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Abstract

Proof generation focuses on deductive rea-
soning: given a hypothesis and a set of
theories, including some supporting facts and
logical rules expressed in natural language,
the model generates a proof tree indicating
how to deduce the hypothesis from given
theories. Current models with state-of-the-
art performance employ the stepwise method,
linking an individual node to the proof step-by-
step. However, these methods actually focus
on generating several proof paths rather than
a whole tree. To address this problem, we
propose ProofInfer, which generates the proof
tree via iterative hierarchical inference. At each
step, ProofInfer generates the entire layer for
proof tree, where all nodes in this layer are
generated simultaneously. Since the conven-
tional autoregressive generation architecture
cannot simultaneously predict multiple nodes,
ProofInfer employs text-to-text paradigm to
avoid it. To this end, we propose a divide-
and-conquer algorithm to encode the proof tree
as the plain text recursively without structure
information loss. Experimental results show
that ProofInfer significantly outperforms the
state-of-the-art (SOTA) models on several
widely-used datasets. In addition, ProofInfer
still performs well with data-limited, achieving
comparable performance to the SOTA models
with only 40% of the training data. 1

1 Introduction

Automated reasoning is a fundamental goal of AI
(Newell and Simon, 1956; McCarthy et al., 1960):
the ability to draw valid conclusions from explicitly
provided knowledge. Traditional research in
automated reasoning focus on structured domains
such as formal logic (Robinson and Voronkov,
2001; Musen and Van der Lei, 1988). Recently,
(Clark et al., 2021) proposed a new version of

1Our code and models are publicly available at
https://github.com/sion-zcfei/ProofInfer

Figure 1: An example of the proof generation task. The
existing stepwise methods add the nodes and edges step
by step. They focus on generating several proof paths
instead of the whole proof tree, so they often link the
wrong branches (the nodes with red text) and miss the
critical branches (the nodes with other color text).

the task by replacing the formal representations
of rule-bases with natural language. Given a
hypothesis and a set of theories, including some
supporting facts and logical rules expressed in
natural language, the model generates a proof tree
indicating how the hypothesis is deduced from a
subset of the theories.

Existing works generates the proof either in a
single shot (Saha et al., 2020; Sun et al., 2021)
or step-by-step (Liang et al., 2021; Tafjord et al.,
2021; Yang et al., 2022; Qu et al., 2022). Stepwise
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methods link an individual node to the proof step-
by-step, which leverage the compositionality of
proofs, making it easier for the model to learn
and generalize to long proofs (Tafjord et al., 2021).
However, the existing stepwise methods actually
focus on generating several proof paths rather than
a whole tree (Yang et al., 2022; Qu et al., 2022).
During generation, these models only focus on
the most relevant areas of the currently generated
path while neglecting the rest of the proof tree.
This problem makes the existing stepwise methods
struggle to generate proof steps that are both valid
and relevant (Sanyal et al., 2022; Yang et al., 2022)
as shown in Figure 1 .

To address this challenge, we propose ProofInfer,
which generates the proof tree via iterative hierar-
chical inference. Unlike the stepwise methods to
link nodes one-by-one, the iterative hierarchical
inference takes the hypothesis as the root node
and infers the proof tree layer-by-layer until each
intermediate node in the tree finds its supporting
facts. At each step, ProofInfer adds the entire
layer to the proof, where all nodes in this layer
are generated simultaneously. Since convention
autoregressive generation architecture with teacher-
forcing (See et al., 2017; Lewis et al., 2020;
Radford et al., 2019) cannot simultaneously predict
the multiple nodes at each step (Qi et al., 2020;
Goodman et al., 2020), ProofInfer employs the text-
to-text paradigm to generate the proof instead of
generating the tree structure directly. In detail, we
map the generated proof tree to a plain text and take
it as input for a generation model to infer the proof
text with a new layer, which can be decoded into the
corresponding tree structure. Text-to-text paradigm
can ensure that all the nodes with the same depth
in the proof tree are generated simultaneously.
Furthermore, the standard text-to-text paradigm
loses the structure information hidden in the proof
tree (Qu et al., 2022). To this end, we propose a
divide-and-conquer algorithm to encode the plain
text for the proof tree, ensuring that the plain text
is unique for each tree and ultimately retains the
structure information.

