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Abstract

A large body of recent work highlights the fal-
lacies of zero-shot cross-lingual transfer (ZS-
XLT) with large multilingual language models.
Namely, their performance varies substantially
for different target languages and is the weakest
where needed the most: for low-resource lan-
guages distant to the source language. One rem-
edy is few-shot transfer (FS-XLT), where lever-
aging only a few task-annotated instances in
the target language(s) may yield sizable perfor-
mance gains. However, FS-XLT also succumbs
to large variation, as models easily overfit to the
small datasets. In this work, we present a sys-
tematic study focused on a spectrum of FS-XLT
fine-tuning regimes, analyzing key properties
such as effectiveness, (in)stability, and modular-
ity. We conduct extensive experiments on both
higher-level (NLI, paraphrasing) and lower-
level tasks (NER, POS), presenting new FS-XLT
strategies that yield both improved and more
stable FS-XLT across the board. Our findings
challenge established FS-XLT methods: e.g.,
we propose to replace sequential fine-tuning
with joint fine-tuning on source and target lan-
guage instances, offering consistent gains with
different number of shots (including resource-
rich scenarios). We also show that further gains
can be achieved with multi-stage FS-XLT train-
ing in which joint multilingual fine-tuning pre-
cedes the bilingual source-target specialization.

1 Introduction and Motivation

Successful fine-tuning of mainstream pre-trained
language models (Devlin et al., 2019; Liu et al.,
2019; Conneau et al., 2020) for various NLP tasks
requires a sizeable set of labeled task-specific in-
stances. While such abundant task data are avail-
able for many tasks in English and a few high-
resource languages, annotated examples are much
scarcer for low-resource languages (Joshi et al.,
2020). A large body of recent work thus focused
on zero-shot cross-lingual transfer (ZS-XLT), for
which no labeled instances are available in the tar-

get language (Pires et al., 2019; Cao et al., 2020).
Catalyzed by pretrained massively multilingual
transformers (MMT) such as mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020), or mT5
(Xue et al., 2021), ZS-XLT has achieved impressive
results on a wide variety of tasks (Hu et al., 2020;
Ruder et al., 2021). The MMT-driven ZS-XLT, how-
ever, exhibits dramatic performance drops when
transferring to low-resource languages and/or lan-
guages distant from the source language (Lauscher
et al., 2020; Ebrahimi et al., 2021; Adelani et al.,
2021, inter alia). In contrast, recent work high-
lights that language models are excellent few-shot
learners (Brown et al., 2020; Gao et al., 2021): they
adapt well to new tasks or languages when exposed
to only on a handful of labeled instances.

For cross-lingual transfer in particular, sequen-
tial few-shot transfer (FS-XLT) – in which large(r)-
scale fine-tuning in the source language is followed
by the secondary fine-tuning on a few target lan-
guage instances – has been rendered particularly
effective, with massive performance gains reported
for some tasks with as little as 10 target language
instances (Lauscher et al., 2020; Zhao et al., 2021).
However, the effectiveness of sequential FS-XLT

crucially depends on the shot selection (Zhao et al.,
2021). Even more concerning, as we show in §3, is
the sensitivity of FS-XLT to hyperparameter values,
most notably the duration (number of epochs) of
few-shot target language training: such fluctuations
are problematic for true few-shot learning (Perez
et al., 2021), where target language validation data,
to be leveraged for model selection, does not exist.

Contributions. In this work, we shed new light
on FS-XLT and seek to remedy the above pitfalls
of current FS-XLT method. We depart from the
established sequential FS-XLT paradigm and pro-
pose new training regimes for FS-XLT, comparing
them across the dimensions of effectiveness, stabil-
ity, and modularity. Concretely, we propose train-
ing regimes that jointly exploit source and target
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language instances, and allow to model their inter-
action. 1) We demonstrate, both for higher-level
semantic tasks (e.g., NLI) and lower-level token-
level tasks (NER, POS tagging), that joint source
and target language training ‘feeds two birds with
one scone’: (i) it consistently improves FS-XLT

performance, even in setups with a larger number
of target-language shots (e.g., N = 500), and (ii)
makes the training procedure much more stable
and robust, allowing for a reliable selection of the
model checkpoint in true few-shot transfer setups
without a target-language validation set. 2) We find
that preceding the joint bilingual fine-tuning with a
multilingual training step, in which we combine the
shots from multiple target languages, brings further
performance gains. We also show that such multi-
stage training regime improves the computational
efficiency in multilingual FS-XLT setups, i.e., when
the model transfer to multiple target languages is
required. 3) Finally, we validate that benefits of
the new FS-XLT training regimes are not limited to
English as the source language. Our work funda-
mentally challenges the status quo in FS-XLT and
introduces and compares training paradigms that
enable more effective, more efficient, and much
more robust few-shot cross-lingual transfer.

