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Abstract

Flowchart grounded dialog systems converse
with users by following a given flowchart and
a corpus of FAQs. The existing state-of-the-art
approach (Raghu et al., 2021) for learning such
a dialog system, named FLONET, has two main
limitations. (1) It uses a Retrieval Augmented
Generation (RAG) framework which represents
a flowchart as a bag of nodes. By doing so, it
loses the connectivity structure between nodes
which can aid in better response generation.
(2) Typically dialogs progress with the agent
asking polar (Y/N) questions, but users often re-
spond indirectly without the explicit use of po-
lar words. In such cases, it fails to understand
the correct polarity of the answer. To over-
come these issues, we propose Structure-Aware
FLONET (SA-FLONET) which infuses struc-
tural constraints derived from the connectivity
structure of flowcharts into the RAG frame-
work. It uses natural language inference to
better predict the polarity of indirect Y/N an-
swers. We find that SA-FLONET outperforms
FLONET, with a success rate improvement of
68% and 123% in flowchart grounded response
generation and zero-shot flowchart grounded
response generation tasks respectively.

1 Introduction

Task-oriented dialog systems converse with users
to achieve a specific task (e.g., restaurant rec-
ommendation) using information from an associ-
ated knowledge source (e.g., a KB of restaurants).
End-to-end approaches (Bordes and Weston, 2017;
Madotto et al., 2018; Qin et al., 2020) have been
proposed to learn these dialog systems, which re-
quire just the chat transcripts and no additional
annotations. Recently, Raghu et al. released FLO-
DIAL, a dataset for learning end-to-end flowchart
grounded task oriented dialogs in which each dia-
log follows an associated flowchart.

*D. Raghu is an employee at IBM Research. This work
was carried out as part of PhD research at IIT Delhi.

The best performing end-to-end approach for
learning flowchart grounded dialogs (Raghu et al.,
2021) has two limitations. It follows a retrieval
augmented generation (RAG) framework, which
first retrieves a document (e.g., flowchart node)
based on the dialog history and then generates the
response using the retrieved document. The first is-
sue arises due to the representation of the flowchart
as a bag of nodes by the RAG retriever, which
fails to capture the node connectivity structure in
the flowchart. Due to this shortcoming, the model
incorrectly grounds consecutive utterances in a dia-
log on non-adjacent flowchart nodes, whereas they
are expected to be grounded on adjacent nodes. For
example, in Figure 1(a) the system utterance S2 is
grounded on a node that is not adjacent to the node
corresponding to the previous system utterance.

Secondly, agents typically ask polar (Y/N) ques-
tions to traverse the flowchart. For example, the
agent may ask ‘Does the car stop when you ap-
ply the brakes?”. Users often respond indirectly
to these questions without any explicit use of po-
lar words. For example, the user can indirectly
respond to the agent question as “The car keeps
going when I activate the brakes”. As shown in
Figure 1(b), the existing approach fails to map the
indirect user response to the correct polarity.

To tackle these two limitations, we propose
Structure Aware - FLONET (SA-FLONET) that
also follows the RAG framework. Our proposed
approach augments the RAG retriever with mem-
ory to enable the retriever to store past decisions.
The memory when used along with the flowchart
structure ensures the dialog mostly follows a path
in the flowchart. This helps consecutive utterances
be grounded on adjacent nodes in the flowchart.
SA-FLONET poses understanding user utterances
as a natural language inference (NLI) task to lever-
age complex language reasoning ability from exist-
ing NLI models. We evaluate the performance
SA-FLONET on the FLODIAL dataset. Com-
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(a) Example of an error where it incorrectly predicts non-adjacent flowchart nodes for consecutive turns. The system responses S1 and S2 are grounded on 
nodes that aren’t adjacent to each other.

(b) Example of an error where the system is unable to map the correct polarity for an indirect user response. The system incorrectly understands the user 
utterance U2 as a YES to the question in the system utterance S1.
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Figure 1: Two main types of errors made by FLONET (a) incorrectly predicting non-adjacent nodes for consecutive
turns, and (b) failing to map indirect user responses to the correct polarity.

pared to the state-of-the-art approach, SA-FLONET

improves the task specific metric (i.e., success
rate) by 68% and 123% on flowchart grounded re-
sponse generation (FGRG) and zero-shot flowchart
grounded response generation (ZS-FGRG).

To summarize, we make the following contribu-
tions:

1. We propose SA-FLONET2 for learning end-
to-end flowchart grounded dialogs. It aug-
ments the RAG retriever with memory and
infuses structural constraints into the retrieval
process.