We conduct experiments to evaluate our ap-
proach on several datasets widely used in previous
studies with different settings. Experimental
results show that our ProofInfer outperforms
significantly more than the state-of-the-art (SOTA)
models. In addition, ProofInfer shows strong
generalization ability and performs well with data-

limited, achieving comparable performance to the
SOTA models with about 40% of the training data.
Our main contributions are summarized as follows:

• We present ProofInfer, a novel proof genera-
tion model via iterative hierarchical inference.
ProofInfer employs the text-to-text paradigm
to avoid the shortcoming of conventional au-
toregressive generation architecture on proof
generation tasks. Unlike the previous stepwise
methods, Proofinfer focuses on generating
the whole proof tree rather than several proof
paths.

• We propose a divide-and-conquer algorithm
to encode the proof tree as a linear structure
without losing structure information.

• Experimental results show that ProofInfer
significantly outperforms the state-of-the-art
models. ProofInfer performs well with data-
limited, achieving comparable performance
to the SOTA models with about 40% of the
training data.

2 Related Work

Existing methods for generating natural language
proofs include single-shot and stepwise methods.
Single-shot methods generate the entire proof tree
at once by predicting the nodes and edges in the
proof. PROVER (Saha et al., 2020) trains two
binary classifiers to predict whether each node and
each edge is a part of the proof, and it employs
linear integer programming to ensure the proof is
connected. Similarly, PROBR (Sun et al., 2021)
employs a probabilistic graph to generate the proof
via one-shot.

On the other hand, stepwise methods link the
node to the proof one by one, which leverages
the compositionality of proofs, making it easier
for the model to learn the long proof. EVR
(Liang et al., 2021) splits the question into sub-
questions, using generated intermediate texts to
guide proof generation step-by-step. ProofWriter
(Tafjord et al., 2021) shares a similar idea but
annotates the extra intermediate conclusions and a
much more powerful T5-11B model (Raffel et al.,
2019) for generation, which is hard to reproduce.
In addition, ProofWriter employs the text-to-text
paradigm to generate the proof step-by-step, which
ignores the structure information in the proof tree.
To retain the structure information, recent works
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Figure 2: The model architecture of ProofInfer. At each step, ProofInfer encodes the generated proof tree into a
proof text and inputs it into a generator to generate the proof text with the new layer. The iterative inference will
end when all the nodes find their supporting facts.

(Yang et al., 2022; Qu et al., 2022; Sanyal et al.,
2022) focus on training the module to guide the
model to generate the proof path. However, prior
works (Tafjord et al., 2021; Yang et al., 2022) have
observed that the stepwise methods struggle to
generate valid and relevant proof steps. One reason
is that the stepwise methods focus on generating
the proof path instead of the proof tree (Qu et al.,
2022). But the conventional generation model with
teacher-forcing cannot generate multiple nodes
simultaneously, making it inevitable that the model
can only focus on the proof path.

ProofInfer employs the text-to-text paradigm to
achieve the hierarchical inference, which gener-
ates the proof layer-by-layer and simultaneously
generates the nodes with the same depth. This
way, ProofInfer focuses on the whole proof tree
rather than the paths. In addition, to avoid
structure information loss caused by the text-to-text
paradigm (Tafjord et al., 2021), ProofInfer uses a
novel divide-and-conquer algorithm to encode the
proof tree as a plain text without information loss.

3 Methodology

In this section, we formalize the proof generation
task and introduce our ProofInfer. In particular,
we first describe the proof generation framework
via iterative hierarchical inference. Following this,
we describe the divide-and-conquer algorithm for
proof encoding and proof decoding. The overall
architecture of ProofInfer is shown in Figure 2.

3.1 Task Definition

We first formulate the proof generation task as
follows. As shown in Figure 1, the input consists of
a hypothesis H and a set of theories T = {F,R}
containing several textural rules R = {Ri} and
facts F = {Fi}. Both H and T are natural
language sentences. H can be deduced from a
subset of T through reasoning, which may require
multiple steps.

The output is a proof tree P specifying how H
is deduced from T . The node in P can be a fact or
a rule. The directed edges in the proof indicate that
the end nodes can support the start nodes during
reasoning. As shown in Figure 1, R1 can be proved
by R3 and F12. To successfully perform the task,
the model must select relevant facts and rules from
T and use them as the nodes to compose a valid
proof tree to deduce the H .