Concurrent (closely related) effort. The con-
current work of Xu and Murray (2022) similarly
demonstrates the utility of joint multilingual FS-
XLT: although their joint fine-tuning approach dif-
fers from ours – they employ gradient surgery (Yu
et al., 2020), an approach that harmonizes compet-
ing gradients originating from instances of different
languages in a training batch – it yields the same
two main benefits: (1) improved target language
performance and (2) more stable training that facil-
itates models selection (i.e., alleviates the need for
target-language validation data).

2 Background and Related Work

MMTs like mBERT and XLM(-R) (Lample and
Conneau, 2019; Conneau et al., 2020) have be-
come the main vehicles of cross-lingual transfer.
Pretrained on multilingual corpora covering 100+
languages, MMTs conceptually enable zero-shot
cross-lingual transfer (ZS-XLT) between any two
languages seen in pretraining (Hu et al., 2020) or
even to unseen languages (Ansell et al., 2021). The
(extent of) ZS-XLT success depends on the quality
and alignment of the representation subspaces of
individual languages (Cao et al., 2020; Hu et al.,

2021; Wu and Dredze, 2020). Accordingly, ZS-
XLT with MMTs tends to be ineffective in transfers
to target languages that are (i) linguistically dis-
tant from the source language and especially those
(ii) un(der)represented in MMT’s pretraining (Hed-
derich et al., 2020; Lauscher et al., 2020; Ruder
et al., 2021; Ebrahimi et al., 2021).

One line of work boosts ZS-XLT by improv-
ing semantic alignment between the representa-
tion subspaces of individual languages, exploit-
ing to this end available word or sentence trans-
lations (Hu et al., 2021; Wu and Dredze, 2020;
Yang et al., 2022). Another, complementary line
of work improves ZS-XLT through increasing the
MMT’s capacity for individual languages (Pfeiffer
et al., 2020, 2022; Ansell et al., 2021, 2022). It at-
tempts to remedy for the “curse of multilinguality”
(Conneau et al., 2020) – an effect where, for a fixed
model capacity, the quality of representations of
individual languages at some point starts degrading
with the addition of more languages.

Unlike the above efforts, which improve the
MMTs’ representation space in a task-agnostic
fashion, FS-XLT assumes a handful of labeled task-
specific examples in the target language(s) (Hed-
derich et al., 2020; Lauscher et al., 2020; Zhao
et al., 2021). Lauscher et al. (2020) propose sequen-
tial FS-XLT: fine-tuning on few target-language in-
stances follows the initial fine-tuning on sizable
source language data. They show that FS-XLT

brings the largest gains exactly where ZS-XLT fails
the most: for target languages distant from the
source and underrepresented in pretraining. In
follow-up work, Zhao et al. (2021) demonstrate
that FS-XLT is highly sensitive to the choice of
shots. Both studies show the effectiveness of few-
shot transfer to be subject to nature of the task:
lower-level syntactic and token-level tasks (e.g.,
POS-tagging, NER) benefit much more from few
annotated target language instances than higher-
level semantic tasks (e.g., NLI).

The evaluation protocols of both Lauscher et al.
(2020) and Zhao et al. (2021), however, do not
reflect a true few-shot setup: they assume that sub-
stantial validation data in the target language exists
and utilize it to guide model selection (hyperpa-
rameter optimization and early stopping). As such,
these works overestimate the effectiveness of true
FS-XLT: while focused only on monolingual se-
tups, Perez et al. (2021) demonstrate that model
selection criteria based on training data alone yield
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Figure 1: FS-XLT to AmericasNLI and WikiANN with
{10, 50, 100} shots after training on English data (cf.
§4). The line plots the mean (incl. ±1σ) test set spread
(in %) of best validation and current checkpoint. Runs
across 3 seeds by language are grouped by colored dots
that mark epochs scoring best on validation sets.

consistently worse few-shot task performance than
model selection based on an extra validation set.

