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Abstract
The prosperity of Pretrained Language Models
(PLM) has greatly promoted the development
of Machine reading comprehension (MRC).
However, these models are vulnerable and not
robust to adversarial examples. In this paper,
we propose Stable and Contrastive Question
Answering (SCQA) to improve invariance of
model representation to alleviate these robust-
ness issues. Specifically, we first construct pos-
itive example pairs which have same answer
through data augmentation. Then SCQA trains
enhanced representations with better alignment
between positive pairs by introducing stability
and contrastive loss. Experimental results show
that our approach can boost the robustness of
QA models cross different MRC tasks and at-
tack sets significantly and consistently.1

1 Introduction

Machine reading comprehension (MRC) (Zeng
et al., 2020) aims to answer the question based on
a passage as context. It has experienced rapid de-
velopment due to the evolution of deep neural net-
works (Minjoon Seo, 2017; Devlin et al., 2019) and
release of large-scale and high-quality datasets (Ra-
jpurkar et al., 2016; Dzendzik et al., 2021). By
introducing different kinds of attack sets, however,
a considerable amount of literature (Jia and Liang,
2017; Gan and Ng, 2019; Liu et al., 2020b; Si et al.,
2021) has shown that the result on in-domain test
set tends to overestimate the models’ performance.
For example, Jia and Liang (2017) exposed models’
over-stability issue by adding one distracting sen-
tence, which suggests the models’ inability to dis-
tinguish a sentence that actually answers the ques-
tion from one that merely share sufficient words
with it but semantically changed. Gan and Ng
(2019) showed that a question paraphrased in a
slightly different but semantically similar way can
mislead the model to output a wrong answer.

1The source code is publicly available at
https://github.com/haiahaiah/SCQA

Up to now, researchers have proposed several so-
lutions to alleviate these robustness issue, including
utilizing external knowledge to create adversarial
examples to enrich training data (Wang and Bansal,
2018; Zhou et al., 2020) and adversarial training
based methods (Yang et al., 2019; Liu et al., 2020a;
Yang et al., 2021). However, recent literature (Liu
et al., 2020c,a; Si et al., 2021) suggests that models
trained with specific augmented data are still easily
attacked by other unseen perturbations. Adversar-
ial training can improve models’ robustness under
general attacks without requiring any explicit adver-
sarial examples, but at the cost of iterative training
schedule.

To be capable of handling more general attacks
rather than just a certain type attack without la-
borious iterative schedule, we propose SCQA to
addresses the above robustness issue by learning
invariant representations of similar examples in-
spired by Le-Khac et al. (2020). In detail, the data
augmentation module first constructs an example
similar to the input example to form a positive pair.
Then SCQA utilizes stability loss to scale down
the change of probability distribution caused by
small label-preserving perturbations. In addition,
SCQA introduces contrastive loss to pull seman-
tically close pairs together to further improve the
alignment property in the representation space.

In the experimental part, we have organized dif-
ferent MRC tasks and several attack tests as a
benchmark for MRC robustness, including span-
based extractive, multiple choice and Yes/No MRC.
The results show that SCQA with dropout noise
as implicit data augmentation can reduce the dis-
tance between embeddings of paired examples, and
therefore improve the robustness of the MRC mod-
els over different types of adversarial perturbations
consistently and significantly. Moreover, it is worth
to note that our approach can further boost the
models’ performance with specific explicit data
augmentation strategies.

3306

https://github.com/haiahaiah/SCQA


2 Methodology

2.1 SCQA Architecture
As shown in Figure 1, SCQA has five modules:

• A data augmentation module that construct
positive example pairs.

• An encoder which learns contextual represen-
tations for input sequence.

• A contrastive loss layer on top of the encoder,
it aims to pull positive pairs together and keep
one representation distant from other negative
representations in the same batch.

• A predictor that maps the contextual represen-
tation into probability distribution to predict
the answer.

• A stability calculator that quantifies the
change of probability distribution caused by
small label-preserving perturbations.

Given each input sequence xi ∈ RL∗d consists of
question qi and context ci, L is the sequence length
and d is the hidden dimension, we first apply data
augmentation module to generate semantically sim-
ilar samples x

′
i corresponding to xi to form pos-

itive pairs (xi, x
′
i), then both xi and x

′
i are feed

into the encoder E to generate the contextual rep-
resentation hi and h

′
i, hi, h

′
i ∈ R1∗d. After that,

hi, h
′
i and representations of other examples in the

same batch will be passed into contrastive layer to
compute contrastive loss lcontrastive. The predictor
module P will compute probability distribution Pi

and P′
i of answers. Then, MRC task-specific loss

lmrc and stability loss lstability are calculated sep-
arately. Finally, all losses are combined to be the
optimization objective of model parameters. The
model is expected to learn invariant representations
of similar input sequences and be robust against
label-preserving attacks.