2. SA-FLONET uses NLI to map user’s indirect
response to agent’s polar questions.

3. SA-FLONET outperforms existing ap-
proaches on FGRG and ZS-FGRG tasks.

2 Related Work

In this work, we propose a novel neural architec-
ture for end-to-end flowchart grounded response
generation and its zero-shot variant. Our main con-
tributions are (1) augmenting RAG (Lewis et al.,
2020) with memory for infusing structural con-
straints of flowcharts and (2) using NLI (Bowman
et al., 2015; Williams et al., 2018) for predicting
polarity of indirect Y/N answers. We now briefly
discuss existing literature that uses RAG for dialog
applications and then review works related to NLI.

2https://github.com/dair-iitd/
sa-flonet

Retrieval Augmented Generation: The RAG
framework has been extensively used for knowl-
edge intensive language generation tasks such as
open-domain dialog response generation (Shuster
et al., 2021; Xu et al., 2022), open-domain question
answering (Lewis et al., 2020), document grounded
task-oriented dialog response generation (Thulke
et al., 2021) and flowchart grounded task-oriented
dialog response generation (Raghu et al., 2021).
Raghu et al. (2021) represent the flowchart as a
bag of nodes and lose the inherent structure of the
flowchart in the process. To the best of our knowl-
edge, we are the first to incorporate structural con-
straints into the RAG framework by augmenting
the retriever with a memory.

Natural Language Inference: NLI predicts
whether a hypothesis entails, contradicts or is neu-
tral to a given premise. NLI has been used for mod-
elling persona-based dialogs (Song et al., 2020) to
ensure the response generated by the dialog sys-
tems are consistent with a given persona descrip-
tion. NLI has also been used to ensure consistency
within a dialog by ensuring generated responses do
not contradict one another (Welleck et al., 2019).
While NLI has been used for making the generated
responses consistent, they have never been used
for language understanding in dialogs. Although,
NLI has been used for language understanding in
question-answering (Louis et al., 2020). To the best
of our knowledge, we are the first to use NLI for
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language understanding in a dialog setting.

3 Preliminaries

In this section, we describe the problem of end-to-
end learning of flowchart grounded task oriented
dialogs. We then briefly describe the previous work
(FLONET) (Raghu et al., 2021) over which we build
our proposed approach.

3.1 Problem Formulation
Let a dialog d between a user u and an agent a be
represented as {cui , cai }mi=1 where m is the number
of exchanges. Let F = (N,E) be the flowchart
with a set of nodes N and edges E associated
with d. Nodes and edges represent agent utter-
ances and user responses respectively. Let Q be
a set of frequently asked questions (FAQs). The
task is to generate an agent response y = cai =<
y1, y2, ..., yT > at turn i given (1) the dialog his-
tory hi = {cu1 , ca1, ..., cui }, (2) the flowchart F and
(3) the set of FAQs (Q).

3.2 FLONET

FLONET is the state-of-the-art approach for learn-
ing flowchart grounded task oriented dialogs in an
end-to-end manner. It follows the RAG sequence
model (Lewis et al., 2020). The RAG sequence
model has two main components: (1) a retriever
pconη (z|hi) which computes a distribution over re-
trievable documents z (i.e., flowchart nodes and
FAQs) based on the dialog history hi and (2) a
generator pθ(yt|hi, z, y1:t−1) which generates the
agent response token-by-token. The overall RAG
model is given by,

p(y|hi) =
∑

z∈N∪Q
pconη (z|hi)

T∏

t=1

pθ(yt|hi, z, y1:t−1)

The flowchart nodes and the FAQs together form
the set of retrievable documents. The RAG model
is trained end-to-end by using a retrievable docu-
ment as a latent variable and uses a top-k approxi-
mation to marginalize over retrievable documents.
The FLONET retriever pconη computes the probabil-
ity for each retrievable document z as follows,

pconη (z|hi) =
e−d(ϕz(z),ϕh(hi))

∑
z′∈N∪Q e−d(ϕz(z′),ϕh(hi))

where d(., .) is the Euclidean distance, ϕz(.) and
ϕh(.) are hierarchical recurrent encoders (Sordoni
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Figure 2: The architecture of SA-FLONET with struc-
ture aware scorer.

et al., 2015). We refer to the FLONET retriever
pconη (z|hi) as content based scorer in the remainder
of the paper. FLONET uses GPT2 (Radford et al.,
2019) as its generator.