In this work, we rethink FS-XLT and propose
novel FS-XLT paradigms that jointly leverage both
(sizable) source and (few-shot) target language data
in multi-task fashion or via mix-up (Zhang et al.,
2018), and demonstrate their effectiveness as well
as robustness in realistic (i.e., true) FS-XLT setups.

3 Methodology

Issues with Current FS-XLT Methods. Fig-
ure 1 illustrates the main issues of current FS-
XLT techniques, adopting the established sequen-
tial approach (Lauscher et al., 2020; Zhao et al.,
2021; Üstün et al., 2022). In this experiment, we
adapt models fine-tuned on sizable English task-
specific data with {10, 50, 100} target-language
shots to AmericasNLI (Ebrahimi et al., 2021) and
WikiANN (NER) (Rahimi et al., 2019) (see §4).
We execute three FS-XLT runs for each target lan-
guage with different randomly selected shots and
examine the test performance over time, displaying
the mean and deviation (±1σ) across all languages
and runs for different training duration (i.e., for
{1, . . . , 50} epochs of target language training).
The gray horizontal line denotes the optimal per-
formance (average across all languages and runs)
in the presence of a target language validation set
(i.e., ‘not-true’ few-shot learning): for each run,
we select the checkpoint that yields the best vali-
dation performance. Individual runs are denoted

with colored dots, each color indicating one target
language. Each dot is vertically aligned with the
epoch/checkpoint of the respective run (x-axis) that
yields the best validation performance.

The figure reveals the instability of sequential
FS-XLT. 1) The optimal epoch/checkpoint varies
across all dimensions of analysis: number of shots,
tasks, and languages. Besides the expected result
that, on average, with more shots we benefit from
longer training,1 no discernible pattern emerges. 2)
The optimal training duration substantially varies
even across different runs of the same language,
that is, for different random selections of N shots
(and even for larger number of shots, N = 500,
cf. Figure 2 later in §5.1). These observations ren-
der sequential FS-XLT highly unreliable for the true
FS-XLT setups without target validation data.

New FS-XLT Training Methods. Motivated by
these empirical insights, we explore new FS-XLT

paradigms, aiming to increase robustness and ef-
fectiveness in true FS-XLT setups. Our hypothesis
is that combining abundant source-language task
examples with scarce target examples in a joint
fashion will 1) prevent the models to overfit to
source-language features (see Figure 1), 2) also
prevent overfitting to an (extremely) small set of
target-language shots (Zhao et al., 2021), and 3)
result in the models that are better calibrated for a
particular source-target transfer direction. The FS-
XLT methods should model the interaction between
source and target examples, rather than performing
source-language fine-tuning which is fully agnostic
of the target language (and vice versa).

The first approach, dubbed ‘macro-averaging
FS-XLT’ (MACRO), conducts bilingual or mul-
tilingual fine-tuning in a joint (i.e., multi-task)
setup. In particular, we compute the total loss
L = δLS + (1 − δ)LT as a weighted sum of LS

and LT , where LS and LT are monolingual losses
associated with the examples from the source lan-
guage S and the target language T , respectively.
δ is a standard interpolation hyper-parameter that
adjusts the relative weight between the two losses.
The two individual losses operate over the ded-
icated mini-batches BS = {xsi , ysi }i=1,...,N and
BT = {xtj , ttj}j=1,...,M , which are sampled from
the respective source and target language datasets

1With as little as 10 shots, longer training, intuitively,
leads to overfitting. Figure 1 proves this for AmericasNLI
and WikiANN, showing that the first checkpoint yields the
best performance for most runs (i.e., the majority of dots are
grouped most to the left of the plot).
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DS and DT . N and M in combination determine
the size |B| of the entire mini-batch, as well as the
relative share of samples for each language within
the mini-batch. The generalization of the bilingual
MACRO FS-XLT method (MACRO-BI) to its multi-
lingual variant (MACRO-MULTI) is straightforward:
each multilingual batch B would simply comprise
examples from more than 2 languages, and the joint
loss will span more than 2 language-specific losses.

