM gradient gt = ∇fB(w + ϵ)
16: vt = β2vt−1 + (1− β2)[gt]

2

17: v̂t = max(v̂t−1, vt)
18: w ← w − γ∇gt ⊙ 1√

v̂t
19: end for
20: return Final weight of model w

not available in most tasks. We approximate it by
sampling NFisher data from p(x):

F =
1

NFisher
Ey∇ log p(y|xi)2. (8)

The second expectation is over p(y|x), which can
be achieved by the label yi for data xi in supervised
learning. Finally, we calculate the Fisher informa-
tion as "Empirical Fisher":

F̂ =
1

NFisher
∇ log p(yi|xi)2. (9)

Since the empirical Fisher is the same size as the
weight, i.e., F̂ ∈ R|w|, the value of the element
in Fisher F̂ represents the importance of the cor-
responding element in weight w. Thus, we sort
the elements of F̂ in descending, and the weights
with top k Fisher values will be perturbed, i.e., the
corresponding element in mask will be set to 1:

m1← ArgTopK(F̂ , (1− s) · |w|), (10)

where m1 is the set whose elements in the mask m
are 1, i.e., m= {mi=1|mi∈m}, and ArgTopK
(x, k) returns the top k largest values among x. On
the other hand, the other weights with small Fisher
values will not be perturbed, i.e., the corresponding
element in mask will be set to 0:

m0← ArgTopK(F̂ , s · |w|). (11)

3.3 Theoretical Analysis
In this subsection, we theoretically analyze the con-
vergence and generalization of FSAM. Due to the
space limitation, we only show the convergence
analysis here, and the generalization analysis and
whole proof are presented in Appendix A.1.
Assumption 1. (L-smooth.) Consider f is differ-
entiable with gradient Lipschitz property: It exists
L > 0 s.t.

||∇f(w)−∇f(v)|| ≤ L||w − v||,∀w, v ∈ Rd.

Assumption 2. (Bounded stochastic gradients.)
The variance of stochastic gradient is bounded:

E[||∇fi(x)−∇f(x)||2] ≤ σ2

Assumption 3. (Bounded gradient.) The stochastic
gradient is bounded: It exists G ≥ 0 s.t.

||∇fi(w)||∞ ≤ G

Theorem 1. Consider the function f under the
assumption 1,2,3, and a fixed base learning rate γt
satisfies that γt ≤ δ

8L , we have

1

T

T−1∑

t=0

E||∇f(xt)||2 ≤
2Gf(x0)− f∗

γtT

+
20GL2ρ2

δ
+

2G3

T
d(

1

δ
− 1

G
)

+
4GγtL

δ

Lρ2

δ
+

4GγtL

δ

σ2

bδ

+
4γtLG

3

T
d(G2 − δ2)

The Theorem 1 shows that when T is large, FSAM
could achieve the linear speedup convergence rate
with respect to mini-batch size b under the setting

of γt = O(
√

b
T) and ρ = O(

√
1
bT), i.e.,

1

T

T−1∑

t=0

E||∇f(xt)||2 = O(

√
1

bT
)

4 Experimental Setup

4.1 Tasks and Datasets
To investigate the effectiveness and universality of
our FSAM method, we conduct extensive experi-
ments on various NLP tasks. Specifically, different
from Bahri et al. (2022) that only verify the method
on several language understanding tasks, we eval-
uate our method on both language understanding
and generation tasks.

4067

Table 1: Experimental results (dev scores) on various language understanding benchmarks. Comparison between
vanilla SAM and our proposed FSAM applied to four widely used large-scale PLMs. The best results for each
setting are in bold. “AVG.” denotes the average scores on all tasks, which are underlined. Results show that our
FSAM brings consistent improvements across all understanding tasks among different PLMs.

Method CoLA MRPC STS-B RTE CB BoolQ WSC WiC
AVG.

Mcc. Acc. F1. Pear. Spea. Acc. Acc. Acc. Acc. Acc.

BERT-large
Adam 62.8 87.3 91.1 89.5 89.3 70.7 87.5 74.3 68.3 72.7 79.35
Adam+SAM 62.1 87.9 91.4 89.8 89.4 71.5 91.1 72.9 68.3 74.1 79.85
Adam+FSAM 63.4 89.0 92.0 90.4 89.9 74.4 94.6 75.3 68.5 74.4 81.19

ELECTRA-large
Adam 69.0 89.2 92.4 92.1 92.1 87.3 91.1 85.6 83.6 74.4 85.68
Adam+SAM 63.9 91.9 94.2 92.4 92.4 89.2 92.9 82.2 84.6 72.4 85.61
Adam+FSAM 69.6 92.4 94.5 92.3 92.5 88.8 96.4 85.9 89.4 74.1 87.59

ALBERT-xxlarge
Adam 71.1 90.7 93.3 92.9 92.7 87.0 89.3 86.8 85.6 75.5 86.49
Adam+SAM 69.9 90.7 93.2 92.6 92.4 88.1 91.1 87.7 82.7 76.6 86.50
Adam+FSAM 72.3 91.9 94.2 93.0 92.8 88.8 91.1 87.9 86.5 76.6 87.51

RoBERTa-large
Adam 66.7 90.4 93.1 92.1 92.0 87.0 92.8 86.0 78.1 73.3 85.15
Adam+SAM 68.5 90.7 93.3 91.5 91.3 87.7 96.4 84.2 81.3 74.0 85.89
Adam+FSAM 69.5 90.7 93.2 91.9 91.6 87.7 98.2 86.8 81.5 74.5 86.56

Language Understanding Tasks. Following
many previous works (Vu et al., 2022; Bahri et al.,
2022; Zhong et al., 2022), we conduct experiments
on a combination of tasks from GLUE (Wang
et al., 2018a) and SuperGLUE (Wang et al.,
2019) benchmarks, including linguistic acceptabil-
ity (CoLA), natural language inference (RTE, CB),
paraphrase and similarity (MRPC and STS-B),
question answering (BoolQ), word sense disam-
biguation (WiC) and coreference resolution (WSC).
In practice, we evaluate the performance with Accu-
racy (“Acc.”) metric for most tasks, except the addi-
tional F1 score for MRPC, the Pearson-Spearman
correlations (“Pear./Spea.”) for STS-B and the
Matthew correlation (“Mcc.”) for CoLA.

Language Generation Tasks. We also use two
popular generation tasks following Liu et al.
(2021); Zhang et al. (2022) as the benchmarks, i.e.,
abstractive summarization (XSUM) and grammati-
cal error correction (CoNLL2014). For the XSUM,
we report results in terms of standard ROUGE met-
rics (Lin, 2004), i.e., Rouge-1, Rouge-2 and Rouge-
L, respectively. For the CoNLL2014, MaxMatch
scores (Dahlmeier and Ng, 2012) are used for eval-
uation with Precision, Recall, and F0.5 values 4.