2.2 Data Augmentation Strategies
The purpose of data augmentation module is to gen-
erate semantically similar example pairs which are
used for calculating the contrast and stability loss.
We apply two different data augmentation strate-
gies into SCQA framework to transform training
batch size from n to 2× n.

Dropout as Implicit Augmentation Following
Gao et al. (2021), we first investigate dropout noise
as implicit data augmentation for MRC. Specifi-
cally, there are standard dropout masks z in Trans-
formers (Vaswani et al., 2017), so we can just en-
coder the same input xi twice with independently
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l stabilitylmrcl contrastive
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maxmize agreement
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Figure 1: A schematic view of SCQA architecture.

sampled dropout masks zi, z
′
i and then get hi and

h
′
i to represent xi and x

′
i respectively.

Adversarial Examples as explicit Augmentation
Augmenting original training data with adversarial
examples created by the same rules as attacks is uti-
lized to improve the models’ robustness (Wang and
Bansal, 2018), although which can only defend the
specific attack (Liu et al., 2020a). For this setting,
we follow the strategy in Wang and Bansal (2018)
and mix as many adversarial examples as 25% of
the original training data. For those instances xi
without corresponding adversarial examples, we
take the dropout approach to supplement data.

2.3 Training Loss

Our training loss is a weighted sum of the MRC
task-specific loss lmrc, contrastive loss lcontrastive
and stability loss lstability. This section describe sta-
bility and contrastive loss in detail. For complete-
ness, we provide description of MRC task-specific
loss in Appendix A.1.

ltotal = lmrc+w1 · lcontrastive+w2 · lstability (1)

Stability Loss The aim of stability loss is to scale
down change of probability distribution caused by
small label-preserving perturbations in data aug-
mentation module. Given the probability distribu-
tion Pi and P′

i output by predictor P, the stability
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Model Dev Test CS PQ AS DE DG WR Average
BERT 65.46 64.82 49.01 58.82 24.06 29.14 51.70 62.87 50.75
SC-BERT 68.00 66.54 50.16 59.42 28.31 30.97 54.03 64.49 52.74 (+1.99)
ALBERT 67.81 66.64 49.39 57.09 31.41 36.26 57.82 63.68 53.76
SC-ALBERT 70.35 68.30 50.67 60.56 34.03 39.79 58.31 67.13 56.14 (+2.38)
RoBERTa 71.00 70.21 54.20 62.79 28.19 38.87 58.39 67.82 56.43
SC-RoBERTa 72.66 71.30 55.65 63.90 29.14 40.15 58.51 68.61 57.49 (+1.06)

Table 1: Results on RACE develop, test set and adversarial test sets cited from Si et al. (2021). All scores are
Accuracy in percentage. CS means CharSwap, PQ means ParaQues, AS means AddSent, DE means Distractor
Extraction, DG means Distractor Generation and WR means Word Replace. p value for t-test is less than 0.005.

loss is calculated as follow:

listability =
∥∥∥Pi − P

′
i

∥∥∥
2

(2)

Dev Dev AddOneSent AddSent
Baseline systems
BERT 88.48 74.40 66.11
ALBERT 89.76 77.88 70.48
RoBERTa 91.95 80.73 75.34
Related works
BiDAF (2017) 77.3 45.7 34.3
QANet (2018) 83.8 55.7 45.2
R.M-Reader (2018) 86.3 67.0 58.5
QAInfomax (2019) 88.6 64.9 54.5
BERT-AT† (2020a) 87.8 - 81.7
PQAT (2021) 92.3 73.6 64.7
BERT† 88.20 86.68 85.72
ALBERT† 89.35 88.07 87.68
RoBERTa† 91.79 90.93 90.17
Our approach
SC-BERT 88.68 75.16 66.48
SC-BERT† 88.56 87.07 86.48
SC-ALBERT 90.4 78.01 69.77
SC-ALBERT† 89.58 88.43 87.66
SC-RoBERTa 92.47 81.60 75.87
SC-RoBERTa† 92.13 91.48 90.61

Table 2: Experiment results on SQuAD 1.1 develop set
and adversarial set. All scores are F1 in percentage. †

means mixing AddSentDiverse data.