3.2 The Proof Generation Framework via
Iterative Hierarchical Inference

We present ProofInfer, our method for generating
natural language proof via iterative hierarchical
inference. At first, to ensure the fluency of
reasoning, we add the hypothesis H to the node-
set and take it as the initial node to produce
the proof tree P . Then we concatenate the
text representations of all facts, rules, and the
hypothesis as the context Xtheory as shown in
Figure 2.

ProofInfer employs a top-down architecture and
links all the supporting nodes that can be used to
prove the current leaf nodes at each iterative step
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as follow:

p(yd) = p(yd|yd−1) (1)

p(yd|yd−1) = p(xd1, ..., x
d
numd

|yd−1) (2)

where yd is the proof tree has d layers, xd is the
node in the dth layer of the proof tree, and numd

is the number of nodes in the dth layer.
In a word, ProofInfer generates the proof tree

layer-by-layer until each intermediate node in the
tree finds the supporting facts.

Compared to existing stepwise methods, the
iterative hierarchical inference is a novel paradigm
for proof generation, which focuses on constructing
the entire proof tree instead of proof paths. As for
iterative hierarchical inference, all the nodes in the
same layer are generated simultaneously. However,
the autoregressive model with teacher-forcing that
is used widely in the generation tasks can predict
only one new node as follow:

p(xi) = p(xi|x1, ..., xi−1) (3)

where x is the nodes that are linked to the proof.
To achieve iterative hierarchical inference, we

take text-to-text paradigm to generate multiple
nodes simultaneously. As shown in Figure 2, at
each iterative step, ProofInfer infers the new layer
of proof tree by three steps as follow:

Xt
proof = ProofEncoding(Y t) (4)

Xt = Xtheory [SEP]X
t
proof (5)

Xt+1
proof = Generator(Xt) (6)

Y t+1 = ProofDecoding(Xt+1
proof ) (7)

1) ProofInfer encodes the generated proof tree Y t

as the text Xt
proof . 2) ProofInfer concatenates

theories Xtheory and Xt
proof as Xt, separated

by special [SEP] token. ProofInfer input it
to the generator and generates Xt+1

proof the text
representation of the proof tree with the nodes in
the next layer. 3) ProofInfer decodes Xt+1

proof as the
tree structure Y t+1.

If Y t is the same as Y t+1, which shows all the
nodes find their supporting nodes, the generation
processing will end.

3.3 Divide-and-Conquer Algorithm for Proof
Encoding

Although ProofInfer employs the text-to-text
paradigm to avoid the shortcoming of the

Figure 3: An example for our divide-and-conquer
algorithm. The example shows how to encode the proof
into plain text recursively. We make each subtree, and
corresponding plain text has the same color as red or
blue, and the green text indicates the root node for each
tree.

autoregressive model with teach-forcing, the
text-to-text ignores the structure information
hidden in the proof tree (Qu et al., 2022), which is
vital for proof generation, especially for iterative
hierarchical inference.

Algorithm 1 Proof Encoding
input :The root node of tree root,

the child nodes of each node g
output :The proof text T

if root is a leaf node then
text← the name of root
T ← “(” + text+ “)”
return T

end
T ← empty
g[root]← SORT(g[root])
for child in g[root] do

childT ← ProofEncoding(child)
T ← T + childT

end
text← the name of root
T ← “(” + text+ “)”
return T

To solve this issue, we propose a divide-and-
conquer algorithm, which can encode the proof tree
to a unique plain text and decode it into the original
tree structure. More importantly, all structure
information in the proof tree is preserved in this
text. Next, we introduce the encoding and decoding
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algorithms, respectively. Figure 3 shows how to
convert the proof to the plain text.

Algorithm1: Proof Encoding. Algorithm 1
is implemented by recursion. We use the divide-
and-conquer method to encode the tree structure.
For each subtree of the root node, we recursively
encode it separately and then merge it with the
root node. Each piece of text surrounded by
paired parentheses is the textual representation of
a subtree. In addition, for the nodes that have the
same father, we sort them by lexicographical order.
For example, the node representing fact1 will be
sorted before fact2, and the fact2 will be sorted
before rule1. The purpose is to ensure each proof
tree has a unique text representation.

Algorithm2: Proof Decoding. Algorithm 2 is
also a divide-and-conquer algorithm implemented
by recursion. For each textual representation of a
tree, we first exclude the root node’s name. Then
we decode each subtree recursively and link it to
the root node.