4 Due to the space limitation, we present the details of all
used tasks and datasets in Appendix A.2

4.2 Implementations

In practice, we use the pretrained models and
code in HuggingFace5 (Wolf et al., 2019). Specif-
ically, for the understanding tasks, we employ 4
widely used PLMs in our study, i.e., BERT (Devlin
et al., 2019), ELECTRA (Clark et al., 2019b), AL-
BERT (Lan et al., 2019) and RoBERTa (Liu et al.,
2019). Furthermore, an representative sequence-
to-sequence model, BART (Lewis et al., 2020), is
used for the generation tasks.

We compare our proposed FSAM method with
the base optimizer (without using any SAM ap-
proach) and vanilla SAM method. Specifically, the
Adam (Kingma and Ba, 2015) is used as the base
optimizer to tune our models. The β2 and weight
decay of Adam are set as 0.999 and 0.01. SAM
and FSAM use the same settings as above. More
specially, we grid search for the neighborhood size
of SAM and FSAM on {1e-2, 5e-3, 1e-3}. Ad-
ditionally, for each downstream task, we follow
the same hyper-parameter settings from the prior
works (Lewis et al., 2020; Xu et al., 2021). The
detailed hyper-parameters of fine-tuning on these
downstream tasks can be seen in Appendix A.3.
We report the averaged results over 5 random seeds
for NLU tasks, while for NLG tasks, we follow ex-

5 https://github.com/huggingface/transformers

4068

https://github.com/huggingface/transformers

Table 2: Experimental results on two popular generation tasks. We use the representative sequence-to-sequence
PLM (BART) in this study. It shows that our FSAM works well on the language generation tasks as well. “‡”
indicates that FSAM is significantly better than baselines at significance level p<0.05.

Method XSUM CoNLL2014
AVG.

Rouge_1 Rouge_2 Rouge_L Precision Recall F_0.5
BART-large

Adam 44.35 21.66 36.62 52.94 41.18 50.08 41.14
Adam+SAM 44.81 21.95 36.97 53.52 41.76 50.70 41.62
Adam+FSAM 45.03‡ 22.15‡ 37.14‡ 54.33‡ 42.15‡ 51.36‡ 42.03

BART-base
Adam 39.38 17.21 31.93 43.27 34.11 41.06 34.49
Adam+SAM 40.38 18.00 33.00 50.39 33.51 45.78 36.84
Adam+FSAM 40.60‡ 18.31‡ 33.28‡ 51.77‡ 34.04‡ 46.89‡ 37.48

Table 3: Results of smaller PLMs with different opti-
mizers on parts of understanding tasks. BERT-base and
RoBERTa-base are used in this experiment.

Method CoLA MRPC STS-B RTE

Mcc. Acc. F1. Pear. Spea. Acc.

BERT-base
Adam 54.3 85.8 90.0 89.2 88.9 68.4
-w SAM 53.0 87.3 90.9 89.3 89.1 66.4
-w FSAM 53.8 87.7 91.3 89.5 89.2 70.0

RoBERTa-base
Adam 61.3 87.5 90.6 90.6 90.4 78.3
-w SAM 60.6 89.2 92.1 90.5 90.4 78.7
-w FSAM 61.4 89.5 92.5 90.7 90.4 80.1

isting works (Collins et al., 2005; Ding et al., 2021)
and use the Bootstrap test (Berg-Kirkpatrick et al.,
2012) to calculate the statistical significance.

5 Main Results

FSAM outperforms vanilla SAM by a large mar-
gin across different PLMs. Table 1 shows the
results of all understanding tasks. We can ob-
serve that SAM achieves better average scores
than the base Adam in most scenarios, confirming
the effectiveness of SAM in improving generaliza-
tion (Bahri et al., 2022). Moreover, with the help
of our Fisher mask strategy, FSAM consistently im-
proves the vanilla SAM by a large margin across all
PLMs. Specifically, FSAM yields an improvement
of up to 1.98 average score on ELECTRA, 1.01
average score on ALBERT and 1.34 average score
on BERT. The average improvement on RoBERTa
is slight but also higher than 0.67.

FSAM also works well on the generation tasks.
Prior works (Kwon et al., 2021; Bahri et al., 2022),

which involve the study of SAM or its variants, usu-
ally conduct experiments on the image or text clas-
sification tasks, e.g., CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet (Krizhevsky et al., 2012). The
effectiveness of optimizer on other types of tasks,
e.g, generation tasks in NLP, has not been explored
well. Thus far, we evaluate our FSAM on the gen-
eration tasks and present the results in Table 2. It
can be seen that FSAM can deliver promising re-
sults against the vanilla SAM as well. Note that
both FSAM and SAM outperform the base Adam
optimizer, indicating the applicability of SAM and
its variants on generation tasks.

FSAM improves performance on various model
sizes. To investigate whether our FSAM is help-
ful for various scales of PLMs, we evaluate the
performance on smaller PLMs, i.e., BERT-base,
RoBERTa-base and BART-base. The results are
showed in Table 3 and Table 2, respectively. We
can see that FSAM consistently outperforms the
vanilla SAM on multiple smaller PLMs, to be spe-
cific, the relative improvements of BERT-base and
BART-base are up to 0.92 and 0.64 average scores.
These results prove that FSAM works well on vari-
ous model sizes.

6 Analysis and Discussion

In this section, we examine whether our approach
works in more complicated scenarios, and provide
a more intuitive comparison between different opti-
mizers towards the generalization. More analysis
and results can be found in Appendix.

6.1 Parameter Analysis
There are two important hyper-parameters (i.e., s
and Fi) in our FSAM, where the s refers to the

4069

Figure 1: Results of FSAM at various sparse rates.
RoBERTa-base models is used.

Table 4: Average performance (CoLA, MRPC, STS-B
and RTE) of FSAM with different Fi, which denotes the
fixed interval for updating Fisher mask.

Method 10 50 100 200 500

FSAM-BERTbase 83.9 84.0 84.3 84.2 84.1
FSAM-RoBERTabase 80.0 80.1 80.3 80.2 80.2

sparse ratio and Fi is used to control the update
frequency of Fisher mask. Here, we evaluate the
performance of FSAM with different s and Fi on
several downstream tasks to analyze their effects.

Firstly, Figure 1 shows the results based on dif-
ferent s. We can observe FSAM outperforms the
vanilla SAM and base Adam in most settings, indi-
cating the robustness of FSAM. Specifically, when
the sparse ratio is 0.9, FSAM consistently achieves
the best performance on both tasks. Secondly, for
Fi, we show the performance of FSAM on different
Fi in Table 4. Too small Fi (e.g., 10) may lead to
the Fisher mask updating too fast, thus affecting
the stability of model optimization. Recall that we
set s = 0.9 and Fi = 100 as the default setting.

6.2 Complementarity with Other Optimizers

As aforementioned, we show the effectiveness of
our Fisher mask strategy on SAM optimization.
To further prove the universality of our proposed
strategy, we examine whether the strategy is com-
plementary with i) more base optimizers and ii)
other efficient SAM variants.

