
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10743–10750
December 7-11, 2022 ©2022 Association for Computational Linguistics

Towards Compositional Generalization in Code Search

Hojae Han♠∗, Seung-won Hwang♠†, Shuai Lu⋄, Nan Duan⋄, Seungtaek Choi♣
♠Seoul National University, {stovecat, seungwonh}@snu.ac.kr
⋄Microsoft Research Asia, {shuailu, nanduan}@microsoft.com

♣Riiid, seungtaek.choi@riiid.co

Abstract

We study compositional generalization, which
aims to generalize on unseen combinations
of seen structural elements, for code search.
Unlike existing approaches of partially pursu-
ing this goal, we study how to extract struc-
tural elements, which we name a template that
directly targets compositional generalization.
Thus we propose CTBERT, or Code Template
BERT, representing codes using automatically
extracted templates as building blocks. We em-
pirically validate CTBERT on two public code
search benchmarks, AdvTest and CSN. Further,
we show that templates are complementary to
data flow graphs in GraphCodeBERT, by en-
hancing structural context around variables.

1 Introduction

We study compositional generalization in the con-
text of code search, which aims to generalize on
unseen combinations of previously seen elements,
or building blocks (Qiu et al., 2022). Following
the categorization in the NLP domain (Kim and
Linzen, 2020), Figure 1 motivates such a goal in the
code search setting, where a model is expected to
generalize on an unseen code, which is a combina-
tion of a seen structure with other lexicons (lexical
generalization). Moreover, the model should also
generalize on another case when an unseen code is
a combination of seen structures, though red and
blue colored structures were only independently ob-
served while its combination was not (structural
generalization).

Existing code search models such as Code-
BERT (Feng et al., 2020) regarding code as an
unstructured sequence (Figure 2a) often fail to gen-
eralize when the lexical perturbation without chang-
ing structures and labels is applied in test codes,
known as AdvTest evaluation (Lu et al., 2021). To-
wards better generalization, SynCoBERT (Wang

∗Work done during internship at Microsoft.
†Corresponding author.

for _ in _:
if _:

print(_)

…
for key in dict.keys():

if dict[key] is not None:
print(dict[key])

…

Unseen
…
for i in range(10):

if k > i:
print(i)

…

Seen

(a) Lexical generalization.

...
try:

a /= b
except ZeroDivisionError:

a = 0
...

try:
_

except _:
raise _

while _:
_
if _:

break

…
try:

while True:
l = foo(l)
if len(l) == 0:

break
except TypeError:

raise bar()
…

…
while i > 0:

i = i-k
if func(i):

break
…

(b) Structural generalization.

Figure 1: Motivation. Templates enhance compositional
generalization between seen and unseen codes.

et al., 2021b) extracts an abstract syntax tree
(AST; Figure 2b) to incorporate syntactic structure
into the model. On the other hand, GraphCode-
BERT (Guo et al., 2021) extracts a data flow graph
(DFG; Figure 2c), to represent variable relations
within code. From structure-aware pretraining ob-
jectives, these two models significantly enhance
their accuracy in code search, both in original and
adversarial settings. Meanwhile, utilizing compos-
able building blocks, like the colored structures in
Figure 1 for code search was not studied.

Inspired by the compositional generalization
work in NLP domain, we study how to represent
composable building blocks targeted to improve
compositional generalization. Specifically, we con-
sider subtrees of AST as such building blocks,
which we call templates (Figure 2d). As illustrated
in Figure 1, templates share across codes, as a code
is a combination of templates. However, it requires
an additional non-trivial challenge of mining such
a meaningful block.

In this paper, we suggest how to mine templates

10743

(a) Sequence (b) AST (c) DFG (d) Template

Figure 2: Our distinction.

and propose CTBERT, Code Template BERT, pre-
trained with templates for compositional general-
ization. Specifically, we group frequently adjacent
AST nodes into subtrees, filter uncommon or mean-
ingless subtrees, and regard the remaining ones as
templates. Then, we pretrain CTBERT with tem-
plates, using our proposed objective teaching mod-
els to recognize structural building blocks.

To confirm the effectiveness of CTBERT to-
wards compositional generalization in code search,
we validate CTBERT by fine-tuning on a large-
scale dataset CSN (Husain et al., 2019; Guo et al.,
2021) then testing on an adversarial test set Ad-
vTest (Lu et al., 2021). AdvTest is more appropriate
for evaluating compositional generalization than
CSN as 1) variable and function names in test codes
are normalized (testing lexical generalization) and
2) test time codes are unseen combinations of seen
structures (testing structural generalization).