Algorithm 2 Proof Decoding
input :The proof text T
output :The proof tree Tree corresponding to T

if there is no “(” or “)” in T then
Create a new node Tree whose name is T

return Tree
end
text← the first name in T

Create a new node Tree whose name is text
T ← T remove the text
N ← the length of T
i← 0
while i < N do
// T [i] must be “(”
j ← the index of the matched “)”
childT ← Proof Decoding(T [i+ 1 : j − 1])
Addedge(Tree, childT )
i← j + 1

end
return Tree

3.4 Training and Inference
Training: To train the iterative model, we create
an augmented set of training examples for each
sample in the training data with one sequence of
iteratively inferred proof trees in turn. In detail, we
split the sample whose target proof tree’s maximum
depth is d into d samples whose target proof tree’s
depth is 1, .., d. It ensures that all example’s
inferences are depth-1 and the model generates all

nodes in the next layer simultaneously. We employ
T5 model (Raffel et al., 2019) as the generator and
train it by the negative log-likelihood for the target
sequence Y = {yt}:

L =
1

T

T∑

t=1

logP (ỹt = yt) (8)

where ỹt is the prediction token at the tth decoding
step.

Furthermore, we train a linear classifier to
predict the answer of the hypothesis, where we
input the theories, hypothesis, and the proof tree
text into it.

Inference: We input the theories and the initial
proof tree in the inference stage with only a
hypothesis node. ProofInfer generates the proof
tree by iteratively applying the model until no new
layer is generated (the generated proof is the same
as the input proof). The answer predictor employs
the final proof tree to predict the answer of the
hypothesis.

4 Experiments

To evaluate the model’s ability to generate the
proof, following (Qu et al., 2022) we conduct
experiments on three datasets and four settings,
including fully-supervised training, training using
fewer samples, testing on out-of-distribution sam-
ples, and generalization to more complex proofs or
language.

4.1 Datasets
We conduct the experiments on three datasets
raised by 2 (Clark et al., 2021), and we use the same
setting as previous works for fair comparison:
DU0-DU5: The dataset comprises five synthesized
datasets created by translating hand-crafted rules
and formal language to natural language. The five
datasets are named DU0, DU1, DU2, DU3, and
DU5, each containing 100k questions. It is divided
by the highest depth of the proof tree, where DU
stands for "Depth Upto" (DU = 0, 1, 2, 3, 5). Data
in higher DU values also contain samples with
lower depth. Each dataset is split 70/10/20 into
train/dev/test. Specifically, the proofs in DU0 only
have one supporting fact. All related results are
reported on DU5.
Bird-Electricity: It consists of two test-only
datasets of test-only datasets of 5k samples used to

2https://allenai.org/data/ruletaker
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Model Answer Accuracy Proof Accuracy
0 1 2 3 4 5 all 0 1 2 3 4 5 all

PROVER (Saha et al., 2020) 100 99.0 98.8 99.1 98.8 99.3 98.4 99.3 93.2 84.8 80.5 72.5 65.1 87.1
PROBR (Sun et al., 2021) 100 99.9 99.9 100 100 100 99.9 98.4 94.3 86.1 82.0 76.1 72.2 88.8
EVR (Liang et al., 2021) 99.4 99.3 96.9 93.3 88.9 88.3 94.4 95.8 92.5 87.7 79.3 77.3 68.8 83.6
IBR (Qu et al., 2022) 100 99.2 99.2 98.9 99.3 99.6 99.4 99.5 95.6 93.0 90.7 86.5 81.7 93.5

ProofWriter(T5-11B + extra information) (Tafjord et al., 2021) 100 99.1 98.6 98.5 98.7 99.3 99.2 99.6 98.7 97.3 94.4 91.0 86.4 96.2
ProofWriter(T5-large + extra informaiton) (Tafjord et al., 2021) 99.0 98.8 98.3 98.6 98.0 97.7 98.7 99.0 95.0 91.0 89.0 86.3 85.4 94.4

ProofInfer(T5-large)(ours) 100 100 100 99.9 100 100 99.9 99.6 99.3 98.7 96.8 92.8 90.7 97.2

Table 1: Test results on DU0-DU5 for different depths of the proof tree. Models are trained and tested on the D5
subset. Our model employs T5-large and is trained without any extra information.