To verify i), we use the additional AMSGrad and
Adagrad as the base optimizers and evaluate the
performance with different strategies, respectively.
Table 5 lists the results of RoBERTa-large. It can
be seen that FSAM consistently achieves the best
performance upon these base optimizers, showing
our strategy is not sensitive to the base optimizers.

For ii), we apply our strategy to another
two cutting-edge SAM-variant optimizers, i.e.,
ESAM (Du et al., 2021) and GSAM (Zhuang et al.,

Table 5: Results of other base optimizers, i.e., AMSGrad
and Adagrad. RoBERTa-large is used.

Method CoLA MRPC STS-B RTE

Mcc. Acc. F1. Pear. Spea. Acc.

RoBERTa-large
AMSGrad 66.8 90.2 92.7 91.7 91.5 86.7
-w SAM 67.3 90.2 93.0 91.6 91.4 87.0
-w FSAM 68.7 90.4 93.2 91.2 91.1 87.7

Adagrad 59.3 81.1 87.4 88.2 88.5 80.9
-w SAM 57.5 88.0 91.4 84.6 85.7 83.4
-w FSAM 57.5 90.0 92.8 86.8 87.1 86.3

Table 6: Results of some SAM variants (i.e., ESAM (Du
et al., 2021) and GSAM (Zhuang et al., 2021)) with our
Fisher-masked strategy, denoted as “F_*”.

Method CoLA MRPC STS-B RTE

Mcc. Acc. F1. Pear. Spea. Acc.

RoBERTa-large
Adam 66.7 90.4 93.1 92.1 92.0 87.0
-w ESAM 68.5 90.7 93.3 91.3 90.9 86.6
-w F_ESAM 68.5 90.9 93.5 91.6 91.0 90.0

-w GSAM 67.0 89.7 92.6 91.9 91.7 86.3
-w F_GSAM 70.0 90.7 93.2 92.3 92.0 86.6

2021). Table 6 shows the results, where F_ESAM
and F_GSAM refer to the optimizations using our
strategy. When evaluating RoBERTa-large on these
tasks, compared to the vanilla ESAM and GSAM,
our method can bring a 0.70 average score improve-
ment. This indicates that our Fisher mask strategy
is not only beneficial to the vanilla SAM, but also
can be applied to other efficient SAM variants.

6.3 Results in Low-resource Scenarios

Prior works (Chen et al., 2021; Bahri et al., 2022)
show that SAM helps more when there is less train-
ing data. Here, we verify how our Fisher mask
strategy affects the effectiveness of SAM in low-
resource scenarios. In practice, we follow Bahri
et al. (2022) and sub-sample the training splits
for several GLUE datasets at rates ranging from
10% to 90%. Notably, due to the space limitation,
we only report parts of results on BERT-large and
RoBERTa-large in Figure 2.

We can observe consistent gains from both SAM
and our FSAM across all sizes of sub-sampled
training sets, which confirms the statement in prior
work (Bahri et al., 2022). Moreover, it can also
be seen that our FSAM improves the vanilla SAM
by a large margin in low-resource scenarios, espe-
cially when there is only 20% training data. More

4070

Figure 2: Results at various training data sampling rates. BERT-large and RoBERTa-large models are used. We can
see that our proposed module improves SAM by a large margin across all data size regimes.

Figure 3: Analysis of task generalization. The model is
fine-tuned on QNLI task and transferred to four different
tasks. We can see that our FSAM consistently brings
better generalization compared with vanilla SAM.

specifically, when fine-tuning the RoBERTa-large
on the STS-B dataset, the relative improvements
of FSAM are up to 15.0 and 15.1 in terms of accu-
racy and F1 score, respectively. These results show
that our method is more helpful in low-resource
scenarios.

6.4 Does FSAM Bring Better Generalization?

We prove the effectiveness of our FSAM by large-
scale experiments as above. Here, to examine
whether FSAM indeed brings better generalization,
we i) measure the generalization properties (i.e.,
task generalization) of different optimizations, and
ii) visualize the generalization of models via the
training loss landscapes.

Task Generalization. The common wisdom is
that models with better generalization would per-
form better on out-of-domain data (Xu et al., 2021).
Thus, to measure the generalization ability of the
model quantitatively, we follow the experiments
from Xu et al. (2021) and evaluate the performance
of various fine-tuned models on out-of-domain data.
In practice, we first fine-tune RoBERTa-large on
the QNLI task (one of GLUE tasks) and then trans-
fer it to other tasks, i.e., CoLA, MRPC, STS-B and
RTE. The results of different optimization strate-
gies are illustrated in Figure 3.

We can observe that FSAM consistently outper-
forms the base Adam and vanilla SAM on different
transferred tasks. To be more specific, compared
with vanilla SAM, our FSAM brings a 2.37 relative
average improvement score on these tasks, indicat-
ing that our method helps more in improving the
generalization of model.

Visualization of Landscape. Here, we visual-
ize the loss landscapes of RoBERTa-base model
fine-tuned on CoLA with different optimizers. In
practice, we follow Li et al. (2018); Zan et al.
(2022) and show the 3D loss surface results in
Figure 4 by sampling 25×25 points in the range
of [-1, 1] from random “filter normalized” direc-
tions (Li et al., 2018). Additionally, following Hao
et al. (2019); He et al. (2021), we also plot the
1D loss curve in Figure 5 by linear interpolation
between the pretrained model weights before (de-
noted as θ0) and after (denoted as θ1) fine-tuning,
i.e., “θ1+α · (θ1− θ0)”, where α is a scalar param-
eter that is ranged from -1 to 1. We can find that

4071

Figure 4: The loss surface of RoBERTa-base fine-tuned on CoLA with different optimizers. It can be seen that
FSAM smooths the loss surface effectively, i.e., improving the model generalization.

Figure 5: 1D visualization of loss landscapes of
RoBERTa-base model fine-tuned on different tasks.

the landscape of FSAM is much flatter than both
base Adam and SAM, especially in the area of low
loss. These results prove that FSAM can smooth
the loss landscape and improve the generalization
of PLMs effectively.

7 Conclusion

In this paper, we improve the recently-proposed
SAM optimization method with a novel Fisher
mask strategy, and propose a new approach FSAM.
Different from the vanilla SAM that adds a con-
stant perturbation to all parameters, FSAM uses
the Fisher information to calculate the Fisher mask
and further obtains the sparse perturbation. Such a
method can not only reduce the computation cost
of optimization potentially, but also make the op-
timizer focus on the optimization of the important
sharper parameters. Extensive experiments on five
PLMs and various language understanding and gen-
eration tasks show that our FSAM consistently im-
proves the performance of SAM by a large margin
across all PLMs and tasks. Additionally, in-depth
analysis and discussion demonstrate the robustness
and universality of FSAM on improving the gener-
alization of language models.