4 Structure-Aware FLONET

SA-FLONET follows the RAG sequence model.
Figure 2 shows the overall architecture of SA-
FLONET. The SA-FLONET retriever pη(z|hi) con-
sists of two scorers: (1) a content based scorer
(CBS) pconη (z|hi) , and (2) a structure-aware scorer
(SAS) pstr+nli

η (z|hi). The final retriever output is
computed by normalizing the elementwise product
of the two scorer outputs. SA-FLONET uses GPT2
as its generator pθ. The overall response generator
network is given by,

p(y|hi) =
∑

z∈N∪Q
pη(z|hi)

T∏

t=1

pθ(yt|hi, z, y1:t−1)

where,

pη(z|hi) =
pconη (z|hi) ∗ pstr+nli

η (z|hi)
∑

z′∈N∪Q
pconη (z′|hi) ∗ pstr+nli

η (z′|hi)

(1)

The novel contribution of SA-FLONET is the
structure-aware scorer pstr+nli

η which maintains
a belief of where in the flowchart the dialog is
grounded. This belief along with the flowchart con-
nectivity structure helps infuse flowchart structural
constraints into the retriever. The use of flowchart
structure serves as a backbone to plug in natural
language inference (NLI) which improves the re-
triever’s ability to predict the polarity of indirect
user responses to agent’s polar questions.
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4.1 Structural Constraints

Dialogs typically follow a path in the flowchart. In
order to imbibe this information into the model, it
should remember the path traversed by the dialog
so far. To remember the path, SAS uses a belief
tracker that maintains a belief distribution bi at
turn i. The belief is distributed over a state space S ,
where each state s ∈ S corresponds to a node in the
given flowchart F . Using the previous belief bi−1

and the connectivity structure in the flowchart, we
can compute a score for each retrievable document
z as follows:

pstr+nli
η (z|hi) =

∑

s∈S
p(z|s, cui ).p(s, cui |hi)

=
∑

s∈S
p(z|s, cui ).p(s|hi)

≈
∑

s∈S
p(z|s, cui ).p(s|hi−1)

=
∑

s∈S
p(z|s, cui ).bi−1(s) (2)

The distribution p(z|s, cui ) is computed using
an NLI model and is described in Section 4.2.
p(s, cui |hi) is equated to p(s|hi) as cui is indepen-
dent of s and p(cui |hi) = 1 as cui is a part of hi. We
then approximate p(s|hi) to p(s|hi−1) as we do
not use the user utterance cui , but only the previous
belief bi−1 computed using hi−1.

Belief Update: Once the retriever generates the dis-
tribution over the documents pη(z|hi), it is passed
to the belief tracker to update its belief bi. The
retriever’s output distribution over the document
space (flowchart nodes & FAQs) is converted to the
belief over the state space S (over flowchart nodes)
as follows:

bi(s) =
∑

z∈N
1z=s.pη(z|hi)

+ bi−1(s).
∑

z∈Q
pη(z|hi)

(3)

The belief update for a state s is a sum of (1) the
probability of the flowchart node corresponding to
the state, and (2) the sum of all FAQ probabilities
weighted by its previous belief. The second term
prevents the belief tracker from forgetting its cur-
rent state when the dialog moves away from the
flowchart node to an FAQ. At i = 0 the belief is

initialized with the root node having a higher prob-
ability compared to other nodes. Specifically, the
state associated with the root node is made three
times more likely than the other nodes.

4.2 Natural Language Inference (NLI)
Agents typically ask polar (Y/N) questions to tra-
verse the flowchart. The existing approach often
fails to correctly map the response to Yes/No when
the user conveys it indirectly. To overcome this
issue, we pose the task of understanding responses
to the polar questions as an NLI task.

We use SemBERT (Zhang et al., 2020) as the
NLI model. It takes a flowchart node text asso-
ciated with the state s (premise) and current user
utterance cui (hypothesis) as input and predicts a
distribution over entailment (pe), contradiction (pc)
and neutral (pn). p(z|s, cui ) is computed using the
output of the NLI model as follows,

p(z|s, cui ) =





pe if z is a YES child of s

pc if z is a NO child of s

pn/NQ if z ∈ Q
0 otherwise

(4)

where NQ is the number of FAQs. We perform
additive smoothing on p(z|s, cui ) (smoothing pa-
rameter set to 1E-4) to assign non-zero probabili-
ties to all documents. Equation 4 incorporates both
structure and NLI. It uses the user utterance cui to
assign probabilities to the YES and NO child based
on pe and pc respectively. When the user response
is neither a YES nor a NO, then it implies the user
has digressed and hence the focus should be di-
rected towards the FAQs. Hence the probability pn
is distributed across the FAQs.