Model 10k 30k 70k

Answer

PROVER (Saha et al., 2020) 87.1 97.8 99.3
PROBR (Sun et al., 2021) 99.9 99.9 99.9
EVR (Liang et al., 2021) 94.8 97.8 99.2
IBR (Qu et al., 2022) 97.9 99.4 99.5
ProofINfer 99.2 99.9 99.9

Proof

PROVER (Saha et al., 2020) 72.4 86.8 88.8
PROBR (Sun et al., 2021) 72.4 86.8 88.8
EVR (Liang et al., 2021) 80.2 80.9 83.6
IBR (Qu et al., 2022) 75.7 89.8 93.5
ProofInfer 83.5 92.9 97.2

Table 2: Performance comparison using fewer training
samples. The models are tested on the full test split of
DU5 after training on the subset of train-set on DU5.

evaluate the out-of-distribution performance of the
models.
ParaRules: ParaRules consists of 40k questions
against theories expressed in paraphrased natural
language, obtained through crowdsourcing.

4.2 Metrics

Following previous works, we evaluate the per-
formance of models via answer prediction of
hypothesis answer accuracy and proof generation
accuracy. As for proof generation accuracy,
we evaluate the fraction of samples where the
generated proof tree matches exactly with the gold
proof. Since some samples may have multiple gold
proofs, a generated proof will be considered correct
if it matches exactly with any of the gold proofs.

4.3 Baselines

We compare our proposed model against several
strong baselines on proof generation.
PROVER (Saha et al., 2020): a single-shot method
that treats the proof as a graph and predicts all its
nodes and edges at once.
PROBR (Sun et al., 2021): a single-shot method
improves the PROBER via the probabilistic, which
jointly considers the answer, nodes, and edges.

ProofWriter (Tafjord et al., 2021): a text-to-text
method, which introduce the extra intermediate
conclusions to reduce the difficulty of reasoning.
EVR (Liang et al., 2021): an iterative stepwise
method that predicts the next proof item by
generating textual sub-questions based on a logical
operator.
IBR (Qu et al., 2022) an iterative stepwise method
that trains several modules to predict the proof path
at each step.

4.4 Implementation Details

We use the T5-large model (Raffel et al., 2019)
loaded from transformers in huggingface library
3. We use the AdamW (Loshchilov and Hutter,
2018) as the optimizer, and the learning rate for
local fine-tuning is set to 2e-5. We stop the training
if the validation BLEU-4 score stops improving for
5 epochs. We clip the gradient at length 10. The
batch size is 32 and the beam search width is 5. All
hyperparameters are tuned on the development set.

4.5 Results for Varying Depths

We first train and evaluate ProofInfer on the train
and test splits for the DU5 dataset and compare
the performances of varying depths. We report the
results on Table 1.

ProofInfer achieves the best proof accuracy and
answer accuracy among all baseline models on
samples in every depth. ProofInfer is much better
on samples with the deep proof tree, which is 6.3
and 9.0 higher than IBR (Qu et al., 2022) when the
depth are 4 and 5. ProofInfer obtains significantly
stronger performance on all metrics, benefiting
from the hierarchical inference.

Compared to ProofWriter(T5-large + extra
information) (Tafjord et al., 2021) that employs
text-to-text paradigm and additional intermediate
conclusions information, our ProofInfer does not

3huggingface.co/transformers
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Model DU0 DU1 DU2 DU3 DU5

Answer

PROBER (Saha et al., 2020) 68.7 73.7 89.6 98.6 99.3
PROBR (Sun et al., 2021) 56.9 97.7 99.9 99.9 99.9
IBR (Qu et al., 2022) 53.5 73.1 89.6 98.6 99.4
ProofInfer 72.6 89.4 99.9 99.9 99.9

Proof

PROBER (Saha et al., 2020) 44.4 63.8 72.6 79.1 87.1
PROBR (Sun et al., 2021) 50.7 63.9 74.5 83.2 88.8
IBR (Qu et al., 2022) 47.0 64.6 76.3 87.4 93.5
ProofInfer 51.1 66.1 78.9 91.7 97.2

Table 3: Performance of generalization ability on proof
generation between models when testing one the DU5,
after trained on DU0, DU1, DU2, DU, and DU5.

use any extra information and still achieves much
better performance than ProofWriter. In addition,
our ProofInfer with T5-large model (770 million
parameters) achieves better performance than
ProofWriter with T5-11B (11 billion parameters),
which outperforms ProofWriter with 14x fewer
parameters. Using the same T5-large model,
our ProofInfer performs significantly better than
ProofWriter with extra information. The results
show that our proof encoding algorithm improves
the text-to-text paradigm’s performance and hierar-
chical inference’s effectiveness.