Limitations

Indeed, our work has some potential limitations,
and we will discuss them in this section. Firstly,
we only evaluate the BART on two generation

tasks with different optimizers, and prove the ef-
fectiveness of our FSAM optimization method. It
would be more valuable to consider other sequence-
to-sequence PLMs and more generation tasks,
e.g., fine-tuning T5 (Raffel et al., 2020) on CNN-
DM (Hermann et al., 2015).

Additionally, as aforementioned in Section 1,
we do not achieve the actual sparse training in
this work, due to the limitation of the hardware.
Specifically, to actually accelerate the unstructured
sparsity (fine-grained sparsity), we need to imple-
ment the relevant sparse matrix calculation using
the CUDA API on the recent NVIDIA Ampere
A100 GPUs (Choquette et al., 2021) equipped with
Sparse Tensor Cores (Pool, 2020) (Notably, al-
though there is python API (i.e., ASP) provided
by NVIDIA for accelerating the unstructured spar-
sity, it is only applicable to accelerate the model
parameter sparsity, but not to the gradient-level
sparse acceleration in our FSAM scenario). Un-
fortunately, it is relatively impracticable for us to
do that. However, we still believe that FSAM has
great potential to achieve true training acceleration
in the future, with the development of hardware for
fine-grained sparse operation.

Acknowledgements

We are grateful to the anonymous reviewers and
the area chair for their insightful comments and
suggestions. This work was supported in part by
the National Natural Science Foundation of China
under Grants 62141112, 62076186 and 62225113,
and in part by the Science and Technology Ma-
jor Project of Hubei Province (Next-Generation AI
Technologies) under Grant 2019AEA170. The nu-
merical calculations in this paper have been done
on the supercomputing system in the Supercomput-
ing Center of Wuhan University.

4072

References
Dara Bahri, Hossein Mobahi, and Yi Tay. 2022.

Sharpness-aware minimization improves language
model generalization. In ACL.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical signifi-
cance in nlp. In EMNLP.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
SemEval-2017.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong.
2021. When vision transformers outperform resnets
without pre-training or strong data augmentations.
arXiv.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In AAAI.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux,
Nick Stam, and Ronny Krashinsky. 2021. Nvidia
a100 tensor core gpu: Performance and innovation.
IEEE Micro.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2019b. Electra: Pre-training
text encoders as discriminators rather than generators.
In ICLR.

Michael Collins, Philipp Koehn, and Ivona Kučerová.
2005. Clause restructuring for statistical machine
translation. In ACL.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better eval-
uation for grammatical error correction. In NAACL.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Investi-
gating projection in naturally occurring discourse. In
proceedings of Sinn und Bedeutung.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F Wong,
Dacheng Tao, and Zhaopeng Tu. 2021. Progres-
sive multi-granularity training for non-autoregressive
translation. In Findings of the ACL.

Liang Ding, Longyue Wang, Shuming Shi, Dacheng
Tao, and Zhaopeng Tu. 2022. Redistributing low-
frequency words: Making the most of monolingual
data in non-autoregressive translation. In ACL.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou,
Liangli Zhen, Rick Siow Mong Goh, and Vincent YF
Tan. 2021. Efficient sharpness-aware minimization
for improved training of neural networks. arXiv.

Ronald A Fisher. 1922. On the mathematical founda-
tions of theoretical statistics. Philosophical transac-
tions of the Royal Society of London. Series A, con-
taining papers of a mathematical or physical charac-
ter.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and
Behnam Neyshabur. 2020. Sharpness-aware mini-
mization for efficiently improving generalization. In
ICLR.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In ACL.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2019. Visu-
alizing and understanding the effectiveness of bert.
In EMNLP.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. In ICLR.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-based
tuning for pretrained language model adaptation. In
ACL.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NeurIPS.

Sepp Hochreiter and Jürgen Schmidhuber. 1994. Sim-
plifying neural nets by discovering flat minima. In
NeurIPS.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. TACL.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
2016. On large-batch training for deep learning: Gen-
eralization gap and sharp minima. arXiv.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

4073

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learn-
ing multiple layers of features from tiny images.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and
In Kwon Choi. 2021. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of
deep neural networks. In ICML.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In ICLR.

Beatrice Laurent and Pascal Massart. 2000. Adaptive es-
timation of a quadratic functional by model selection.
Annals of Statistics, pages 1302–1338.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In AAAI.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. In ACL.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. In NeurIPS.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev,
and Martin Jaggi. 2019. Dynamic model pruning
with feedback. In ICLR.

Xuebo Liu, Longyue Wang, Derek F Wong, Liang Ding,
Lidia S Chao, and Zhaopeng Tu. 2021. Understand-
ing and improving encoder layer fusion in sequence-
to-sequence learning. In ICLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai
Sun, Rongrong Ji, and Dacheng Tao. 2022. Make
sharpness-aware minimization stronger: A sparsified
perturbation approach. arXiv preprint.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.
2019. When does label smoothing help? In NeurIPS.

Shashi Narayan, Shay B Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In EMNLP.

Behnam Neyshabur, Srinadh Bhojanapalli, David
McAllester, and Nati Srebro. 2017. Exploring gener-
alization in deep learning. In NeurIPS.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In CoNLL-2014.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. In
NAACL.

Jeff Pool. 2020. Accelerating sparsity in the nvidia
ampere architecture. GTC 2020.

Weizhen Qi, Yeyun Gong, Yu Yan, Can Xu, Bolun Yao,
Bartuer Zhou, Biao Cheng, Daxin Jiang, Jiusheng
Chen, Ruofei Zhang, et al. 2021. Prophetnet-x:
Large-scale pre-training models for english, chinese,
multi-lingual, dialog, and code generation. In ACL.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In ACL.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. JMLR.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In ACL.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018a. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In EMNLP.

Bing Wang, Liang Ding, Qihuang Zhong, Ximing Li,
and Dacheng Tao. 2022. A contrastive cross-channel
data augmentation framework for aspect-based senti-
ment analysis. arXiv.

4074

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neu-
big. 2018b. Switchout: an efficient data augmen-
tation algorithm for neural machine translation. In
EMNLP.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
TACL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. 2020.
Adversarial weight perturbation helps robust general-
ization. In NeurIPS.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. In
EMNLP.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS.

Changtong Zan, Liang Ding, Li Shen, Yu Cao, Weifeng
Liu, and Dacheng Tao. 2022. On the complemen-
tarity between pre-training and random-initialization
for resource-rich machine translation. In COLING.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In ICLR.

Zheng Zhang, Liang Ding, Dazhao Cheng, Xuebo Liu,
Min Zhang, and Dacheng Tao. 2022. Bliss: Robust
sequence-to-sequence learning via self-supervised
input representation. arXiv preprint.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. 2021.
Regularizing neural networks via adversarial model
perturbation. In CVPR.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2022. E2s2: Encoding-enhanced
sequence-to-sequence pretraining for language un-
derstanding and generation. arXiv.

