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Abstract
The logical reasoning capabilities of pre-
trained language models have recently re-
ceived much attention. As one of the vi-
tal reasoning paradigms, non-monotonic
reasoning refers to the fact that conclu-
sions may be invalidated with new informa-
tion. Existing work has constructed a non-
monotonic inference dataset δ-NLI and ex-
plored the performance of language models
on it. However, the δ-NLI dataset is entan-
gled with commonsense reasoning. In this
paper, we explore the pure non-monotonic
reasoning ability of pre-trained language
models. We build a non-monotonic reason-
ing benchmark, named LogicNMR, with ex-
plicit default rules and iterative updates. In
the experimental part, the performance of
popular language models on LogicNMR is
explored from the perspectives of accuracy,
generalization, proof-based traceability and
robustness. The experimental results show
that even though the fine-tuned language
models achieve an accuracy of more than
94.4% on LogicNMR, they perform unsat-
isfactorily, with a significant drop, in gen-
eralization and proof-based traceability.

1 Introduction

Non-monotonic reasoning, also called defeasible
reasoning, is one of the important reasoning
modes in logic, which has been extensively stud-
ied in classical AI. The term non-monotonic rea-
soning was first introduced by Minsky (1975).
Generally, non-monotonic reasoning refers to
the fact that conclusions may be invalidated
with new information (Lukaszewicz, 1990). The
research on non-monotonic reasoning in tradi-
tional AI mainly focuses on formalizing non-
monotonic reasoning via different logics, such
as default logic (Reiter, 1980), circumscription
(McCarthy, 1980), and Autoepistemic Logic
(Moore, 1983).

∗*Corresponding author.

Figure 1: An example of non-monotonic reasoning
in everyday life.

Non-monotonic reasoning is widespread in ev-
eryday life and plays a crucial role in both daily
decision-making (Benferhat et al., 2000; Sza-
las, 2019) and legal reasoning (Lawsky, 2017).
Most of what we learn about the world is in
terms of generics, properties that hold “in gen-
eral”, but with exceptional cases. When we
say “birds can fly”, we mean “birds can usually
fly”, and there are exceptional cases such as
ostrich or wounded birds. Such rules are called
default rules. Figure 1 shows a typical exam-
ple of non-monotonic reasoning. Suppose we
desire to find John on Saturday evening and
know he usually visits his club every Saturday
evening. We thus infer that he will be at his
club. However, if we are told John had a car
accident yesterday, we would conclude he will
likely be in a hospital. Then if we get to know
John was not injured, we redraw the conclusion
he visits his club. This example illustrates the
dynamic nature that a context is constantly
updated with new information and queried.

Recently, whether pre-trained language mod-
els truly have logical reasoning abilities has
received extensive attention. Although pre-
trained language models have made signifi-
cant progress on many natural language un-
derstanding tasks, such as knowledge-based
question answering (Lv et al., 2020) and com-
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Table 1: An example from the δ-NLI dataset.

Premise: Old man crafting something
in his workshop.

Hypothes: An old man is working.

Update: The man is wearing pajamas
and is chuckling.

Type: strengthener / weakener
[Answer: W]

monsense reasoning (Bhagavatula et al., 2020),
etc, some research has shown that the predic-
tion of pre-trained language models is easily
affected by spurious correlations (Kaushik and
Lipton, 2018; Jiang and Bansal, 2019), so it is
difficult to judge the logical reasoning abilities
of the evaluated models.

It is still in the preliminary research stage
to probe whether pre-trained language mod-
els have non-monotonic reasoning mecha-
nisms. Rudinger et al. (2020) construct a
non-monotonic inference dataset δ-NLI through
crowdsourcing based on three existing datasets.
For δ-NLI, the authors develop a classification
and generation task, and demonstrate that the
classification task is easily solved by pretrained
language models, but the generation task is
much more challenging. Table 1 is an exam-
ple of the classification task. However, δ-NLI
entangles non-monotonic reasoning with com-
monsense reasoning. For instance, to solve
the above example, we need the commonsense
knowledge “people usually wear pyjamas when
they are resting”.