4.3 Fine-tuning NLI
The traditional NLI task predicts if a hypothesis
entails, contradicts or is neutral to a given premise.
In our setting, we map the premise to a question
associated with a flowchart node (e.g., Does the
car stop when you apply the brakes?) and the hy-
pothesis can be any of the three: positive response
(e.g., Yes, it stops), negative response (e.g., The car
keeps going when I activate the brakes), or neutral
(e.g., I can’t even start the car, forget about the
brakes working). Since the interpretation of entails
and contradicts has to now map to positive and neg-
ative responses respectively, we first finetune an
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NLI model to learn our mapping before using it in
the structure aware scorer.

We construct data to finetune the NLI model by
using examples from two sources: (1) distantly
supervised data constructed based on the interme-
diate document ranking of FLONET on the training
data, and (2) Circa (Louis et al., 2020), a large-
scale question answering dataset for learning indi-
rect responses to polar questions. To construct the
distantly supervised data, we first run each context-
response pair in the train data through FLONET

to identify the document (flowchart node or FAQ)
used for response generation. Let (ai−1, ai) be
two consecutive agent utterances in a dialog. Let
zi−1 and zi be the documents which were used by
FLONET for generating ai−1 and ai respectively.
We now construct the distantly supervised data by
using ai−1 as the premise, the next user response
cui as the hypothesis and the label is assigned based
on zi−1 and zi. The labels are assigned as follows:

1. If zi−1, zi are flowchart nodes and , zi−1 is
the parent of zi with an YES edge between
them, then assign entailment.

2. If zi−1, zi are flowchart nodes and , zi−1 is the
parent of zi with an NO edge between them,
then assign contradicts.

3. If zi−1 is a flowchart nodes and zi is a FAQ,
then assign neutral.

4. For all other cases, we skip the example.
The distantly supervised data constructed based

on FLONET matches without interpretation of en-
tailment, contradiction and neutral. Some examples
of the constructed data are in Appendix B.

4.4 Only Structural Constraints
To study the contribution of NLI in SAS (pstr+nli

η ),
we propose an SAS variant (pstrη ) which uses only
the structural constraints and no NLI. We refer to
the overall network with pstrη instead of pstr+nli

η in
Equation 1 as FLONET + Structural Constraints
(SC). The score for each document in FLONET +
SC is computed as follows,

pstrη (z|hi) ≈ p(z|hi−1)

=
∑

s∈S
p(z|s).p(s|hi−1)

=
∑

s∈S
p(z|s).bi−1(s) (5)

We approximate pstrη (z|hi) to p(z|hi−1) as we
only use the previous belief computed using hi−1.

p(z|s) captures the probability of document z for
response generation given a state s and is computed
as follows:

p(z|s) =





α/|Cs| if z ∈ Cs

β/NQ if z ∈ Q
1−α−β
NF−|Cs| otherwise

(6)

where α and β are hyper-parameters, Cs is the set
of states that are associated with the children of
the node underlying the state s, NQ and NF are
the number of FAQs and number of nodes in the
flowchart respectively. p(z|s) encodes the follow-
ing knowledge: (1) the dialog typically moves from
a node to one of its children with a high probability,
(2) the dialog can stay in the same node when the
user asks for a clarification and the agent refers to
an FAQ to answer it, and (3) the dialog can ran-
domly jump to any other nodes in the flowchart
with a very low probability.

5 Experimental Setup

Dataset: We perform our experiments on the FLO-
DIAL dataset. It has 2,738 dialogs grounded on
12 different flowcharts from car and laptop trou-
bleshooting domains. Each dialog in FLODIAL is
grounded on a flowchart and a corpus of FAQs. The
dataset has two different splits: Seen Flowcharts
(S-Flo) split and Unseen Flowcharts (U-Flo) split.
The test dialogs in S-Flo split are grounded on
flowcharts seen during train time and this split is
used for evaluating the task of flowchart grounded
response generation (FGRG). The test dialogs in
U-Flo are grounded on flowcharts unseen during
train, and this split is used for evaluating zero-
shot flowchart grounded response generation (ZS-
FGRG).
Evaluation Metrics: We evaluate SA-FLONET

and other baselines based on their ability to gen-
erate valid responses that are grounded on the
flowchart or FAQs. We use BLEU (Papineni et al.,
2002) and perplexity to evaluate generation perfor-
mance. As we have the labels for the documents
over which the responses are grounded, we mea-
sure the performance of the retriever using the stan-
dard recall@1 (R@1) and a task-specific metric
called success rate (SR) (Raghu et al., 2021). The
success rate measures the fraction of the test di-
alogs for which the system retrieved the correct
document for all the agent utterances in the dialog.