Contrastive Loss We adopt the simple but
widely employed normalized temperature-scaled
cross-entropy loss in Gao et al. (2021) for con-
strstive learning. hi and h

′
i denote the representa-

tion of xi and x
′
i which are semantically similar,

the contrastive loss for (xi, x
′
i) within a mini-batch

of N pairs is:

licontrastive = − log
esim(hi,h

′
i)/τ

∑N
j=1 e

sim(hi,h
′
j)/τ

(3)

where τ is the temperature hyper-parameter and
sim(h1, h2) is the cosine similarity

3 Experimental Settings

Datasets Following previous research (Jia and
Liang, 2017; Gan and Ng, 2019; Si et al., 2021),
we organize a benchmark for MRC models’ ro-
bustness by integrating different forms of read-
ing comprehension tasks and different adversar-
ial attacks. The datasets contain span-based ex-
tractive SQuAD 1.1 (Rajpurkar et al., 2016) and
SQuAD 2.0 (Rajpurkar et al., 2018), multiple
choice RACE (Lai et al., 2017) and ReClor (Yu
et al., 2019), and Yes/No BoolQ (Clark et al., 2019)
and NP-BoolQ (Khashabi et al., 2020). Types of
adversarial attacks include CharSwap, ParaQues,
AddSent and other dataset-specific attacks. We
choose AddSentDiverse (Wang and Bansal, 2018)
and training set of NP-BoolQ (Khashabi et al.,
2020) as explicit data augmentation to demonstrate
that our SCQA approach can further boost the mod-
els’ performance against specific attack. The de-
tails of datasets, attacks and augmented adversarial
examples are presented in Appendix A.2.

Models and Metrics We apply the SCQA ap-
proach on base version of BERT (Devlin et al.,
2019), ALBERT (Lan et al., 2019) and RoBERTa
(Liu et al., 2019). The parameters are presented
in Appendix A.3. We run experiments three times
with different random seeds to report the mean
result and do t-test to ensure that the improve-
ment was statistically significant. We follow the
existing evaluation indicators. For multiple choice
and Yes/No MRC task, the Accuracy results are
reported. F1 value is measured for span-based ex-
tractive task.

4 Results and Analysis

4.1 Performance against Attacks
With dropout as data augmentation, the results of
SCQA method on RACE develop, test set and dif-
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Model Dev Test CS PQ AS DE DG WR Average
BERT 65.46 64.82 49.01 58.82 24.06 29.14 51.70 62.87 50.75
+ Dropout 66.20 64.88 48.91 57.94 27.83 29.85 52.80 62.95 51.42
+ SL 67.34 66.23 49.13 59.63 27.40 32.12 53.20 64.11 52.40
+ CL 66.89 65.59 49.61 58.63 26.29 30.04 53.06 63.42 51.69
+ SL then CL 66.36 65.14 49.27 59.49 28.35 31.03 53.06 63.15 51.98
+ CL then SL 67.16 65.83 49.66 59.30 26.79 30.24 53.08 63.70 51.97
+ SL and CL 68.00 66.54 50.16 59.42 28.31 30.97 54.03 64.49 52.74

Table 3: Ablation study of BERT on RACE develop, test and different adversarial test sets. SL means stability
loss. CL means training with contrastive loss. SL then CL means training 3 epochs with stability loss then training
another 3 epochs with contrastive loss. SL and CL means training with stability and contrastive loss simultaneously.

ferent adversarial sets are summarized in Table 1.
Compared with baseline models, SCQA is able to
boost model robustness against all attack test sets
significantly, without sacrificing the performance
on in-domain develop and test sets. According to
the relationship between the number of model pa-
rameters and improvement of the results, we can
find that SCQA can better improve the model with
a small number of parameters.

Table 2 reports the robustness of models against
AddSent and AddOneSent attack built on SQuAD
1.1, under the explicit and implicit data augmen-
tation strategies respectively. With dropout as im-
plicit augmentation, SCQA improves the perfor-
mance by about 0.6% consistently. Training with
adversarial samples can effectively improve the ro-
bustness against specific attack, and SCQA can
further boost the performance by about 0.5%.