To disentangle deductive reasoning from com-
monsense reasoning, and explore pure deduc-
tive reasoning capabilities of pre-trained lan-
guage models, Clark et al. (2020) introduce a
synthetic dataset with explicit rules and facts,
and show that fine-tuned language models per-
form well on this dataset. Table 2 is a simplified
example from this dataset. In their work, rules
have the semantics of logic programs with nega-
tion (Apt et al., 1988). Thus they make the
closed-world assumption (CWA) (Reiter, 1977):
unless an atomic sentence is known to be true,
it can be assumed to be false. In the above
example, all the facts and rules needed for rea-
soning are explicitly given. Since we cannot
infer that Arthur is abnormal, we assume he
is not abnormal, hence we deduce that he can

Table 2: A simplified example from (Clark et al.,
2020).

Facts: Arthur is a bird.

Rules:

If someone is a bird and not
abnormal then they can fly.
If someone is a bird and
wounded then they are abnormal.

Query: Arthur can fly. True/false?
[Answer: T]

fly. But if we are also given Arthur is wounded,
we would withdraw that he can fly. So CWA is
only a special case of non-monotonic reasoning.

In this paper, inspired by the research
methodology of (Clark et al., 2020), different
from the research problem of (Rudinger et al.,
2020), we explore the pure non-monotonic rea-
soning abilities of pre-trained language mod-
els, disentangling from commonsense reason-
ing. We propose LogicNMR, a non-monotonic
reasoning benchmark with three distinguished
features. First, each context is given by explicit
facts and default rules such as “a bird can fly
unless he is wounded”. So we handle explicit
non-monotonic reasoning rather than implicit
one by δ-NLI, and we deal with non-monotonic
reasoning in a more general way than CWA.
Second, each context is repeatedly updated
with new facts and queried. This is in line
with the phenomenon that human constantly
receive new information and redraw conclu-
sions. Third, the labels of the dataset are au-
tomatically generated by resorting to a formal
non-monotonic reasoning solver and hence guar-
anteed with correctness. The non-monotonic
reasoning ability in pre-trained language mod-
els are explored from accuracy, generalization,
proof-based traceability and robustness. The
experimental results reveal that even though
the fine-tuned language models achieve a high
accuracy on the in-distribution samples in Log-
icNMR, they perform unsatisfactorily, with a
significant drop, in generalization and proof-
based traceability.

2 Related Work

Many benchmarks involve logical reasoning, but
entangled with commonsense reasoning, On one
hand, natural language inference (NLI) is to
determine the inference relation between two
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texts, including entailment, contradiction, or
neutral. For example, Bowman et al. (2015)
present a significant NLI benchmark SNLI,
a collection of 570k English sentence pairs.
Richardson et al. (2020) explore the symbolic
reasoning and monotonic reasoning abilities in
pre-trained language models through semantic
fragments. On the other hand, in machine read-
ing comprehension, LogicQA (Liu et al., 2020)
and ReClor (Yu et al., 2020) are two popular
multiple-choice datasets involving complex log-
ical reasoning, such as deductive reasoning and
abductive reasoning. Li et al. (2022) and Xu
et al. (2022) construct relationship graphs by
extracting the basic units in the context, and
then combine pre-trained language models and
graph neural networks to solve LogicQA and
ReClor.

Following (Rudinger et al., 2020), several
other works focus on non-monotonic reasoning.
To further explain why the updated informa-
tion can cause the credibility of the original
conclusion to change, Brahman et al. (2021)
use distant supervision to generate reasons for
δ-NLI. Madaan et al. (2021a) generate influence
graphs through transfer learning to effectively
improve performance on defeasible reasoning
tasks. Madaan et al. (2021b) propose a model
that can simulate thinking about question sce-
narios based on influence graphs to enhance
the performance of defeasible reasoning tasks.

The work of Clark et al. (2020) initiated a
line of research to explore logical reasoning ca-
pabilities in language models. Tian et al. (2021)
present the LogicNLI benchmark for first-order
logical reasoning and propose proof-based trace-
ability to more effectively evaluate the logical
reasoning abilities of language models. Saeed
et al. (2021) propose a dataset RuleBERT
with rules with probability in order to teach
pre-trained language models to reason on soft
Horn rules. Dalvi et al. (2021) introduce a
dataset EntailmentBank with explanations
in the form of entailment trees.