10767



We also perform a human evaluation study on
two dimensions: (1) relevance - ability to gener-
ate relevant responses for the given dialog context
and the flowchart, and (2) grammar - ability to
generate a grammatically correct response. The
human judges were asked to score the responses on
a Likert scale (0-4) (Likert, 1932).
Dialog Evaluation and Belief Propagation: Dur-
ing test, dialogs are first broken down into context-
response (CR) pairs. Each CR pair is then used
for dialog evaluation. This ensures that the error
made by the system at any turn doesn’t propagate
to predictions at future turns. As SA-FLONET uses
the system prediction at turn i to update its belief,
it is prone to error propagation to future turns. So,
to ensure even comparison, rather than using the
system output, we use the gold response to update
belief at turn i as follows:

bi(s) = p(s|hi, y) =
p(y|hi, s)

Σs′p(y|hi, s′)
(7)

where p(y|hi, s) is computed using the pre-trained
RAG generator. We use Equation 7 to update the
bi(s) rather than Equation 3.
Implementation Details: SA-FLONET is imple-
mented in PyTorch (Paszke et al., 2019). Hyper-
parameters such as learning rates, dropout and em-
bedding sizes we use the best values reported by
Raghu et al. (2021). For SemBERT, we use the
best values reported by Zhang et al. (2020). We
sampled α, β from increments of 0.1 between [0,
1] and identify the best values based on the per-
formance on the validation sets. For more details,
please refer to Appendix A

6 Experimental Results

Our experiments answer three research questions:
1. How does the performance of SA-FLONET

compare with existing approaches? (Section
6.1)

2. What is the performance gain from each novel
contribution in SA-FLONET? (Section 6.2)

3. What is the importance of content based scorer
in SA-FLONET? (Section 6.3)

6.1 Performance Analysis
We compare the performance of our proposed
model SA-FLONET with FLONET. We also re-
port numbers on a variant of FLONETcalled TF-
IDF + GPT2 in which the retriever is replaced by

Model S-Flo U-Flo

BLEU PPL BLEU PPL

TF-IDF + GPT2 7.90 13.28 6.90 18.53
FLONET 19.89 4.17 14.83 5.67
SA-FLONET 21.17 4.10 18.81 5.08

Table 1: Next response prediction performance.

Model S-Flo U-Flo

R@1 SR R@1 SR

TF-IDF + GPT2 0.304 0.002 0.373 0.004
FLONET 0.793 0.318 0.677 0.133
SA-FLONET 0.878 0.535 0.819 0.297

Table 2: Retriever performance of various models.

a simple TF-IDF retriever. Table 1 reports the re-
sponse generation performance on the two splits: S-
Flo (FGRG) and U-Flo (ZS-FGRG). SA-FLONET

achieves a 1.28 point improvement in BLEU on the
S-Flo setting and an almost 4 point improvement
in BLEU on the U-Flo setting. Given that SA-
FLONET is built on top of FLONET, we attribute
this improvement entirely to the novel structure
based scorer which infuses structural constraints
and NLI into the retrieval process. Moreover, we
find that the overall improvement is better in U-Flo
than in S-Flo as SA-FLONET can memorize the
structure of the flowcharts seen during train. Hence,
the S-Flo setting does not gain much compared to
U-Flo by incorporating the structural constraints.

Table 2 reports the retriever performance of
the models in both settings. We find that SA-
FLONET achieves an increase in retriever perfor-
mance across settings compared to FLONET. In
the S-Flo, we can observe an 8 point increase in
R@1 for SA-FLONET compared to FLONET. This
leads to a more than 20 point improvement in suc-
cess rate (SR) with SA-FLONET being able to
perfectly ground its responses in more than 50%
of dialogs. The improvement is larger in the U-
Flo setting with SA-FLONET gaining almost 15
points over FLONET in R@1 which consequently
doubles the SR. Interestingly, SA-FLONET has
narrowed the gap in R@1 between S-Flo and U-
Flo compared to FLONET by infusing structural
constraints.
Human Evaluation: We collected judgements on
75 randomly sampled context-response pairs each
from the S-Flo and U-Flo splits. We collected
two sets of judgements on the responses gener-
ated by FLONET and SA-FLONET. Table 3 re-
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Model S-Flo U-Flo

Rel. Gra. Rel. Gra.

FLONET 3.42 3.79 2.36 3.48
SA-FLONET 3.49 3.64 2.54 3.59

Table 3: Human evaluation of FLONET and SA-
FLONET on the both S-Flo and U-Flo splits.

ports the human evaluation results. We see that
the responses generated by SA-FLONET are more
relevant than the ones by FLONET. We measure
the inter-annotator agreement using Cohen’s kappa
(Cohen, 1960). The agreement was moderate on
relevance (0.54) and fair on grammar (0.35).