Overall results on other datasets and adversarial
attack sets are presented in Appendix A.4

4.2 Ablation Study

We investigate ablation experiments to observe the
impact of stability and contrastive loss. Addition-
ally we explore how to combine stability and con-
trastive loss to better optimize a robust model. Ta-
ble 3 shows the results of BERT on RACE dataset,
which suggests that just training with stability, con-
trastive loss or combination serially can either im-
prove model performance, and the combination of
the two objective at the same time can achieve the
best overall effect.

4.3 Analysis of Embedding Space

To prove the hypothesis that SCQA can train en-
hanced contextual representations with better in-
variance, we compute the alignment property lalign
between representations of example x in test set
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Figure 2: Alignment of models on CharSwap and
AddSent attacks of RACE test set.

and corresponding label-preserving adversarial ex-
ample x

′
. A lower alignment value represents a bet-

ter representation. The results on Figure 2 shows
that SCQA can amends model alignment and there-
fore improve the robustness of QA models against
test-time label-preserving perturbations. We can
also observe from the value of alignment that the
AddSent attack is more challenging than CharSwap.

lalign ≜ E(x,x′ )∈ppos ||f(x)− f(x
′
)||2 (4)

5 Conclusion

A number of studies have exposed the robustness
issues of MRC by introducing different types of
adversarial examples. In this paper, we integrate
several MRC datasets and adversarial attacks to
construct a benchmark for evaluating the robust-
ness of MRC models. Then we propose SCQA to
train robust MRC models by learning invariant rep-
resentation. Experimental results show that, with
dropout as implicit data augmentation, our novel
approach can improve the alignment attribute and
elevate the robustness of MRC models generally
and consistently. Moreover, with explicit adversar-
ial examples augmented, SCQA can further boost
model performance.
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6 Limitations

Current data augmentation strategy just contains
creating positive training pairs to defense label-
preserving perturbations. SCQA pays little atten-
tion to the construction of high-quality negative
sample pairs, which need to be further explored to
fully utilize the effect of contrastive learning.
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A Appendix

A.1 MRC Task-specific Loss

Different forms of machine reading comprehension
tasks require task-specific output heads and loss
functions, which are as follows:

• Span-based Extractive MRC task requires
model to predict the start/end position proba-
bility distributions of answer. And the training
loss lspan is the negative log-likelihoood of
correct start and end boundaries:

lispan = −ysi logPs
i − yei logPe

i (5)

where ysi and yei are the ground truth start and
end positions of input example xi.

• Span-based Extractive RC with Unanswer-
able Questions requires the model not only to
predict the correct span answer when the ques-
tion is answerable, but also to identify when
no answer can be inferred from the context.
Therefore, we use the negative log-likelihoood
of correct start and end position as training ob-
jective, and if the question has no answer, we
will simply predict both the start and end po-
sition as 0. During the inference phase, if the
best candidate span answer has a score that is
less than the score of the no-answer (sum of
start and end probability in position 0 ) minus
a threshold, the no-answer is selected for this
example.

• Multiple Choice RC requires the model to
find the only correct option in the given candi-
date options based on the context. Given a in-
put example xi consists of question qi, context
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ci and k options o(1)i , o
(2)
i , ..., o

(k)
i , we first cre-

ate k input sequences where x(ij) is composed
by qi, ci and o

(j)
i , 1 <= j <= k. We feed the

k sequences into encoder E to get contextual

representations hi = h
(1)
i , h

(2),...,h
(k)
i

i ∈ Rk×d

where d is the hidden size. The final predic-
tor module P then calculate the probability
of which option the answer is. The loss func-
tion is cross-entropy loss generally used in
multiple classification problems.

• Yes/No MRC expect the model to answer yes
or no when given Yes/No questions and re-
lated context. It can be modeled as a binary
classification problem and the training objec-
tive is cross-entropy loss.

A.2 Details of Datasets

Datasets Table 4 represents the dataset statistics
in detail.

• SQuAD 1.1 Rajpurkar et al. (2016) proposed
the dataset in which the 100k+ questions were
created by crowdworkers on 536 Wikipedia
articles.

• SQuAD 2.0 was released by Rajpurkar et al.
(2018) which combines exsiting SQuAD 1.1
data with over 50k unanswerable questions
written adversarially by crowdworkers to look
similar to answerable ones.

• RACE was presented by Lai et al. (2017)
which contains near 100k questions of Chi-
nese middle and high school students’ English
exams. More reasoning ability of the model is
required to answer the question because these
questions were carefully designed for evaluat-
ing the students’ ability in understanding and
reasoning.