3 Default Logic and ASP

In this work, we choose Reiter (1980)’s de-
fault logic, one of the major formalisms for
non-monotonic reasoning, as the logic under-
lying LogicNMR. A default rule is in the form
of α : β1, β2, . . . , βm/γ, where α, βi and γ are

formulas in first-order logic, α is called the
prerequisite, β1, β2, · · · , βm the justifications,
and γ the conclusion. The interpretation of
the default rule is that if you can infer α,
and β1, β2, · · · , βm are consistent, then infer
γ. A default theory is a pair T = ⟨W,D⟩,
where W is a set of facts, which are first-
order sentences, and D is a set of default
rules. For example, a default theory T0 consists
of W0 = {fresh(A), afraid(A)} and D0 =
{fresh(x) : ¬afraid(x)/cute(x)}, fresh(x) :
afraid(x)/¬worried(x)}. A set of sentences
E is an extension of T = ⟨W,D⟩ iff for ev-
ery sentence ϕ, ϕ ∈ E iff W ∪∆ |= ϕ, where
∆ is the set of γ s.t. α : β1, β2, . . . , βm/γ is
in D, α ∈ E, and ¬βi ̸∈ E for i = 1, . . . ,m.
Here |= denotes the logic entailment relation for
first-order logic. For example, T0 has a unique
extension E0 = W0 ∪ {¬worried(A)}.

In this paper, to reduce the complexity of
the default theory, we make a set of restric-
tions. Variables and constants are terms, and
P (t1, ..., tn) is an atom when P is an n-ary pred-
icate symbol and t1, .., tn are terms. A literal
is an atom or the negation of an atom. W
is restricted to be a set of literals. α is the
conjunction of at most two literals, there are
at most two justifications, each justification is
a literal, and γ is a literal. In addition, we
require that: for each default theory, for any
justification of any default rule, its negation
does not appear as the conclusion of any other
default rule. It is easy to show that under the
above restrictions, each theory T has a unique
extension, written E(T ). Then for any sen-
tence ϕ, we write T ⊢ ϕ if ϕ ∈ E(T ). We define
Ans(T, ϕ) as follows:

Ans(T, ϕ) =





T, if T ⊢ ϕ and T ⊬ ¬ϕ
F, if T ⊬ ϕ and T ⊢ ¬ϕ
M, if T ⊬ ϕ and T ⊬ ¬ϕ

Chen et al. (2010) show that in the propo-
sitional case, each default theory is equivalent
to an answer set program. Answer Set Pro-
gramming (ASP) (Brewka et al., 2011) is an
approach to declarative programming with effi-
cient solvers, such as Clyngor1. Under our re-
strictions, a default theory T can be converted
to an equivalent answer set program δ(T ) as

1https://pypi.org/project/clyngor/
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Figure 2: Pipeline of LogicNMR sample generation

follows: each default rule α : β1, β2, ..., βm/γ is
converted to an ASP rule

γ ← α, not ¬β1, not ¬β2, · · · , not ¬βm.

Then the unique extension for T can be com-
puted by computing the answer set for δ(T ) by
resolving to an ASP solver such as Clyngor.

4 LogicNMR Benchmark

To probe pure non-monotonic reasoning abili-
ties in language models, we generate a non-
monotonic reasoning benchmark LogicNMR
with explicit facts and default rules and itera-
tive updates and queries. Our dataset is avail-
able at https://github.com/sysulic/LogicNMR.

Overview of Dataset Generation. Figure
2 gives an overview of the generation process for
a sample in LogicNMR. First, we generate an
initial knowledge base (KB) containing default
rules and facts. Then, we generate the iterative
updates and queries. Next, we generate the
label and associated proof for each update and
query. Finally, we convert the initial KB, up-
dates, queries and proofs into synthetic English
using simple templates.

The predicate pool for LogicNMR includes
unary and binary predicates, where the unary
ones are 529 adjective words from (Tian et al.,
2021), and the binary ones are 46 adjective
words that describe relationships between sub-
jects. Each sample is restricted to a subject,
which is a name.