Qihuang Zhong, Fanzhou Zeng, Fei Liao, Juhua Liu,
Bo Du, and Jedi S Shang. 2021. Joint image and
feature adaptative attention-aware networks for cross-
modality semantic segmentation. Neural Computing
and Applications.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui,
Hartwig Adam, Nicha C Dvornek, James s Duncan,
Ting Liu, et al. 2021. Surrogate gap minimization
improves sharpness-aware training. In ICLR.

4075

A Appendix

A.1 Missing Proof

Lemma 1. For any two vectors x, y ∈ Rd, and any
scalar α > 1, we have the following inequality

⟨x, y⟩ ≤ α2

2
||x||2 + 1

2α2
||y||2

Proof.

RHS =
α2

2

d∑

j=1

(x)2j +
1

2α2

d∑

j=1

(y)2j

≥
d∑

j=1

2

√
α2

2
· (x)2j ·

1

2α2
(y)2j = LHS

Lemma 2. We have the following inequality:

⟨∇f(xt),
γt
b

∑

u∈B
∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙

(
1√
ˆvt−1

− 1√
v̂t
)⟩ ≤ γtG

2|| 1√
ˆvt−1

− 1√
v̂t
||1

Proof.

⟨∇f(xt),
γt
b

∑

i∈B
∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)

⊙ (
1√
ˆvt−1

− 1√
v̂t
)⟩

≤ γt
b

d∑

j=1

|(∇f(xt))(j)|

× |
∑

i∈B
∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)

⊙ (
1√
ˆvt−1

− 1√
v̂t
)(j)|

≤ γtG

b

d∑

j=1

∑

i∈B
|∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)

⊙ (
1√
ˆvt−1

− 1√
v̂t
)(j)|

≤ γtG
2

b

d∑

j=1

∑

i∈B
|(1√

ˆvt−1

− 1√
v̂t
)(j)|

≤ γtG
2||(1√

ˆvt−1

− 1√
v̂t
)(j)||1

Lemma 3. With the term defined before, we have
the following inequality

⟨∇f(xt),
γt
b

∑

i∈B
∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

⊙ 1√
v̂t−1

− γt
b

∑

i∈B
∇fi(xt

+ ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙ 1√

v̂t−1

⟩

≤ γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + 2µ2γtL
2ρ2

ϵ
,

where the µ > 1 is a undetermined scalar.

Proof.

LHS = ⟨∇f(xt)⊙
√

1√
v̂t−1

,

γt
b

∑

i∈B
(∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

−∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
))⊙

√
1√
v̂t−1

⟩

4076

By using Lemma 1, we have

LHS ≤ µ2γt
2b2
||
∑

i∈B
(∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

−∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
))⊙

√
1√
v̂t−1

||2

+
γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2

≤ µ2γt
2b

∑
||(∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

−∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
))⊙

√
1√
v̂t−1

||2

+
γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2

≤ µ2γt
2b

∑
||∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

−∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)||2

· ||
√

1√
v̂t−1

||2∞ +
γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2

≤ γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + µ2γtL
2ρ2

2bδ
·

∑
||∇f(xt)⊙mt

||∇f(xt)||
−

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
||2

≤ γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + µ2γtL
2ρ2

2bδ
·

∑
||(∇f(xt)||∇f(xt)||

−
∑∇fi(xt)
||∑∇fi(xt)||

)⊙mt||2

≤ γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + µ2γtL
2ρ2

2bδ
·

∑
|| ∇f(xt)||∇f(xt)||

−
∑∇fi(xt)
||∑∇fi(xt)||

||2 · ||mt||2∞

≤ γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + µ2γtL
2ρ2

2bδ
·

∑
|| ∇f(xt)||∇f(xt)||

−
∑∇fi(xt)
||∑∇fi(xt)||

||2

≤ γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + 2µ2γtL
2ρ2

δ

The µ > 0 is the term to be determined.

Lemma 4. We have the following inequality:

E⟨∇f(xt),−
γt
b

∑

i∈B
∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

⊙ 1√
v̂t−1

⟩ ≤ −γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+ E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + γtβ
2L2ρ2

2δ
,

where the β > 1 is a undetermined scalar.

Proof.

LHS =− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E⟨∇f(xt),
γt
b

∑

i∈B
(∇f(xt)

−∇fi(xt + ρ
∇f(xt)⊙mt

||∇f(xt)||
))⊙ 1√

v̂t−1

⟩

=− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E⟨∇f(xt),
γt
b

∑

i∈B
(∇fi(xt)

−∇fi(xt + ρ
∇f(xt)⊙mt

||∇f(xt)||
))⊙ 1√

v̂t−1

⟩

4077

By using the Lemma 1, we have

LHS ≤− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2

+E
γtβ

2

2
||1
b

∑

i∈B
(∇fi(xt)

−∇fi(xt + ρ
∇f(xt)⊙mt

||∇f(xt)||
))⊙

√
1√
v̂t−1

||2

≤− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2

+E
γtβ

2

2δ
||1
b

∑

i∈B
(∇fi(xt)

−∇fi(xt + ρ
∇f(xt)⊙mt

||∇f(xt)||
))||2

≤− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2

+E
γtβ

2

2bδ

∑

i∈B
||(∇fi(xt)

−∇fi(xt + ρ
∇f(xt)⊙mt

||∇f(xt)||
))||2

By the definition of L-smooth, we have

LHS ≤− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2

+
γtβ

2L2ρ2

2bδ
E
∑

i∈B
|| ∇f(xt)||∇f(xt)||

⊙mt||2

≤− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2

+
γtβ

2L2ρ2

2δ

Lemma 5. We have the following inequality:

L

2
E||xt+1 − xt||2 ≤

γ2t L

2
[3
1 + α

αδ

· (E||∇f(xt)⊙
√

1√
v̂t−1

||2 + Lρ2

δ
)

+
σ2

bδ
+ (1 + α)G2E||(1√

v̂t
− 1√

v̂t−1

)||2]

Proof.