Our experimental results show that CTBERT en-
hances its compositional generalization with tem-
plates, as shown by the performance gains on Ad-
vTest, while performing comparably on CSN. Fur-
ther, we show that CTBERT can straightforwardly
be combined with DFG objectives from Graph-
CodeBERT, achieving orthogonal and complemen-
tary performance gains. All our implementations
and data including the mined templates will be pub-
licly released1.

2 CTBERT

Our goal is to improve the model’s compositional
generalization capability, by pre-training with auto-
matically mined templates.

2.1 Mining Templates

An assumption in compositional generalization is
that there are shared common building blocks in
both source and target distributions (Qiu et al.,
2022). In the code search task, we regard frequently
observed subtrees in abstract syntax trees (ASTs)
as such building blocks, namely templates.

1https://github.com/stovecat/CTBERT

Specifically, we first extract candidate templates,
by grouping the adjacent AST nodes, according to
the probability of the occurrence of a child node
y out of other children, given its parent node x,
denoted as P (x → y). Following (Wang et al.,
2021a), we formulate such probability as2:

P (x → y) =
N(x → y)∑
yi
N(x → yi)

, (1)

where N(x → y) is the number of the observed
child y given the parent node x in the source distri-
bution. Then, after removing all the edges x → y
in the ASTs when its probability P (x → y) is
lower than a threshold T , we treat the remaining
sub-trees as candidate templates. From the can-
didate templates, we filter meaningless subtrees,
decided by the number of nodes smaller than S or
the depth shallower than D. Finally, we count the
number of occurrences for each template, to select
the most frequently observed k templates, filtering
out uncommon ones3.

2.2 Pretraining with Templates

To understand unseen codes based on templates, we
propose a pretraining strategy utilizing templates.

2.2.1 Preliminary
Following GraphCodeBERT (Guo et al., 2021),
we use a Transformer based model BERT (De-
vlin et al., 2019) as the backbone architecture
of CTBERT. Given a natural language query
W = {w1, w2, ..., w|W |} describing a code C =
{c1, c2, ..., c|C|}, a basic BERT input format is
X = {[CLS]}⊕W ⊕{[SEP]}⊕C, where [CLS]
and [SEP] are special tokens in BERT, and ⊕
is a concatenate operation. Our focus is to aug-
ment the input with structural information, such
as X ⊕ {[SEP]} ⊕ V for GraphCodeBERT, given
by a DFG node sequence V = {v1, v2, ..., v|V|},
where each v ∈ V indicates a variable. How-
ever in CTBERT, instead of defining the input for-
mat of templates as a sequence of every node in
the templates, we define a sequence of templates
T = {t1, t2, ..., t|T |}, where each template t ∈ T
is a subsequence of C containing code tokens from
the template. The purpose of our design choice is 1)
to incorporate the meaning of each template into a
single special token, and 2) to reduce the length of
the template sequence |T | to avoid being truncated.

2See Figure 7 in Appendix C for details.
3Selected hyperparameters are listed in Appendix B.

10744

https://github.com/stovecat/CTBERT

def foo ⋯ if v == ⋯ elif v == ⋯ else : raise ⋯

def bar ⋯ a > 0 if b == 0 : raise Error (⋯

if _:
_

elif _:
_

else:
_

Templates
def _(_):

_

_ == _

raise _(_)

Codes def bar(a, b):
assert a > 0
if b == 0:

raise Error('b is 0')
elif b < 0:

print(a / b)
else:

print(a / (b*-1))

def foo(v, t):
if v == t:

return True
elif v == -t:

return False
else:

raise func(v)

Figure 3: Illustration of templates with different com-
binations in two codes.

Thus, we use X ⊕ {[SEP]} ⊕ T as our input for
CTBERT.

2.2.2 Injecting Structure

Inspired by GraphCodeBERT, we inject the de-
pendency between code tokens and templates us-
ing masked attention and mask prediction, each of
which we contrast with our added challenges.