Figure 3 shows a LogicNMR sample repre-
sented with formulas. Here, T refers to the
initial KB where there is a single fact and mul-
tiple default rules. Ui is the new fact for the
i-th update, and Qi is the query for the i-th
update. For each query, when the label is T or

Figure 3: An example in the LogicNMR dataset is
represented by the default logic.

F, a proof is a sequence of intermediate neces-
sary conclusions during the reasoning process
for the query.

In the following, we give detailed descriptions
for each step of Figure 2.

Initial KB Generation. To generate the
first default rule, we randomly select predicates
from the predicate pool as the predicates for the
prerequisite, justifications, and conclusion. We
then add negations to the prerequisite, justifi-
cation, and conclusion atoms with a probability
of 0.5. Next, for every new default rule, the
prerequisite literals are randomly selected from
the existing conclusion literals, the justification
literals are randomly generated and different
from the prerequisite literals, and the conclu-
sion literal is randomly generated so that it
is different from the prerequisite literal and
its negation does not appear in justifications
for existing default rules. Finally, we generate
the initial facts by instantiating prerequisite
literals or the negation of justification literals
of default rules with the unique subject. For
example, in Figure 3, ¬aggressive(Amery) is
generated by negating the justification literal
of the first default rule.

Iterative Updates and Queries Genera-
tion. Each LogicNMR sample is updated for
five times. The updates are generated from the
prerequisite and justification literals of default
rules. If generated from prerequisite literals,
the update is the instantiation of the prereq-
uisite literal; if generated from justification lit-
erals, the update is the instantiation of the
negation of the justification literal. The queries
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are generated from the instantiation of conclu-
sion literals of default rules and being negated
with a probability of 0.5.

Task Definition. As shown in Figure
3, a sample in the LogicNMR dataset is a
triple (T,U, S), where T is the initial KB,
U = ⟨U1, ..., U5⟩ is the sequence of updates,
and Q = ⟨Q1, ..., Q5⟩ is the sequence of queries.
For i = 1, . . . , 5, we let Ti = T ∪ {Uj | 1 ≤
j ≤ i}. The task is to decide the answer
A = ⟨A1, ..., A5⟩ where Ai = Ans(Ti, Qi).

Labeling and Proofs. To compute
Ans(Ti, Qi), we convert Ti into an answer set
program δ(Ti), call Clyngor to compute the
unique answer set, and then check if Qi or
¬Qi is in the answer set. If Qi or ¬Qi is
in the answer set, we produce a sequence of
proofs for it, where each proof is the conclu-
sion of the default rules applied in the reason-
ing chain. For example, for Q1 in Figure 3,
with U1, using the third default rule, we get
¬worried(Amery); then using the fourth de-
fault rule, we get ¬lucky(Amery); next, using
the fifth default rule, we get grumpy(Amery);
finally, we obtain Q1.

Conversion into English. We convert
the initial KB, updates, queries, and proofs
into English by using simple templates. For
example, the default rule “dynamic(X) :
petite(X)/cute(X)” is translated into “If some-
one is dynamic then he is cute, unless he is
petite”.

Dataset Statistics. Table 3 shows the sta-
tistical information of LogicNMR. The training,
validation, and test sets in LogicNMR contain
5k, 2k, and 2k samples, respectively. The num-
ber of default rules in the initial KB is at most
12, and the number of initial facts is at most
2. Avg.Length and Max.Length represent the
average and maximum number of words in the
initial KB, respectively. To explore robustness
of language models on LogicNMR, for each
sample, there are six irrelevant facts and six
irrelevant default rules. To reduce the bias
caused by label imbalance, we require the la-
bels in the dataset to be balanced. Also, the
predicate pools for the training, validation, and
test sets are different to avoid answering queries
according to the correlations among predicates.

Table 3: Statistics of LogicNMR.

Data Statistics Train Val Test

Logic-
NMR

#Samples 5000 2000 2000
#Queries 25000 10000 10000

Avg.Length 199 198 198
Max.Length 230 228 230

#Initial Rules 12
#Initial Facts 1 or 2

#Updated Facts 5
#Irrelevant Facts 6
#Irrelevant Rules 6

#Subjects 363 100 100
#Predicates 364 105 106

Labels F:T:M=1:1:1

5 Experiments

In this section, by following (Tian et al., 2021),
we explore the non-monotonic reasoning abil-
ity of pre-trained language models in terms
of accuracy, generalization, proof-based trace-
ability, and robustness, respectively, based on
LogicNMR.