L

2
E||xt+1 − xt||2

=
L

2
E||γt

b

∑
(∇fi(xt

+
ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
))⊙ 1√

v̂t
||2

=
Lγ2t
2

E||1
b

∑
(∇fi(xt +

ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)

⊙ 1√
v̂t−1

) +
1

b

∑
(∇fi(xt +

ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
))

⊙ (
1√
v̂t
− 1√

v̂t−1

)||2

By using the Lemma 1, we can obtain

L

2
E||xt+1 − xt||2

≤ Lγ2t
2

[(1 +
1

α
)E||1

b

∑
(∇fi(xt+

ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙ 1√

v̂t−1

)||2

+ (1 + α)E||1
b

∑
(∇fi(xt+

ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
))⊙ (

1√
v̂t
− 1√

v̂t−1

)||2]

≤ Lγ2t
2

[(1 +
1

α
)E||1

b

∑
(∇fi(xt+

ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙ 1√

v̂t−1

)||2

+ (1 + α)G2E||(1√
v̂t
− 1√

v̂t−1

)||2]

4078

Similar to the proof of Lemma 3, we have

L

2
E||xt+1 − xt||2

≤ Lγ2t
2

[(1 +
1

α
)E||1

b

∑
(∇fi(xt

+
ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙

√
1√
v̂t−1

)||2

· ||
√

1√
v̂t−1

||2∞

+ (1 + α)G2E||(1√
v̂t
− 1√

v̂t−1

)||2]

≤ Lγ2t
2

[(
1 + α

αδ
)E||1

b

∑
(∇fi(xt

+
ρ

b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙

√
1√
v̂t−1

)||2

+ (1 + α)G2E||(1√
v̂t
− 1√

v̂t−1

)||2]

By splitting the term E||1b
∑

(∇fi(xt

+ ρ
b

∑∇fi(xt)⊙mt

||∑∇fi(xt)||)⊙
√

1√
v̂t−1

), we have

LHS ≤ Lγ2t
2

[3(
1 + α

αδ
)E||∇f(xt)⊙

√
1√
v̂t−1

||2

+ ||(1
b

∑
∇fi(xt)−∇f(xt))⊙

√
1√
v̂t−1

||2

+ ||(1
b

∑
(∇fi(xt + ρ

∑∇fi(xt)
||∑∇fi(xt)||

)−∇fi(xt))

⊙
√

1√
v̂t−1

||2 + (1 + α)G2E||(1√
v̂t
− 1√

v̂t−1

)||2]

≤ Lγ2t
2

[3(
1 + α

αδ
)E||∇f(xt)⊙

√
1√
v̂t−1

||2 + σ2

bδ

+ ||(1
b

∑
(∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)−∇fi(xt))

⊙
√

1√
v̂t−1

||2 + (1 + α)G2E||(1√
v̂t
− 1√

v̂t−1

)||2]

≤ Lγ2t
2

[3(
1 + α

αδ
)E||∇f(xt)⊙

√
1√
v̂t−1

||2 + σ2

bδ

+
1

δ
||(1

b

∑
(∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)

−∇fi(xt))||2 + (1 + α)G2E||(1√
v̂t
− 1√

v̂t−1

)||2]

≤ γ2t L

2
[3
1 + α

αδ
(E||∇f(xt)⊙

√
1√
v̂t−1

||2 + Lρ2

δ
)

+
σ2

bδ
+ (1 + α)G2E||(1√

v̂t
− 1√

v̂t−1

)||2]

Theorem 2. By using the definition of L-smooth
and the Lemma 2, 3, 4 and 5, we have

1

T

T−1∑

t=0

E||∇f(xt)||2

≤ 2Gf(x0)− f∗

γtT

+
20GL2ρ2

δ
+

2G3

T
d(

1

δ
− 1

G
)

+
4GγtL

δ

Lρ2

δ
+

4GγtL

δ

σ2

bδ

+
4γtLG

3

T
d(G2 − δ2)

Proof.

f(xt+1) ≤f(xt) + ⟨∇f(xt), xt+1 − xt⟩

+
L

2
||xt+1 − xt||2

4079

By re-range it, we obtain

f(xt+1)− f(xt)

≤⟨∇f(xt), xt+1 − xt⟩+
L

2
||xt+1 − xt||2

=⟨∇f(xt),−
γt
b

∑

i∈B
∇fi(xt

+ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙ 1√

v̂t
⟩+ L

2
||xt+1 − xt||2

=⟨∇f(xt),−
γt
b

∑

i∈B
∇fi(xt

+ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙ 1√

v̂t−1

⟩

+⟨∇f(xt),
γt
b

∑

i∈B
∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)

⊙(1√
v̂t−1

− 1√
v̂t
)⟩+ L

2
||xt+1 − xt||2

=⟨∇f(xt),−
γt
b

∑

i∈B
∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

⊙ 1√
v̂t−1

⟩+ ⟨∇f(xt),
γt
b

∑

i∈B
∇fi(xt+

ρ
∇f(xt)⊙mt

||∇f(xt)||
)⊙ 1√

v̂t−1

− γt
b

·
∑

i∈B
∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙ 1√

v̂t−1

⟩

+⟨∇f(xt),
γt
b

∑

i∈B
∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)

⊙(1√
v̂t−1

− 1√
v̂t
)⟩+ L

2
||xt+1 − xt||2

From the Lemma 2, we have the following inequal-
ity. Specifically,

f(xt+1)− f(xt)

≤ ⟨∇f(xt),−
γt
b

∑

i∈B
∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

⊙ 1√
v̂t−1

⟩

+ ⟨∇f(xt),
γt
b

∑

i∈B
∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

⊙ 1√
v̂t−1

− γt
b

∑

i∈B
∇fi(xt + ρ

∑∇fi(xt)⊙mt

||∑∇fi(xt)||
)⊙ 1√

v̂t−1

⟩

+ γtG
2|| 1√

ˆvt−1

− 1√
v̂t
||1 +

L

2
||xt+1 − xt||2

From the Lemma 3, we have the following inequal-
ity. Specifically,

f(xt+1)− f(xt)

≤⟨∇f(xt),−
γt
b

∑

i∈B
∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

⊙ 1√
v̂t−1

⟩+ L

2
||xt+1 − xt||2

+
γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + 2µ2γtL
2ρ2

δ

+γtG
2|| 1√

ˆvt−1

− 1√
v̂t
||1 +

L

2
||xt+1 − xt||2

By taking the expectation, we have the following
inequality. Specifically,

Ef(xt+1)− f(xt)

≤E⟨∇f(xt),−
γt
b

∑

i∈B
∇fi(xt + ρ

∇f(xt)⊙mt

||∇f(xt)||
)

⊙ 1√
v̂t−1

⟩+ L

2
E||xt+1 − xt||2

+
γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + 2µ2γtL
2ρ2

δ

+γtG
2|| 1√

v̂t−1

− 1√
v̂t
||1

From the Lemma 4, we have the following inequal-
ity. Specifically,

Ef(xt+1)− f(xt)

≤− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + γtβ
2L2ρ2

2δ

+
L

2
E||xt+1 − xt||2 +

2µ2γtL
2ρ2

δ

+
γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2

+γtG
2|| 1√

v̂t−1

− 1√
v̂t
||1

4080

From the Lemma 5, we can obtain

Ef(xt+1)− f(xt)

≤− γt||∇f(xt)⊙
√

1√
v̂t−1

||2

+E
γt
2β2
||∇f(xt)⊙

√
1√
v̂t−1

||2 + γtβ
2L2ρ2

2δ

+
2µ2γtL

2ρ2

δ
+

γt
2µ2
||∇f(xt)⊙

√
1√
v̂t−1

||2

+γtG
2|| 1√

v̂t−1

− 1√
v̂t
||1

+
γ2t L

2
[3
1 + α

αδ
(E||∇f(xt)⊙

√
1√
v̂t−1

||2 + Lρ2

δ
)