Masked Attention The purpose of masked at-
tention in GraphCodeBERT is to inject DFGs into
the model, interpreted as conditionally allowing
non-zero attention in the following two cases only:
1) When the attention between a DFG node token
xi ∈ V and a code token xj ∈ C refers to the same
variable, or 2) when the attention between two node
tokens xi, xj ∈ V are connected in the DFG. We
denote these two cases as xi | xj , and zero-out
attention by adding −∞, turning attention to zero
after softmax when these two cases do not hold.
Formally, an attention masking matrix for DFG is
defined below4:

MDFG
ij =

{
0 if xi | xj

−∞ otherwise.
(2)

Now, we employ the idea of masked attention to
representing the dependency between code tokens
and templates. Figure 3 shows the membership of
each code token c to each template t, where we
allow attention for highlighted slots, or c ∈ t, by
setting 0 in the mask matrix, and −∞, otherwise.
More formally, we define a masked attention MT

ij

4Without loss of generality, we omit the details that atten-
tion among word tokens and code tokens are not masked.

for the template sequence T as:

MT
ij =

{
0 if ci ∈ tj

−∞ otherwise,
(3)

where ci ∈ C is a code token and ti ∈ T is a
template.

We note that, as token-DFG and token-template
dependencies are represented by the same mecha-
nism, we may replace one with the other, or build
on top of another, both of which are found effective
empirically (see §3.3).

Pretraining Task To learn dependency among
tokens in their representation, GraphCodeBERT
also formulates a mask prediction task. For the
task, we can first randomly mask the attention of
two tokens xi and xj satisfying xi | xj , meaning
either a node token xi ∈ V and a code token xj ∈
C indicate the same variable, or two node tokens
xi, xj ∈ V are connected in DFG. Then we ask the
model to predict whether xi and xj satisfy xi | xj :

LDFG = −
∑

xi∈V̄

∑

xj∈C∪V
[1(xi | xj) log pxixj

+(1− 1(xi | xj)) log(1− pxixj)],
(4)

where V̄ is the sampled set of every node token xi
for masking, and pxixj is the predicted probability
of xi | xj , by calculating the dot product with a
sigmoid function between the last layer representa-
tion of the token xi and xj .

This objective can be extended to inject code
token membership to template, shown in Figure 3.
Our goal is to make the model understand “which
template t each token c comes from” or, predicting
c ∈ t. We randomly sample templates, and mask at-
tention between each sampled template t and code
tokens that is in the template t. Then, for each code
token c, we ask whether c is in the template t, or
c ∈ t. Formally, this objective is denoted as:

LT = −
∑

t∈T̄

∑

c∈C
[1(c ∈ t) log ptc

+(1− 1(c ∈ t)) log(1− ptc)],

(5)

where T̄ is the sampled set of the templates for
masking, and ptc is the predicted probability from
representation similarity between template and
code tokens.

3 Experiments

To confirm whether learning with code templates
contributes to compositional generalization in code

10745

Model
MRR

Pre-training Corpus Code Structure
AdvTest CSN

CodeBERT†‡ 0.2719 0.672

CodeSearchNet

-
CodeBERT (reproduced) 0.3393 0.6682 -
GraphCodeBERT†¶ 0.352 0.692 DFG
GraphCodeBERT (reproduced) 0.3709 0.6935 DFG
SynCoBERT¶ 0.381 0.724 AST
CodeBERT (Python) 0.3636 0.6786

CodeSearchNet (Python)
-

GraphCodeBERT (Python) 0.3922 0.6878 DFG
CTBERT 0.3997 0.6922 DFG + Template

Table 1: Code search on AdvTest and CSN. The results with the footnotes are reported from: †(Guo et al.,
2021), ‡(Lu et al., 2021), and ¶(Wang et al., 2021b). Bold/underlined mark signifies the 1st/2nd MRR performance,
respectively.

Template Mining
MRR

AdvTest CSN
Anonymized code lines 0.3885 0.6900
AST subtrees (this work) 0.3997 0.6922

Table 2: Comparison of different template mining
strategies.

Index DFG
Template MRR
MT

ij LT AdvTest CSN
0 ✓ - - 0.3922 0.6878
1 - ✓ - 0.3932 0.6832
2 ✓ ✓ - 0.3847 0.6870
3 - ✓ ✓ 0.3983 0.6889
4 ✓ - ✓ 0.3924 0.6911
5 ✓ ✓ ✓ 0.3997 0.6922

Table 3: Ablation studies.

search, we validate CTBERT on AdvTest (Lu et al.,
2021) which can evaluate both lexical and struc-
tural generalization. The baselines and implemen-
tation details can be found in Appendix B.