5.1 Experimental Settings

In this paper, we would like to investigate
three mainstream pre-trained language models:
BERT-large (Devlin et al., 2019) , RoBERTa-
large (Liu et al., 2019), and GPT2 (Radford
et al., 2019). The hyperparameters in such
language models are shown in Table 4.

Table 4: The hyperparameter settings.

Paras. BERT RoBERTa GPT2
batch size 32 24 32

learning rate 1e-5 1e-5 1e-5
decay rate 0.01 0.01 0.01

epochs 20 20 50
optimizer ADAMW ADAMW ADAMW

5.2 Experimental Results

5.2.1 Accuracy
Table 5 shows the accuracy results of RoBERTa,
BERT, and GPT2 models on the LogicNMR
dataset. It is not difficult to find that the
language models achieve a high accuracy on
answering queries in the LogicNMR dataset af-
ter fine-tuning. Generally, RoBERTa has the
top performance. With the number of updates
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Table 5: The accuracy results of three language
models on LogicNMR.

Models Accuracy(%)
U=1 U=2 U=3 U=4 U=5

RoBERTa 99.6 98.6 98.1 96.8 96.3
BERT 99.7 98.4 95.9 94.9 94.7
GPT2 99.2 97.2 97.1 96.6 94.4

U represents the number of updates to the KB.

increasing, all language models yield only a
slight drop. The high accuracy on answering
non-monotonic reasoning queries looks like that
the language models have already mastered
the non-monotonic reasoning ability after fine-
tuning. However, it is also possible that they
only perform well because of their strong fitting
ability on the in-distribution samples. To fur-
ther probe whether the language models master
the ability of non-monotonic reasoning, we still
need to evaluate how they performs in terms
of generalization and proof-based traceability
on LogicNMR.

5.2.2 Generalization

In this paper, the generalization is used to mea-
sure whether the model truly understands non-
monotonic reasoning, i.e., assesses how a model
performs on the out-of-distribution samples. In
CLUTRR (Sinha et al., 2019), the metric of gen-
eralization is measured by training a model on
samples with inference depths less than or equal
to K and then testing it on samples with an
inference depth greater than K. However, dif-
ferent from monotonic reasoning in first-order
logic, non-monotonic reasoning pays attention
to the dynamicness of the knowledge bases. In
other words, to evaluate whether a model mas-
ters the non-monotonic reasoning ability, we
need to test its performance varying different
updates. More formally, if a model has learned
non-monotonic reasoning on a knowledge base
with K updates, it should also be effective on
knowledge bases with different numbers of up-
dates. In this way, not only we make sure that
samples in the tthe raining set are balanced in
size, but also we can independently see how well
models generalize in terms of different updates.
Therefore, we define the generalization metric
ofa model over the update number, noted Avg∗,
as its average accuracy on the samples with
updates number U ̸= K with being trained on

the samples with the update number U = K.

Table 6: The generalization results of the three
language models on LogicNMR.

Test(Accuracy(%))Model U U=1 U=2 U=3 U=4 U=5 Avg∗

U=1 99.6 60.1 50.0 54.6 53.2 54.4
U=2 98.1 98.6 83.0 58.2 50.0 72.3
U=3 81.7 94.5 98.1 93.7 75.4 86.3
U=4 69.3 90.0 96.7 96.8 94.2 87.5

Ro-
BERTa

U=5 57.5 61.4 89.6 96.3 96.3 76.2
U=1 99.7 64.5 54.3 55.4 51.5 56.4
U=2 90.9 98.4 76.8 52.4 51.3 67.8
U=3 64.6 66.9 95.9 69.6 52.1 63.3
U=4 59.7 63.1 72.6 94.9 74.7 67.5

BERT

U=5 43.7 45.6 53.4 67.1 94.7 52.4
U=1 99.2 46.9 57.1 52.2 50.3 51.6
U=2 28.5 97.2 73.2 64.7 60.3 56.6
U=3 59.7 74.8 97.1 80.6 67.5 70.6
U=4 60.7 64.7 88.1 96.6 94.6 77.0

GPT2

U=5 44.7 49.3 59.3 82.9 94.4 59.0

Avg∗ is the average accuracy on U ̸= K.