4.6 Using Fewer Training Samples

We report the performance of ProofInfer on proof
accuracy when using fewer training data, ranging
from 10k to 30k to all the samples (70k) in DU5.
The comparison between ProofInfer, PROVER,
PROBR, and IBR is shown in Table 2 Our model
significantly has the best proof generation than the
other baselines in all settings. Iterative hierarchical
inference focus on the whole proof tree instead of a
path, which does not need to switch the generated
path and thus fewer training samples.

Our ProofInfer with almost 40% training sam-
ples (30k) is only a bit lower (0.6%) than state-
of-the-art method IBR with all training samples.
Compared to PROVER and PROBR, ProofInfer
with 30k samples has much higher accuracy on
proof accuracy. In addition, the performance of
ProofInfer with 10k samples is still competitive
with other methods. The results show our
ProofInfer can perform well with data-limited.

4.7 Generalize to Higher Depths

To test the generalization ability of ProofInfer, we
train the model on the training splits of DU0, DU1,
DU2, and DU3, then we test them on the DU5
with deeper proof paths respectively and report the
results in Table 3. We notice that the performance

Models 0 1 2 3 4 all

Answer

PROBER (Saha et al., 2020) 99.7 98.6 98.2 96.5 88.0 98.4
PROBR (Sun et al., 2021) 99.8 99.7 99.9 99.8 100 99.8
IBR (Qu et al., 2022) 99.9 98.8 97.5 96.3 88.7 98.4
ProofInfer 99.8 99.6 100 99.9 100 99.9

Proof

PROBER (Saha et al., 2020) 99.5 98.0 88.9 90.0 76.1 95.4
PROBR (Sun et al., 2021) 99.5 98.0 88.9 90.1 82.4 95.6
IBR (Qu et al., 2022) 99.8 98.8 91.1 89.0 75.3 95.9
ProofInfer 100 100 100 99.5 91.9 99.6

Table 4: Performance of proof generation on ParaRules
test set whose samples are expressed in more human-
like natural language.

of all models drops significantly, especially when
the proof depth of the training set is lower because
it is hard for the model to learn complex reasoning-
based simple training data. However, ProofInfer
also performs well, especially on DU3. ProofInfer
obtains 91.7% for proof accuracy training on the
DU3 dataset, which is 4.3 % higher than SOTA
model IBR and is even higher than PBOBER and
PROBR training on DU5. The results prove that
our ProofInfer, which focuses on generating the
whole proof, can obtain a better generalization
capability than stepwise methods.

4.8 Generalize to Complex Language
In this section, we evaluate the ability of the
samples expressed in more human-like natural
language. Following (Clark et al., 2021), we train
models on the train-set of DU3 and ParaRules
and test on the ParaRules test-set. ParaRules is
a dataset that is close to real-world applications.
Table 4 shows that our ProofInfer improves the
performance significantly. The results indicate that
ProofInfer has good applicability when reasoning
on more complicated and natural texts. Our
ProofInfer shows strong competitiveness for real-
world applications.

Moreover, our ProofInfer performs well in the
sample with the deep proof tree compared to other
methods. The performance of ProofInfer is 10.5%
and 16.6% higher than IBR in depth-3 and depth-
4, respectively. Our ProofInfer obtains 99.5% at
depth-3 samples and 99.6% for all samples on
ParaRules, which is a near-perfect performance.

4.9 Out-of-Domain Evaluation
Following previous work (Saha et al., 2020) we
test the out-of-domain performance of ProofInfer
on the Birds-Electricity dataset, and we show
the results in Table 5. We train the model on
DU5 and test it on six datasets, two from the
birds domain(B1,B2) and the other four from the
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Model B1 B2 E1 E2 E3 E4 All

Answer

PROBER 95.0 95.0 100.0 100.0 89.7 84.8 86.5
PROBR 100.0 100.0 100.0 100.0 98.2 95.6 96.3
EVR 75.0 72.5 100.0 75.0 98.1 93.8 93.6
IBR 100.0 97.5 100.0 100.0 89.2 84.1 86.0
ProofInfer 100.0 100.0 100.0 100.0 98.1 95.8 96.5