3.1 Main Results
For evaluating compositional generalization in
code search, we fine-tune code search models on
CSN (Husain et al., 2019; Guo et al., 2021) Python,
then evaluate on AdvTest (Lu et al., 2021) and
CSN Python measured by Mean Reciprocal Rank
(MRR). Note that AdvTest is more suitable to
validate compositional generalization as both lex-
ical and structural generalization can be tested.
Thus, our goal is to outperform on AdvTest while
performing comparably on CSN. Indeed, Table 1
demonstrates that CTBERT achieves the best MRR
score on AdvTest, while performing comparably to

7661Num. of
examples 6125 2410 1281 709 1024

10.56Num. of
templates 20.82 34.71 49.26 65.44 79.83

M
RR

CodeBERT (Python)
GraphCodeBERT (Python)
CTBERT (w/o DFG)
CTBERT

Figure 4: Template complements DFG. AdvTest MRR
scores over a range of input code lengths.

the baselines on CSN.

3.2 RQ1: Do Templates Help Compositional
Generalization?

We compare our AST-based template mining with a
template selection used in (Oren et al., 2020), using
frequent anonymized code as a template. However,
applying this baseline “as is” for our problem is
too weak, as only 0.28% of AdvTest codes contain
1 or more templates observed from the pretraining
corpus (CodeSearchNet (Python)), while our ap-
proach leads to 99.67%. Thus, we build a better
baseline by regarding a frequent anonymized code
line as a template (now 92.06% of AdvTest codes
contain 1 or more templates). This new baseline is
trained in the same setting as CTBERT, including
DFG utilization. Table 2 shows that the code-line-
based template mining approach underperforms
CTBERT capturing a tree structure.

Further, as shown in Table 3, we conduct abla-
tion studies to confirm whether the masked tem-
plate attention and the template pretraining objec-

10746

Data flows
only

Data flows
+

Templates

Data flows

Templates

Figure 5: Illustration of how template complements
DFG in CTBERT. A DFG catches long-range depen-
dencies, e.g., the variable knock in line 5 is declared in
line 1. Templates decorate the DFG with local contexts,
e.g., the variable gr is declared inside the if statement.

tive contribute to compositional generalization. By
comparing the indices 4 and 5 in Table 3, we em-
pirically validate its effectiveness as removing the
masked template attention drops both MRR scores
of AdvTest and CNN. Also, by comparing the in-
dices pairs (1, 3) and (2, 5) in Table 3, we observe
that adding our objective consistently boosts the
MRR performances on both datasets.

3.3 RQ2: Do Templates Complement Other
Structural Tasks?

The indices 0, 3, and 5 in Table 3 are the results
when the code search model utilizes DFG-only,
template-only, and when it uses both. We can see
that 1) the template-only setting has a higher MRR
score than the DFG-only; 2) utilizing both DFG
and template shows the best performance.

To explain why they complement each other,
Figure 4 reports results, stratified by a range of
input lengths. We can observe that DFG has an

M
R

R
 s

co
re

0.34

0.36

0.38

0.4

0.42

Lexical
Generalization

Structural
Generalization

GraphCodeBERT (Python) CTBERT

Figure 6: CTBERT improves compositional general-
ization. We split AdvTest into two subsets to measure
lexical generalization and structural generalization. The
size of each subset is 36.02% and 63.98% respectively
(100% is AdvTest size).

advantage of capturing long-distance dependency
between variables, but is relatively weak in captur-
ing the local dependency within semantic blocks, as
illustrated in Figure 5. We leave an optimal ensem-
ble for multiple structure-aware pretraining tasks,
as future directions.

3.4 RQ3: Do Templates Contribute To
Lexical/Structural Generalization?

We split AdvTest into two subsets: One contains
every test example that the composition of the
templates is seen during pretraining and another
with unseen. We hypothesize that the former subset
can measure lexical generalization as the compo-
sitions are already seen, and the latter can mea-
sure structural generalization as the compositions
are unseen. Figure 6 shows that, from GraphCode-
BERT (Python), CTBERT can contribute +1.72%
and +2.00% of MRR performance gain on both sub-
sets, confirming better generalization both lexically
and structurally.

4 Conclusion

This paper studied compositional generalization in
code search, and proposed CTBERT. Our contri-
butions are three-fold: 1) We proposed templates
that are composable building blocks for code, and
pretrained CTBERT with templates; 2) We showed
CTBERT improves compositional generalization;
3) We empirically confirmed that templates are
complementary to DFG in GraphCodeBERT, one
of existing structural-aware tasks.