Table 6 shows the generalization results of
the language models for the number of updates
on LogicNMR. First, the generalization per-
formance of the RoBERTa is the best among
the three models. Specifically, throughout the
whole LogicNMR, the average generalization
metric Avg∗ of RoBERTa, BERT, and GPT2
are 75.3%, 61.5%, and 62.9%, respectively.
However, for each model at each update, its
Avg∗ is lower than its average accuracy shown in
Table 5. Second, the more significant difference
between the number of updates of the testing
set and the number of updates of the training
set, the worse the generalization performance of
the language models. For example, RoBERTa
trained on the samples with update number
U = 3 has average accuracies of 93.7% and
75.4% on the samples with U = 4 and U = 5,
respectively. It reflects that the difference on
the distributions of the samples is a significant
challenge for language models, causing a unsat-
isfying performance on generalization.

5.2.3 Proof-based Traceability

The notion of proof-based traceability to eval-
uate whether a model can infer the correct
answer according to the right reasoning path,
which yields two metrics: a proof-based accu-
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Table 7: The proof-based traceability of language models for updates number U on LogicNMR.

Test(Accuracy(%))
U=1 U=2 U=3 U=4 U=5 Avg∗Model U

P-AC P-EM P-AC P-EM P-AC P-EM P-AC P-EM P-AC P-EM P-AC∗ P-EM∗

U=1 99.1 99.0 57.8 55.6 53.8 50.2 59.7 58.1 59.8 56.1 57.7 55.0
U=2 98.0 97.9 99.4 99.0 71.3 68.7 44.6 39.8 38.8 30.7 63.2 59.3
U=3 99.4 99.2 98.8 98.4 99.0 98.5 96.0 93.2 87.2 82.7 95.3 93.3
U=4 97.9 97.5 97.8 97.3 98.2 97.8 97.8 97.1 95.3 92.2 97.3 96.2

RoBERTa

U=5 54.2 20.1 69.6 36.6 84.7 64.9 92.9 83.1 96.4 92.6 75.3 51.1
U=1 99.5 99.3 59.3 55.3 50.2 41.1 49.7 38.1 48.9 39.3 52.0 42.9
U=2 94.8 93.8 98.3 97.7 69.3 68.1 50.6 45.6 49.2 44.1 65.9 62.9
U=3 96.3 91.7 96.6 93.8 97.1 95.8 64.0 61.7 44.5 39.4 75.3 71.6
U=4 85.1 65.3 90.3 78.3 95.9 93.0 94.6 91.8 62.1 52.1 83.3 72.2

BERT

U=5 40.7 13.5 48.6 15.8 63.3 27.6 77.9 48.5 91.2 83.2 57.6 26.3
U=1 99.6 99.5 60.9 56.9 73.0 72.9 66.0 65.4 67.7 65.1 66.9 65.0
U=2 0.47 0.21 93.3 85.1 82.8 80.9 69.4 65.3 63.2 59.5 53.9 51.5
U=3 76.8 66.9 92.8 87.8 98.1 96.5 80.7 75.5 64.8 56.5 78.8 71.7
U=4 75.7 53.9 87.4 74.1 95.3 92.1 99.1 97.7 96.3 93.9 88.7 78.5

GPT2

U=5 23.6 6.34 41.6 11.9 59.7 24.6 76.0 45.9 91.3 82.7 50.2 22.2
P-AC∗ is the average proof-based accuracy on the samples with U ̸= K and P-EM∗ is the average proof-based
exact match result on the samples with U ̸= K.

racy (P-AC) and a proof-based exact match
(P-EM) (Yang et al., 2018; Tian et al., 2021).
As there are some samples whose query or its
negation has no proof, i.e., those queries la-
belled as and “M”, we remove them from the
testing samples. Also, since the samples using
only one default rule in the inference process
have no intermediate proof, such samples will
be ignored. P-AC is the ratio of the samples
that the model correctly answers the query with
proofs on the testing samples, and P-EM is the
ratio of the samples hat the model correctly
predicts all proofs on the testing samples.