+
σ2

bδ
+ (1 + α)G2E||(1√

v̂t
− 1√

v̂t−1

)||2]

=− γt(1−
1

2µ2
− 1

2β2
− 3µL(1 + α)

2α2
)

·E||∇f(xt)⊙
√

1√
v̂t−1

||2

+
2µ2γtL

2ρ2

δ
+ γtG

2E|| 1√
v̂t
− 1√

v̂t−1

||1

+
γtβ

2L2ρ2

2δ
+

3γ2t L(1 + α)

2αδ
(
Lρ2

δ
+

σ2

bδ
)

+
γ2t L(1 + α)G2

2
E||(1√

v̂t
− 1√

v̂t−1

)||2

Set the µ2 = β2 = 4, α = 3 and set the γtL
δ ≤ 1

8 ,
we can simplify the inequality

Ef(xt+1)− f(xt)

≤ −γt
2
E||∇f(xt)⊙

√
1√
v̂t−1

||2 + 8γtL
2ρ2

δ

+ γtG
2E||(1√

v̂t−1

− 1√
v̂t
)||1

+
2γtL

2ρ2

δ
+

2γ2t L

δ
(
Lρ2

δ
+

σ2

bδ
)

+ 2γ2t LG
2E||(1√

v̂t
− 1√

v̂t−1

)||2

Note that the 1√
v̂t

is bounded, we re-arrange the

inequality and achieve

γt
2G

E||∇f(xt)||2 ≤
γt
2
E||∇f(xt)⊙

√
1√
v̂t−1

||2

≤ −Ef(xt+1) + Ef(xt) +
8γtL

2ρ2

δ

+ γtG
2E||(1√

v̂t−1

− 1√
v̂t
)||1

+
2γtL

2ρ2

δ
+

2γ2t L

δ
(
Lρ2

δ
+

σ2

bδ
)

+ 2γ2t LG
2E||(1√

v̂t
− 1√

v̂t−1

)||2

We sum up it and we obtain

1

T

T−1∑

t=0

E||∇f(xt)||2 ≤ 2G
Ef(x0)− Ef(xt+1)

γtT

+
16GL2ρ2

δ
+

2G3

T
E

T−1∑

t=0

|| 1√
ˆvt−1

− 1√
v̂t
||1

+
4GL2ρ2

δ
+

4GγtL

δ
(
Lρ2

δ
+

σ2

bδ
)

+
4γtLG

3

T
E

T−1∑

t=0

|| 1√
v̂t
− 1√

ˆvt−1

||2

≤ 2Gf(x0)− f∗

γtT
+

16GL2ρ2

δ

+
2G3

T
d(

1

δ
− 1

G
) +

4GL2ρ2

δ

+
4GγtL

δ
(
Lρ2

δ
+

σ2

bδ
) +

4γtLG
3

T
d(G2 − δ2)

=
2Gf(x0)− f∗

γtT
+

20GL2ρ2

δ

+
2G3

T
d(

1

δ
− 1

G
) +

4GγtL

δ

Lρ2

δ

+
4GγtL

δ

σ2

bδ
+

4γtLG
3

T
d(G2 − δ2)

Theorem 3. With probability 1− δ over the choice
of training set S ∼ D, we have the following in-
equality.

LD(w) ≤ max
||ϵ||2≤ρ

LS(w + ϵ)

+

√√√√k log(1 +
||w||22
ρ2

(1 +
√

logn
k)2) + 4 log n

δ +O(1)

n− 1

The n = |S|, k is the number of weight w, and
assuming that LD(w) ≤ Eϵi∼N (0,ρ)[LD(w + ϵ)]

Proof. The proof is mainly based on PAC-Bayesian
Generalization Bound theorem. We start by any

4081

prior P over parameters with probability 1− δ for
any posterior distribution Q, we have

Ew∼W [LQ](w)] ≤ Ew∼W [LS](w)]

+

√
KL(Q||P) + log n

δ

2(n− 1)

Assume ϵ ∼ N (0, σ), the ||ϵ||22 follows the Chi-
square distribution. From the Lemma 1 in (Laurent
and Massart, 2000), we have the following inequal-
ity for any positive t:

P (||ϵ||22 − kσ2 ≥ 2σ2
√
kt+ 2tσ2) ≤ exp(−t)

Combine the above function and subtract the same
constant C on both side, following the assumption
in (Foret et al., 2020), we finish the proof.

A.2 Details of Tasks and Datasets
As mention in Section 4, we conduct extensive
experiments on parts of tasks from GLUE and Su-
perGLUE. In addition, two widely-used generation
tasks are also used in this work. Here, we introduce
the descriptions of the used tasks and datasets in de-
tail. Firstly, we present the statistics of all datasets
in Table 7. Then, each task is described as:

CoLA. Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) is a binary single-
sentence classification task to determine whether a
given sentence is linguistically “acceptable”.

MRPC. Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005) is a task to predict
whether two sentences are semantically equivalent.

STS-B. Semantic Textual Similarity (Cer et al.,
2017) is a task to predict how similar two sentences
are on a 1-5 scale in terms of semantic meaning.

RTE. Recognizing Textual Entailment (Gi-
ampiccolo et al., 2007), given a premise and a hy-
pothesis, is a task to predict whether the premise
entails the hypothesis.

QNLI. Question Natural Language Inference
is a binary classification task constructed from
SQuAD (Rajpurkar et al., 2016), which aims to
predict whether a context sentence contains the
answer to a question sentence.

CB. CommitmentBank (De Marneffe et al.,
2019) is a task that can be framed as three-class
textual entailment on a corpus of 1,200 naturally
occurring discourses.

BoolQ. Boolean Question (Clark et al., 2019a)
is a question answering task where each sample

consists of a short passage and a yes/no question
about the passage.

WiC. Word-in-Context (Pilehvar and Camacho-
Collados, 2019) is a word sense disambiguation
task that aims to predict whether the word is used
with the same sense in sentence pairs.

WSC. Winograd Schema Challenge (Levesque
et al., 2012) is a co-reference resolution task which
aims to determine the correct refer-rent of the pro-
noun from among the provided choices.

XSUM. The Extreme Summarization
dataset (Narayan et al., 2018) is one of ab-
stractive Summarization task that aims to convert
the given document into a short and adequate
summary in the same language.

CoNLL2014. CoNLL2014 (Ng et al., 2014) is a
popular grammatical error correction task that aims
to rewrite the input sentence with grammatical er-
rors into the corresponding correct sentence, where
the original and target sentences have the similar
sentence lengths.