• ReClor was constructed by Yu et al. (2019)
from standardized graduate admission exam-
inations. What makes ReClor challenging is
that every sentence in the context is important.
Therefore the model should not only extract
relevant information from the context, but also
have the logical reasoning ability.

• BoolQ was created by Clark et al. (2019) in
unprompted and unconstrained ways and fo-
cus on Yes/No questions. The questions are
written by people who did not know the an-
swer to the question they were asking. And
each question is paired with a paragraph from
Wikipedia that an independent annotator has

marked if the context contains the answer.
• NP-BoolQ proposed by Khashabi et al. (2020)

also requires the machine to understand what
facts can be inferred to be true or false from
the context. It was constructed by applying
human-driven natural perturbations to BoolQ
(Clark et al., 2019).

Adversarial Attacks We test the robustness
of models on following different types of label-
preserving perturbations which attack MRC mod-
els from their unique perspectives:

• CharSwap (CS) attack on multiple choice
MRC task was proposed by Si et al. (2021)
to show that models’ performance drops a
lot when there are spelling errors in the data.
We expand CharSwap attack to spand-based
extractive and Yes/No MRC tasks by ran-
domly swap two adjacent letters in the non-
stopwords in the question and context without
altering the first or last letters.

• ParaQues (PQ) attack on SQuAD 1.1 dataset
was proposed by Gan and Ng (2019) to ex-
pose the models’ over-sensitivity issue of be-
ing puzzled by a paraphrased label-preserving
question. To investigate other types of MRC
models’ performance on ParaQues attack, we
use fine-tuned T5 model (Raffel et al., 2020)
by Questgen 2 based on Quora Question Pairs
dataset 3 to generating the paraphrased ques-
tions. Then we manually check and reserve
the paraphrased questions which have the
same meaning of the original question and
are written in fluent English.

• AddSent (AS) was first introduced by (Jia
and Liang, 2017) to investigate the inability
of a MRC model to defend the perturbation
of a distractor sentence. Inspired by Jia and
Liang (2017), Si et al. (2021) proposed to
make use of the human-written distractors in
multiple choice RACE dataset to create strong
distracting setences which are then inserted
into the context randomly. Following those
work, we create AddSent attack test set on
SQuAD 2.0 and ReClor datasets respectively.

• ContrastSet (ConS) was proposed by Gard-
ner et al. (2020) to accurately evaluate mod-
els’ true linguistic capabilities. Different from
other label-preserving attacks, they manually

2https://github.com/ramsrigouthamg/Questgen.ai
3https://data.quora.com/First-Quora-Dataset-Release-

Question-Pairs
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type dataset q/a source #q #c avg |q| avg |c| avg |a| |V|
Extractive SQuAD 1.1 Crowdworker 108k 20k 11.4 137.1 3.5 87k
Extractive SQuAD 2.0 Crowdworker 151k 20k 11.2 137.0 3.5 88k

Multiple Choice RACE Experts 98k 28k 12.0 329.5 6.3 98k
Multiple Choice ReClor Experts 6k 6k 17.0 73.6 20.6 26k

Yes/No BoolQ User/Crowdworker 16k 13k 8.8 109.4 n/a 49k
Yes/No NP-BoolQ User/Crowdworker 17k 4k 9.1 95.7 n/a 62k

Table 4: Statistics of datasets. q, a and c means question, answer and context respectively. #q and #c means the
number of question and context. The average length of question, context and answer are noted as avg |q|, avg |a|
and avg |a|. |V| means the vocab size.

perturb the test instances of BoolQ and nine
remaining NLP datasets in small but meaning-
ful ways that typically change the gold label,
creating contrast sets looks not explicitly ad-
versarial but significantly reduce the perfor-
mance.

Augmented Adversarial Examples One of the
straightforward ways to defend attack is augment-
ing the training dataset with adversarial examples
generated by the same rules as the attacks. To fur-
ther illustrate the effectiveness of our approach,
we train our model on the datasets mixed with the
adversarial examples.

• AddSentDiverse was proposed by Wang and
Bansal (2018) based on the observation that
retraining models with data generated by
AddSent (Jia and Liang, 2017) has limited ef-
fect on the robustness. They further enriched
SQuAD 1.1 training data by dynamically gen-
erating the fake answers and varying the loca-
tions where the distractor sentences are placed.
The mixed adversarial examples accounts for
20% of the total SQuAD 1.1 dataset.