Table 7 shows the results of the language
models on the in-domain and out-of-domain
datasets, respectively. For the in-distribution
samples, the average P-AC of RoBERTa,
BERT, and GPT2 are 98.3%, 96.1%, 96.3%,
and the average P-EM is 97.3%, 93.5%, 92.3%,
respectively. Unsurprisingly, the three language
models all achieve an excellent performance
in terms of the proof-based traceability on in-
distribution samples, as they perform well in
terms of the accuracy. On the other hand, for
out-of-distribution samples, the average P-AC∗

of RoBERTa, BERT, and GPT2 models are
77.7%, 66.8%, and 67.6%, and the average P-
EM∗ are 70.9%, 55.2%, and 57.8%, respectively.
It shows that the language models perform

Figure 4: Robustness analysis to irrelevant sen-
tences on U = 5.

worse on out-of-distribution samples. The gap
of the performances between in-distribution
and out-of-distribution samples indicates that
the three language models cannot generalize
their reasoning ability to out-of-distribution
samples, further suggesting that it is suspicious
if we say the language models have already
mastered the non-monotonic reasoning ability.

5.2.4 Robustness

We also evaluate the robustness of the language
models to irrelavant sentences. Only one irrel-
evant fact and one irrelevant default rule are
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Figure 5: An example about RoBERTa from the LogicNMR benchmark. In “Query” column, ✓ represents
RoBERTa answers the query correctly.

added to the knowledge base each time. Figure
4 shows the robustness analysis to irrelevant
sentences on the samples with U = 5. When the
number of irrelevant facts and default rules in
the knowledge base increases, the performance
of the language models decreases rapidly. The
reason for the poor robustness of the models
should be that the pattern of the generated
samples is simple, and the language models
only make predictions by association match.
It further suggests that the language models
by no means totally master the non-monotonic
reasoning ability after finely tuning on a large
number of samples about non-monotonic rea-
soning.

5.3 Case Study

Figure 5 shows an analysis of RoBERTa on
some sample. RoBERTa is trained on the
dataset with U = 2. The bold black sentences
in fact represent updated facts currently added
to the knowledge base. The solid underlined
ones in proofs are the sentences that were pre-
dicted correctly by the model, and the dotted
underlined ones are the sentences in proofs that
were predicted wrong by the model.

In this example, after adding the new fact
to the knowledge base for the third time,

RoBERTa still predicts all proofs correctly.
However, after the fourth update, although the
model answers the query correctly, the proof
P2 is predicted incorrectly, indicating that the
model does not exactly recover the proofs of
the query. After the fifth update, the query and
its proofs are predicted incorrectly. The above
case shows that as the number of updates to
the knowledge base increases, the performance
of the language model is getting worse. Even
the query is answered correctly by the language
model, in fact it is not obtained via a correct
reasoning procedure by the language model.

6 Conclusions

In this paper, we construct a synthetic non-
monotonic reasoning benchmark, LogicNMR,
with explicit facts and rules, to capture the
iterative update on the knowledge base. We
probe whether the pre-trained language models
have truly mastered the non-monotonic reason-
ing ability. The experimental results show that
even though the fine-tuned language models all
achieve a high accuracy, they perform worse
on generalization, proof-based traceability and
robustness to irrelevant information. Conse-
quently, we cannot give a positive answer to the
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research problem whether the language models
master the non-monotonic reasoning ability. It
suggests us to explore a better approach to take
advantage of the language models to conduct
non-monotonic reasoning tasks.

7 Limitations

Although we construct a dataset to probe the
non-monotonic reasoning ability of language
models and conduct some experiments, we have
to admit that there are still some limitations.
First, only three language models are used in
this paper. More language models with differ-
ent architectures should be evaluated. Second,
the synthetic rules of LogicNMR are too strong.
We will relax some restrictions of generating
rules, such as query extraction way. Third, we
limit the default theory to only one extension
to reduce reasoning complexity, resulting in
simpler non-monotonic inference patterns. A
future work is to probe non-monotonic reason-
ing ability in a more general and systematic
way, such as by allowing plural extensions.
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