6.2 Ablation Study

We assess the value of each model component, by
adding them one at a time to FLONET. Table 4
reports both the response generation and retrieval
metrics for various configurations on both the data
splits. We represent the model with just structural
constraints as FLONET + SC (as described in Sec-
tion 4.4. SA-FLONET uses both structural con-
straints and natural language inference.

We define four error classes to analyse the per-
formance of each model configuration. Table 5
shows the errors made by the retrievers of various
model configurations on the validation sets. (1)
Sibling error happens when the retriever assigns
the highest probability to the sibling of the correct
node. This indicates the system failed to map the
last user utterance to the correct polarity (or choice)
in the flowchart. (2) Random jumps happen when
the system fails to capture the structural constraints
and predicted a node that is neither the correct node
nor its siblings. (3) FAQ errors occur when the gold
response is grounded on a particular FAQ and the
retriever fails to assign the highest probability to it.
(4) First utterance errors: When the dialog starts,
agents may skip a few nodes in the flowchart based
on the information already present in the first utter-
ance. This error happens when the system fails to
skip a few nodes along the path in the flowchart to
land on the correct node.

Adding structural constraints to FLONET im-
proves the performance on U-Flo, but deteriorates
on S-Flo. As FLONET memorizes the connectivity
structure in the S-Flo setting, it has less scope for
improvement. This is supported by the total num-
ber of random jump errors made due to the lack of
structural awareness in Table 5. In S-Flo, the num-

ber of random jumps are quite low to begin with.
In U-Flo, adding structural constraints reduces the
random jumps errors from 376 to 152.

Adding NLI is expected to improve the under-
standing of indirect user response to agent’s polar
questions. In Table 5, we see that both S-Flo and U-
Flo have issues with understanding user response
to polar questions as their sibling errors are high.
We can see that adding the NLI component reduces
the sibling errors in both settings and improves the
response generation performance.

6.3 Importance of Content Based Scorer

The SA-FLONET retriever has two modules: the
content based scorer (CBS) and the structure aware
scorer (SAS). To investigate the necessity of the
CBS, we study the performance on a variant, SA-
FLONET w/o CBS, in which the CBS is completely
removed from the retriever. Table 4 and Table 5
shows the performance of this variant and errors
made by it respectively. We find that the perfor-
mance of SA-FLONET w/o CBS drops below our
baseline FLONET. This severe drop is due to two
main reasons. Firstly, SAS always assigns equal
probability to each FAQ and it was the CBS that
scored the FAQs based on the ability to generate
responses. Thus when no CBS is used, the system
fails to identify the correct FAQ. This is evident by
the increase in FAQ errors made by SA-FLONET

w/o CBS compared FLONET on both S-Flo and
U-Flo settings.

Secondly, as the SAS discourages the retriever
to jump to any non adjacent nodes in the flowchart,
the systems fails in scenarios where the agent skips
a few nodes based on the information already spec-
ified by the user. The increase in the number of
first utterance errors, which arise due to incor-
rect grounding when the agent fails to skip a few
flowchart nodes, shows that the system fails when
the next utterance is grounded on non-adjacent
node in the flowchart. Thus, when CBS and SAS
are used together, CBS can help overcome the struc-
tural constraints imposed by SAS as and when
needed. We conclude that both content based scorer
and the structure aware scorer are necessary to im-
prove document ranking and response generation.

7 Discussion

We illustrate the benefit of the structure aware
scorer (SAS) using a qualitative example shown
in Figure 3. The figure visualizes how SAS ensures
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Model S-Flo U-Flo

R@1 SR BLEU PPL R@1 SR BLEU PPL

FLONET 0.793 0.318 19.89 4.17 0.677 0.133 14.83 5.67
FLONET + SC 0.781 0.270 19.16 4.26 0.706 0.151 16.56 5.42
SA-FLONET 0.878 0.535 21.17 4.10 0.819 0.297 18.81 5.08

SA-FLONET w/o CBS 0.613 0.026 16.23 4.81 0.644 0.000 15.13 5.92

Table 4: Ablation study: impact of each model component in SA-FLONET.

Model
S-Flo U-Flo

Sibling Random FAQ First Sibling Random FAQ First
Jump Utterance Jump Utterance

FLONET 178 21 105 68 193 376 391 140
FLONET + SC 195 12 120 74 244 152 341 138
SA-FLONET 43 22 91 66 145 124 375 148

SA-FLONET w/o CBS 35 224 320 354 148 143 492 350

Table 5: Counts of errors made by the retrievers of various models on the validation set.

the retriever follows a path in the flowchart rather
than making random jumps across the flowchart.
The figure shows the input dialog context along
with the gold response, the part of the flowchart
necessary for explaining the benefit of SAS, and
components of SA-FLONET responsible for rank-
ing the documents. We represent each component
using the probabilities of states/documents com-
puted based on the input dialog context.