10747

Acknowledgement

This work was supported by Microsoft Re-
search Asia and IITP grants (2021-0-01696, High-
Potential Individuals Global Training Program, and
2021-0-01343, SNU AI Graduate School), and In-
stitute of Information & communications Technol-
ogy Planning & Evaluation (IITP) grant funded
by the Korean government(MSIT) (2022-0-00995,
Automated reliable source code generation from
natural language descriptions).

Limitations

The limitation of this study is, as we propose a pre-
training strategy, our experiments required heavy
computations of taking 14 hours on 8 NVIDIA
Tesla V100 with 32GB memory.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin Clement, Dawn Drain, Neel
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.
2021. Graphcode{bert}: Pre-training code represen-
tations with data flow. In International Conference
on Learning Representations.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie
LIU. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks, vol-
ume 1.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2482–2495, Online. Association
for Computational Linguistics.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022. Improving compositional generalization with
latent structure and data augmentation. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 4341–
4362, Seattle, United States. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021a. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2760–2766, Online. As-
sociation for Computational Linguistics.

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao
Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang.
2021b. Syncobert: Syntax-guided multi-modal con-
trastive pre-training for code representation. arXiv
preprint arXiv:2108.04556.

10748

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/2022.naacl-main.323
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.naacl-main.220
https://doi.org/10.18653/v1/2021.naacl-main.220

A Related Work

A.1 Compositional Generalization in NLP

The objective of compositional generalization is to
generalize on unseen data composed of seen ele-
ments, or building blocks (Qiu et al., 2022), which
is not pursued by many standard NLP models (Kim
and Linzen, 2020). To overcome this, (Qiu et al.,
2022) propose a data augmentation approach for
compositional generalization objective in NLP, and
ours can be viewed as the first work pursuing such
an objective for code search.

A.2 Pre-training with Code Structures

Without considering structural information in code
by taking a code as an unstructured sequence, Code-
BERT (Feng et al., 2020) is weak in AdvTest, test-
ing lexical and structural generalization.

To overcome this, later work has adopted code
structures for representation: As Figure 2 contrasts,
SynCoBERT (Wang et al., 2021b) took AST as an
additional input to represent the syntactic structure
of code. GraphCodeBERT (Guo et al., 2021) used
DFG to understand the relation between variables.
Our distinction is considering composable build-
ing blocks, namely templates, targeted to enhance
compositional generalization capability.

A.3 Template Mining

Recently, (Oren et al., 2020) propose a composi-
tional generalization approach in semantic parsing,
mining templates by anonymizing frequently ob-
served SQLs from the training corpus.

Our distinction is regarding frequent AST sub-
trees as templates, which is more suitable for com-
posable building blocks (See Table 2).

B Implementation Details

Template Mining For mining templates, we set
the probability threshold as T = 0.2, the minimum
number of nodes as S = 4 the minimum depth as
D = 2. Then, we set K to 100, mining 100 fre-
quent templates. The entire mining took 18 hours
on CodeSearchNet (Husain et al., 2019) Python
corpus, with 25.49 templates per code on average.

Code Search Model CodeBERT (Feng et al.,
2020) is one of the popular code search base-
lines regarding a code as an unstructured sequence.
GraphCodeBERT (Guo et al., 2021) uses DFG,
to inject code/DFG tokens referring to the same
variable using LDFG. In our experiment, we report

two versions for each CodeBERT and GraphCode-
BERT: 1) (reproduced) fine-tuned on CSN (Hu-
sain et al., 2019; Guo et al., 2021) Python training
set from the published checkpoints; 2) (Python)
further pretrained on CodeSearchNet (Husain et al.,
2019) Python corpus, then fine-tuned on CSN
Python. SynCoBERT (Wang et al., 2021b) lever-
ages AST to learn syntactic structures in code. We
report their published results, as the implemen-
tation is unavailable. CTBERT is our proposed
method, with the same setting as GraphCodeBERT
(Python), except for using templates with LT but
not DFG. CTBERT+ further utilizes both objec-
tives LT and LDFG, to validate whether templates
complement other structural objectives.