• NP-BoolQ was proposed by Khashabi et al.
(2020) to focus on the value of natural per-
turbations for robust model design. They
asked the workers to change the question by
adding or removing up to four terms, resulting
a modified question challenging for RoBERTa
trained on BoolQ dataset. The mixed adver-
sarial examples accounts for 5% of the total
dataset. We utilize training part of NP-BoolQ
to augment BoolQ training data.

A.3 Parameters Settings
We use the base version of BERT, RoBERTa and
ALBERT. During training, the batch size and epoch
varies according to the task, and all models have
the same batch size and epoch in the same dataset.

Model Dev CS PQ ConS NP-BoolQdev

BERT 71.4 69.7 71.1 58.0 46.8
SC-BERT 73.9 69.5 74.0 58.4 52.2
BERT† 74.5 70.0 74.0 61.6 56.5
SC-BERT† 76.0 69.9 76.1 63.1 56.5
RoBERTa 75.4 71.5 75.1 60.9 49.7
SC-RoBERTa 77.3 72.0 77.0 62.1 49.8
RoBERTa† 78.2 71.0 76.4 60.0 53.4
SC-RoBERTa† 79.1 71.8 78.6 61.4 57.1
ALBERT 77.7 65.2 77.0 60.2 55.9
SC-ALBERT 79.2 67.3 78.4 59.9 56.0
ALBERT† 77.9 70.0 77.3 60.0 56.9
SC-ALBERT† 78.3 68.8 77.9 60.4 56.5

Table 5: Experimental results of models on BoolQ de-
velop set and different kinds of adversarial test sets.†

means training with mixed NP-BoolQ train set.

For SQuAD 1.1 and SQuAD 2.0, the batch size
and epoch are 12 and 3 respectively. For BoolQ
and NP-BoolQ, the batch size and epoch are 12
and 10 separately. The batch size for RACE and
ReClor is 6 since each question has 4 options, and
the epoch is 3. We set the learning rate lr to 3e− 5
for all models on all datasets, excepting that lr of
all models is 2e− 5 for ReClor, lr of RoBERTa is
3e-6 on RACE and NP-BoolQ, and ALBERT has
lr 1e-5 for RACE, BoolQ and NP-BoolQ. We keep
the other hyper-parameters of models default. The
weights in combined loss are simply set 1e− 4 for
w1 and 3e− 5 for w2. The temperature τ is 0.05.

A.4 Detailed Results

Table 5-8 represents the experimental results of
models on BoolQ, NP-BoolQ, SQuAD 2.0, ReClor
and corresponding adversarial sets respectively.
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Model Dev CS PQ ConS BoolQdev

BERT 65.8 58.6 62.9 52.1 61.7
SC-BERT 67.2 57.5 64.5 58.9 65.1
RoBERTa 69.0 56.3 65.7 55.8 61.1
SC-RoBERTa 70.6 58.4 66.0 58.2 69.7
ALBERT 70.5 59.7 67.1 51.59 62.7
SC-ALBERT 70.8 58.0 67.4 57.2 67.3

Table 6: Experimental results of models on NP-BoolQ
develop set and different kinds of adversarial test sets.

Model Dev CS PQ AS
BERT 69.7/76.9 79.8/53.6 69.7/71.5 74.3/57.1
SC-BERT 70.2/77.3 80.7/53.9 70.2/71.9 73.8/57.9
RoBERTa 76.0/82.8 72.4/60.0 85.5/70.8 87.7/64.9
SC-RoBERTa 78.0/84.0 75.4/61.1 86.9/71.2 88.0/65.3
ALBERT 82.5/81.6 83.8/55.4 78.0/75.8 84.9/60.1
SC-ALBERT 82.8/82.5 81.7/56.5 77.8/76.7 86.9/60.3

Table 7: Experimental results of models on SQuAD
2.0 develop set and adversarial test sets. The slash is
preceded and followed by the F1 value of examples with
no answer and overall examples, respectively.

Model Dev CS PQ AS
BERT 53.6 35.6 52.0 23.4
SC-BERT 54.9 47.0 55.8 43.4
RoBERTa 54.8 45.0 51.6 27.0
SC-RoBERTa 55.4 46.4 56.0 35.0
ALBERT 57.0 46.6 54.2 36.6
SC-ALBERT 58.0 45.6 56.0 48.8

Table 8: Experimental results of models on ReClor
develop set and different kinds of adversarial test sets.
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