In the given dialog context, the agent utterance
a1 is grounded on the flowchart node z2. The belief
tracker should ideally assign a probability close to
1 to the state s2 corresponding to the node z2. How-
ever, it has only a weak belief of around 0.16 on this
state. Once the user responds with u2, we expect it
to be mapped to the NO child of z2 and and hence
the retriever should assign the highest probability
to the node z3. We use a simplified representation
of the NLI model with just the document distribu-
tion conditioned on s2 and u2, as we need just the
true belief (s2) to explain the benefit of SAS. The
NLI module assigns a high probability (0.97) to
z3 indicating that it confidently understands that
the user is saying NO given s2. The beliefs and
NLI scores are combined according to equation 2
to compute the structure aware scores.

The content based scorer fails to assign a high
probability on the correct document z3 and incor-
rectly assigns the highest probability to node z5.
When the two scores are combined to compute the
overall retriever score, we see that node z3 receives
the highest score and the response is grounded cor-
rectly. The example clearly shows how the two

scorers have to work together to identify the cor-
rect document. Moreover, it shows the ability of
the NLI module to correct the system even when
both the content based scorer and the belief tracker
do not provide strong signals.

8 Conclusion

We propose SA-FLONET for learning flowchart
grounded dialogs in an end-to-end manner. SA-
FLONET augments the RAG retriever with memory
and incorporates flowchart structural constraints
into the retrieval process. It uses NLI to better
understand indirect user response to polar agent
questions. SA-FLONET achieves the state-of-the-
art results on both the seen flowchart and the un-
seen flowchart split of the FLODIAL dataset. It
outperforms existing approaches by 15 or more
points on success rate. Human evaluations show
that SA-FLONET responses are more relevant than
the previous state-of-the-art.

Limitations

SA-FLONET has the following limitations: (1) In
the current form, NLI can only decide between
YES and NO answers to polar questions. It does
not apply to non-polar questions (e.g., do you use
Windows or Ubuntu?) (2) The content based scorer
of SA-FLONET is quite weak. This is evident
by the number of FAQ errors and first utterance
errors the system makes. Structural constraints are
limited in their ability to correct these errors. (3)
Human evaluations indicate that the grammar of
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Switch on, 
enabled?

Belief Tracker
b0	( ∙ )

… …
s2 0.1613
s3 0.0259
s4 0
s5 0.0021
… …

Content Based Scorer
pηcon( ∙ |	h1)

… …
z2 0.0023
z3 0.0671
z4 0.0096
z5 0.1208
… …

Structure Aware Scorer
pηstr+nli( ∙ | h1)

… …
z2 0.0006
z3 0.1576
z4 0.0006
z5 0.0005
… …

NLI
𝑝	( ∙ | s2,	𝑢!)

… …
z2 0.0004
z3 0.9746
z4 0.0016
z5 0.0005
… …

Combined Scorer
pη	( ∙ | h1)

… …
z2 0
z3 0.3002
z4 0.0001
z5 0.0017
… …

Laptop Wireless Problem Flowchart

z2

Generator
p( y | z3	, h1)

a2 : Please turn on the 
switch or enable the 
adapter. This should 
solve your problem.

No

Please turn ON the 
switch or enable the 

wireless adapter.

z3
Router 

active, in 
range?

z4

Try laptop 
in same 
room.

z5

Yes

No

Utt. Label Utterance Grounding

u1
I am unable to connect to my wireless network on my Google Pixelbook. I don't 
understand what's happening. I don't even see the name of my network on my 
laptop (…)

a1 Is your laptop's wireless adapter enabled in the settings? Flowchart 
Node z2

u2 The laptop's wireless adaptor is not enabled. It is disabled in the settings.
Gold 

Response Please turn on the switch or enable the adapter. This should solve your problem. Flowchart 
Node z3

Figure 3: An example which shows how SA-FLONET uses NLI to ground on the correct node even when the belief
tracker and content based scorer provide poor signals.

the response generated by SA-FLONET is slightly
worse than the baseline in S-Flo setting.
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A Training Details

All experiments were run on a single Nvidia V100
GPU with 32GB of memory. The S-Flo retriever,
U-Flo retriever, SemBERT and generator have 3M,
23M, 340M and 117M trainable parameters respec-
tively. Thus, SA-FLONET has a total of 460M
trainable parameters for S-Flo and 480M train-
able parameters for U-Flo. SA-FLONET has an
average runtime of approximately 32 hours (220
mins per epoch) for both S-Flo and U-Flo settings.
As the content based scorer and the generator in
SA-FLONETis same the as in FLONET, we initial-
ized their weights using the best performing model
weights of FLONET. The best performing FLONET

+ SC model on S-Flo and U-Flo uses (0.1, 0,5) and
(0.3, 0.1) for (α, β) respectively. We use BLEU
as our early stop criterion. We ran each of these
configurations twice. We report numbers on SA-
FLONET and two of its variants in the ablation.
Table 6 reports the best validation BLEU achieved
by each model.