Pretraining CTBERT is pretrained on Python
language corpus from CodeSearchNet (Husain
et al., 2019), with the initial parameters of the pre-
trained GraphCodeBERT checkpoint. We set the
max length of sequences as 512, and the batch size
as 256. We train the model 40K batches, including
4K of warm-up batches, for 14 hours on 8 NVIDIA
Tesla V100 with 32GB memory. The training is
done by AdamW optimizer, where the learning
rate is 2e-4. For each step, CTBERT is updated by
Masked Language Modeling loss (MLM) (Devlin
et al., 2019) added by template loss LT and DFG
loss LDFG without weighting. Except for the loss
function, all the further pretrained baselines share
the same setting for a fair comparison.

Finetuning We follow the hyperparameters used
in (Guo et al., 2021): The maximum length of NL
and PL sequences is 128 and 256, respectively. The
batch size is 32, trained 10 epochs for 13 hours on
2 NVIDIA Tesla V100 with 24GB memory. We
use AdamW optimizer to update the model with
2e-5 as the learning rate. The maximum length of
a template sequence is 256. The maximum number
of nodes is 64, following (Guo et al., 2021). We
truncate node tokens first, then template tokens,
then code tokens at last. The model is trained and
tested as the bi-encoder format, which takes query
text and code sequence (with templates) separately,
then predicts the similarity calculated by the dot
product of two [CLS] vectors. All the experimental
results are single run. Again, all the baselines share
the same setting for a fair comparison.

10749

C Mining Templates

assert_statement→
comparison_operator 38.53%
call 22.35%
string 11.44%
parenthesized_expression 06.60%
identifier 05.00%
boolean_operator 04.84%
binary_operator 04.25%
not_operator 02.72%
attribute 02.07%
false 00.95%
tuple 00.54%
concatenated_string 00.32%
subscript 00.17%
integer 00.12%
await 00.03%
list 00.03%
conditional_expression 00.01%
true 00.01%
dictionary 00.01%
list_comprehension 00.00%
none 00.00%
generator_expression 00.00%

try_statement→
except_clause 48.14%
block 46.18%
finally_clause 02.73%
else_clause 02.59%
_simple_statements 00.29%
ERROR 00.06%

typed_parameter→
type 50.00%
identifier 48.86%
dictionary_splat_pattern 00.57%
list_splat_pattern 00.56%

decorator→
call 71.29%
identifier 17.23%
attribute 11.48%

dictionary_comprehension→
for_in_clause 44.91%
pair 44.19%
if_clause 10.90%

Figure 7: Examples of P (x → y) extracted on Code-
SearchNet Python corpus.

D Template Span Task

Idiom task
MRR

CSN AdvTest
Span 0.6909 0.3830
Alignment 0.6889 0.3983

Table 4: Comparison of CTBERT code search perfor-
mances across the different template tasks.

This section explores whether the alignment loss
can be replaced by a span prediction, inspired by
NLP models for the factoid question answering
task (Rajpurkar et al., 2016, 2018). Formally, we
redefine the template sequence T into T ′, where
t′ ∈ is a subsequence of the code token sequence
C containing only the first and the last code to-
kens inside the template. Then, from LT in Eq (5),
the alignment task LT ′ now asks the span of each
template t′:

LT ′ = −
∑

t′∈T̄ ′

∑

c∈C
[1(c ∈ t′) log pt′c

+(1− 1(c ∈ t′)) log(1− pt′c)],

(6)

The comparison of the two tasks is shown in Ta-
ble 4, validating that the template alignment loss
LT ′ is a more effective way for compositional gen-
eralization.

E Template Span Task

Model MRR
AdvTest CSN

GraphCodeBERT (Python) 0.3493 0.6652
CTBERT 0.3625 0.6778

Table 5: Pretraining from the CodeBERT checkpoint.

From the CodeBERT checkpoint, we pretrain
GraphCodeBERT (Python) and CTBERT on Code-
SearchNet Python for 20K batches including 2K
warm-up batches with a batch size of 512 and a
learning rate of 2e-4. In this setting, GraphCode-
BERT (Python) underperforms CTBERT. Not sur-
prisingly, having a good initial point is more desir-
able in all models, but CTBERT is consistently the
winner.

F Dataset Statistics

Name Train Valid Test
CodeSearchNet 1,099,694 11,108 45,283
CSN 251,820 13,914 14,918
AdvTest - 9,604 19,210

Table 6: Statistics for the pre-training Python corpus
CodeSearchNet (Husain et al., 2019; Guo et al., 2021),
down-stream code search Python dataset CSN (Guo
et al., 2021), and the normalized code search Python
test set AdvTest (Lu et al., 2021).

10750