A.3 Hyper-parameters of Fine-tuning

In this paper, we fine-tune four different large-scale
PLMs with our FSAM on the tasks of GLUE and
SuperGLUE, including BERT-large (∼340M) 6,
ELECTRA-large (∼340M) 7, ALBERT-xxlarge-
v2 (∼223M) 8 and RoBERTa-large (∼355M) 9.
Additionally, the BART-large (∼406M) 10 is used
for the generation tasks. The training epochs/steps,
batch size, learning rate and warmup steps are listed
in Table 8 and Tabel 10. Notably, the maximum
sequence length of language understanding tasks
is set as 128/256. For two generation tasks, we
empirically set the minimum and maximum length
of the XSUM dataset as 10 and 60, and closely
follow Chollampatt and Ng (2018) to preprocess
the data of CoNLL2014.

A.4 Training Curves

In this sub-section, we visualize the training curves
of Adam, SAM and FSAM in detail. Specifically,
Figure 6 shows the evaluation metrics v.s. train-
ing epochs. The metric curves prove that FSAM
boosts the performance effectively during the train-
ing, which shows the effectiveness of FSAM.

6https://huggingface.co/bert-large-cased
7https://huggingface.co/google/

electra-large-discriminator
8https://huggingface.co/albert-xxlarge-v2
9https://huggingface.co/roberta-large

10https://huggingface.co/facebook/bart-large

4082

https://huggingface.co/bert-large-cased
https://huggingface.co/google/electra-large-discriminator
https://huggingface.co/google/electra-large-discriminator
https://huggingface.co/albert-xxlarge-v2
https://huggingface.co/roberta-large
https://huggingface.co/facebook/bart-large

Table 7: Data statistics of all used tasks in this paper.

Task Description #Train #Dev #Class

GLUE

CoLA linguistic acceptability classification 8.5K 1,042 2
MRPC paraphrase classification 3.7K 409 2
STS-B semantic textual similarity 5.7K 1,501 -
RTE natural language inference 2.5K 278 2
QNLI natural language inference 104K 5,464 2

SuperGLUE

BoolQ question answering 9.4K 3,270 2
CB natural language inference 250 57 2
WiC word sense disambiguation 6K 638 2
WSC coreference resolution 554 104 2

Generation
XSUM abstractive summarization 204K 11,332 -
CoNLL2014 grammatical error correction 1.3M 5,448 -

Table 8: Hyper-parameters settings for BART model on
the generation tasks.

Setting XSUM CoNLL2014
Learning Rate 3e-5 2e-5
Batch Size 56 800
Training Steps 15,000 15,000
Warmup Steps 500 500
GPUs 8 4

A.5 More Results
In addition to the results in Table 1 with the momen-
tum as 0.9, we also conduct the experiments with
the momentum as 0 (i.e., β1 = 0 in Algorithm 1)
to evaluate the influence of the adaptive learning
rate. In practice, we evaluate the performance on
several downstream tasks upon two base optimizers
(Adam and AMSGrad) and two PLMs (RoBERTa-
large and RoBERTa-base). Table 9 shows the re-
sults. When there is no momentum term, FSAM
also achieves better performance against the vanilla
SAM and base optimizers. These results prove the
universality of FSAM in various scenarios.

4083

Figure 6: Accuracy on the dev set v.s. training epochs. We show some representative results on the four pretrained
models. We can observe that our FSAM achieves the best performance among all tasks.

Table 9: Results of RoBERTa-large and RoBERTa-base fine-tuned with different optimizers (β1 = 0). We can
observe that FSAM consistently outperforms the vanilla SAM and base optimizer among all settings.

Method
RoBERTa-base, Adam RoBERTa-large, Adam

CoLA MRPC STS-B RTE
AVG.

CoLA MRPC STS-B RTE
AVG.

Mcc. Acc. F1. Pear. Spea. Acc. Mcc. Acc. F1. Pear. Spea. Acc.

Adam 61.3 87.5 90.6 90.4 90.2 78.3 83.05 67.0 89.0 91.9 91.9 91.6 88.4 86.63
Adam+SAM 61.6 88.2 91.6 90.5 90.2 79.4 83.58 68.6 90.4 93.1 90.7 90.4 88.1 86.88
Adam+FSAM 63.2 88.5 92.0 90.6 90.3 82.7 84.55 69.0 90.4 93.2 91.6 91.3 88.8 87.38

Method
RoBERTa-base, AMSGrad RoBERTa-large, AMSGrad

CoLA MRPC STS-B RTE
AVG.

CoLA MRPC STS-B RTE
AVG.

Mcc. Acc. F1. Pear. Spea. Acc. Mcc. Acc. F1. Pear. Spea. Acc.

AMSGrad 60.1 88.5 91.6 90.3 90.2 79.1 83.30 63.8 89.7 92.4 90.0 90.4 87.4 85.62
AMSGrad+SAM 60.7 89.2 92.2 90.2 89.9 80.2 83.73 68.5 90.0 92.8 91.6 91.2 87.0 86.85
AMSGrad+FSAM 62.0 88.7 91.9 90.5 90.4 79.8 83.88 68.5 90.2 92.9 91.6 91.0 88.1 87.05

4084

Table 10: Hyper-parameters settings for different pretrained models on the language understanding tasks. We set the
batch size to 16 for all settings. These settings are selected in best practice. Note that we apply these settings to
fine-tune both large and small pretrained language models.

Model Dataset Learning Rate Training Epochs/Steps Warmup Ratio/Steps

BERT

CoLA 2e-5 3 epochs 10%
MRPC 2e-5 3 epochs 10%
STS-B 4e-5 3 epochs 10%
RTE 4e-5 3 epochs 10%

BoolQ 2e-5 10 epochs 10%
CB 3e-5 20 epochs 10%

WiC 2e-5 10 epochs 10%
WSC 1e-5 20 epochs 10%

ELECTRA

CoLA 1e-5 3 epochs 10%
MRPC 3e-5 3 epochs 10%
STS-B 3e-5 10 epochs 10%
RTE 2e-5 10 epochs 10%

BoolQ 2e-5 10 epochs 10%
CB 3e-5 20 epochs 10%

WiC 2e-5 10 epochs 10%
WSC 1e-5 20 epochs 10%

ALBERT

CoLA 2e-5 3 epochs 10%
MRPC 3e-5 3 epochs 10%
STS-B 3e-5 3 epochs 10%
RTE 5e-5 3 epochs 10%

BoolQ 1e-5 10 epochs 10%
CB 4e-5 20 epochs 10%

WiC 3e-5 10 epochs 10%
WSC 1e-5 20 epochs 10%

RoBERTa

CoLA 1e-5 2668 steps 160 steps
MRPC 1e-5 1148 steps 68 steps
STS-B 2e-5 1799 steps 107 steps
RTE 2e-5 1018 steps 61 steps

BoolQ 1e-5 10 epochs 10%
CB 2e-5 20 epochs 10%

WiC 2e-5 10 epochs 10%
WSC 1e-5 20 epochs 10%

4085