Model S-Flo U-Flo

SA-FLONET 22.38 14.04

FLONET + SC 20.91 13.16
SA-FLONET w/o CBS 16.32 10.75

Table 6: Validation performance of various models

B NLI Finetuning

We first discuss some details of the distantly super-
vised data used for fine-tuning SemBERT. We then
briefly discuss the Circa dataset.

B.1 Distantly Supervised Data

For each setting, the data for finetuning SemBERT
is collected in a distantly supervised manner us-
ing the intermediate document ranking generated
by FLONET. Table 7 shows the number of data
points constructed. Table 8 shows examples of
(premise,hypothesis,label) tuple collected using dis-
tant supervision. As FLODIALcontains the annota-
tion for the gold document to which each response
is grounded on, we compute and report the accu-
racy of the distantly supervised data in Table 9.

B.2 Circa Data

We map the "Yes", "No" and "In the middle, nei-
ther yes nor no" from the RELAXED scheme from

(Louis et al., 2020) to entailment, contradiction and
neutral respectively. The entailment, contradiction
and neutral classes had 12833, 16628 and 949 ex-
amples respectively. We randomly sampled 60% to
create the train set and 20% for the validation.

C Qualitative Results

Table 10 compares the responses generated by SA-
FLONET and FLONET. The example showcases
the ability of SA-FLONET to handle indirect re-
sponse to polar questions using NLI. It can be seen
that even with no explicit polar words (such as yes,
no, doesn’t, and won’t), SA-FLONET is able to
map the user response to the correct polarity.
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Dataset S-Flo U-Flo

Entailment Contradiction Neutral Entailment Contradiction Neutral

Train 2868 3822 1370 2545 3579 1321
Validation 636 734 288 532 403 581

Table 7: Number of samples in each class (entailment, contradiction and neutral) constructed using distant
supervision.

Premise & Hypothesis Distantly Supervised Label Gold Label

P: Did you recently change your car tires?
H: I have not changed my car tires recently. Contradiction Contradiction

P: Is the network router active and in range?
H: Yes, it is. It’s both of those things. Entailment Entailment

P: Does the router have default settings?
H: Where do I check that?

Neutral Neutral

P: Is the brake fluid level OK?
H: The brake fluid is too low.

Entailment Contradiction

P: Does one or more wheels drag too much?
H: The wheel on the car turn with ease.

Entailment Contradiction

P: Does any of your tires have a loose hub cap?
H: Some of my hub caps are loose. Contradiction Entailment

Table 8: Some examples of (premise, hypothesis, label) tuples constructed by distant supervision along with the
ground truth label. Distant supervision gets the first three examples right and the latter three wrong.

Dataset S-Flo U-Flo

Entailment Contradiction Neutral Entailment Contradiction Neutral

Train 0.921 0.965 0.902 0.875 0.926 0.890
Validation 0.735 0.873 0.843 0.667 0.866 0.884

Table 9: Class-wise accuracy of the distantly supervised data.

Speaker Utterance Grounding

User I’ve had my Cadillac Escalade ESV for 3 years. I’ve noticed that the brakes
aren’t working and this is a issue that seems to come up a lot with this car
nowadays. Please help me fix this.

Agent Once you activate the brakes, does the car come to a stop? flowchart-node-1
User What do I do now if they aren’t working the same as before?
Agent If needed, make sure to apply more pressure than normal to the brake pedal

for the brakes to work correctly. If this works then it means the brakes are
still able to halt the car.

faq-0

User The car keeps going when I activate the brakes.

Gold Response When you hit the brake pedal, does it go all the way to the floor? flowchart-node-2

SA-FLONET Response Does the brake pedal go all the way to the floor? flowchart-node-2
FLONET Response Is the emergency parking brake functioning as it should? flowchart-node-9

Table 10: An example dialog from FLODIALwith predictions from SA-FLONET and FLONET. flowchart-node-1
is the parent of flowchart-node-2 and flowchart-node-9. flowchart-node-1 is connected to flowchart-node-2 and
flowchart-node-3 by a NO and YES link respectively.
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