Proof

PROBER 92.5 95.0 95.1 91.7 72.3 80.6 80.7
PROBR 100.0 100.0 97.5 93.3 79.3 77.7 79.3
EVR 28.6 35.7 100.0 50.0 70.8 81.6 77.2
IBR 100.0 100.0 95.6 94.4 80.2 82.4 83.2
ProofInfer 100.0 100.0 96.4 94.8 81.6 83.1 84.0

Table 5: Out-of-domain performance comparison on
Birds-Electricity dataset after training on DU5.

electricity domain (E1, E2, E3, E4). We show the
reults in Table 5. Overall, our ProofInfer achieves a
10.5% promotion in answer accuracy while a 0.8%
upgrade in proof accuracy compared to IBR. Our
method does not significantly improve performance
for proof generation on out-of-domain datasets.
We think the reason is that our ProofInfer focuses
on solving the shortcomings of existing stepwise
methods for constructing tree structures. The main
challenge for out-of-domain datasets is the transfer
learning ability of the model.

4.10 Ablation Study

To explore the effects of different components in
our model, we consider the following ablations:

ProofInfer w/o proof encoding: removing
our divide-and-conquer algorithm but use Polish
notation following (Tafjord et al., 2021).

ProofInfer w/o iterative hierarchical infer-
ence: removing iterative hierarchical inference and
predicting the node one-by-one, the model predicts
the node by the level traversal order of the proof
tree.

ProofInfer w/o hypothesis node: removing the
hypothesis node in the proof tree and inputting the
empty tree to the model initially.

ProofInfer w/o proof encoding + iterative
hierarchical inference: removing divide-and-
conquer proof encoding algorithm and iterative
hierarchical inference.

ProofInfer w/o iterative inference: removing
the iterative inference and predicting the whole
proof tree at once.

ProofInfer w/o proof encoding + iterative
inference: removing the divide-and-conquer proof
encoding algorithm and predicting the whole proof
tree simultaneously.

At first, there is a huge gap between ProofInfer
and ProofInfer w/o iterative hierarchical inference.
The result shows that our iterative hierarchical

Model Proof Accuracy

ProofInfer 97.2
w/o hypothesis node 95.9
w/o proof encoding 93.6
w/o iterative hierachical inference 92.4
w/o iterative inference 91.7
w/o proof encoding + iterative hierachical inference 89.4
w/o proof encoding + iterative inference 87.2

Table 6: Results of ablation studies on DU5 dataset.

inference that generates the proof layer-by-layer
is much better than stepwise methods. On
the other hand, ProofInfer w/o proof encoding
drops significantly compared to ProofInfer. It
demonstrates that our proof encoding algorithm
retains the structure information in the proof tree,
which can considerably improve performance.

Secondly, ProofInfer w/o iterative inference
is much lower than ProofInfer, demonstrating
that iterative inference reduces the search space
and makes it easier to learn the long proofs.
However, we can find that there is not much
difference (only 0.7%) between ProofInfer w/o
iterative inference and ProofInfer w/o iterative
hierarchical inference. The result shows the
existing stepwise method that links the nodes
one by one degrades the performance of the
iterative inference. Furthermore, ProofInfer w/o
proof encoding + iterative inference is 2.2% lower
than ProofInfer w/o proof encoding + iterative
hierachical inference. We can see that the methods
that generate the proof at once rely more on
structural information than iterative methods.

ProofInfer w/o hypothesis node is 1.3% lower
than ProofInfer. The result shows the effective for
the hypothesis node, which improves the integrity
of the reasoning process.

5 Conclusion

This paper presents ProofInfer, a proof generation
model via iterative hierarchical inference. We
argue that existing stepwise methods that add the
node to the proof one-by-one focus on generating
several proof paths instead of a whole proof tree.
ProofInfer employs iterative hierarchical inference,
which simultaneously generates all nodes at the
same layer by the text-to-text paradigm. We
propose a divide-and-conquer proof encoding
algorithm to retain the structure information in the
proof tree. Our work improves the proof generation
task significantly and provides a new method to
handle the structure samples.
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Limitations

Although ProofInfer achieves the new SOTA
performance on all datasets with different settings,
the performance for out-of-domain evaluation is
not good enough, which is only 0.8% better than
IBR model. How to improve the out-of-domain
ability is a future work for us.
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