The second paradigm is based on the standard
mix-up technique (Zhang et al., 2018). It has been
proven beneficial for improving task performance
and robustness in monolingual tasks; here, we ex-
tend it to the cross-lingual FS-XLT scenario. This
method, termed MIX-UP, linearly interpolates be-
tween pairs of annotated instances from the source
and the target language as follows:

x̃s,t = λxsi ∗ (1− λ)xtj ; ỹs,t = λysi ∗ (1− λ)ytj

λ ∼ Beta(α) weighs the contribution between
instances (xsi , y

s
i ) and (xtj , y

t
j). Each instance

(xb, yb) ∈ B can be paired with any other instance
with varying λ. We opt to randomly pair instances
in BS and BT to be ‘mixed’, and keep α con-
stant. The fine-tuning loss L is then computed via
soft cross-entropy:

∑|B|/2
b ỹb log ỹb. Cross-lingual

MIX-UP can be interpreted as ‘soft’ code switch-
ing, occurring in the latent representation space: it
should enhance FS-XLT by further tying, in a task-
specific fashion, the representation subspaces of
the two languages, as the model is trained for the
task on ‘mixed’ representations, rather than inde-
pendent language-specific distributions (Cao et al.,
2020; Yang et al., 2022).

Overview of FS-XLT Training Methods. Besides
introducing novel methods, the main goal of this
work is a comprehensive empirical comparative
study of different FS-XLT training methods/regimes.
For clarity, we provide a quick overview of the wide
spectrum of evaluated regimes and configurations.
First, models may be trained on target language
shots after training on the source language data.
This approach, termed TARGET, is the standard
sequential FS-XLT from prior work (Lauscher et al.,
2020; Zhao et al., 2021).2 The alternative is the
regime that combines source-language and target-
language data instances, termed SOURCE-TARGET,
which comes in two different flavors: our proposed

2A variant that bypasses source-language fine-tuning and
operates only on the few target shots yields massive and con-
sistent drops (Zhao et al., 2021); we thus do not include this
variant in our evaluations.

joint MACRO and MIX-UP paradigms. The sec-
ond axis of difference is the starting point of TAR-
GET or SOURCE-TARGET FS-XLT: we can start
fine-tuning from 1) the original PLM (termed LM

henceforth), or 2) from the final/last checkpoint of
source-language task fine-tuning (termed LAST),
or 3) the ORACLE checkpoint. ORACLE violates
the true FS-XLT: it refers to the model checkpoint
that achieves the best performance on the target
language validation set, measured after each epoch
of source language training (Keung et al., 2020).
We include ORACLE for analysis purposes.

4 Experimental Setup

Tasks and Languages. Following prior studies
focused on FS-XLT (Lauscher et al., 2020; Zhao
et al., 2021), we evaluate all the methods in a rep-
resentative set of tasks that require varying degrees
of semantic and syntactic understanding for suc-
cessful cross-lingual transfer.

Natural Language Inference (NLI). NLI experi-
ments are conducted on AmericasNLI (AmNLI)
(Ebrahimi et al., 2021): it encompasses indigenous
target languages from the Americas, with data care-
fully translated from the Spanish XNLI dataset
(Conneau et al., 2018).3 Unless stated otherwise,
the source is English, and we transfer to the follow-
ing 7 target languages with sizable NLI data avail-
able: Aymara (AYM), Bribri (BZD), Guarani (GN),
Quechua (QU), Raramuri (TAR), Shipibo-Konibo
(SHP), Wixarika (HCH). For NLI, we jointly embed
the hypothesis-premise sentence-pair, obtain the
[CLS] token and feed it into the classifier.

Paraphrasing. The paraphrasing task is conducted
on the PAWS-X dataset (Yang et al., 2019), span-
ning parallel evaluation data for 6 high-resource
languages: German (DE), Spanish (ES), French
(FR), Korean (KO), Japanese (JA), and Chinese (ZH).
We train classifiers in the same fashion as classifiers
for NLI, now only with paraphrase pairs.

Named Entity Recognition (NER). We use the
WikiANN dataset of Pan et al. (2017), and eval-
uate cross-lingual transfer between English and the
following 13 languages: Arabic (AR), Afrikaans
(AF), German (DE), Japanese (JA), Quechuan (QU),
Russian (RU), Kinyarwanda (RW), Swahili (SW),
Tamil (TA), Urdu (UR), Vietnamese (UR), Yoruba

3ZS-XLT typically fails in transfer to these languages, as
they are unseen during MMT pretraining and are typologically
very distant from English.
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(YO), Mandarin (ZH). For NER, we feed output
representations of each token into the classifier.

Part-Of-Speech Tagging (POS). We use the POS
tags of the UD treebanks (Zeman et al., 2020) and
transfer from English to the following 12 target lan-
guages: Afrikaans (AF), Arabic (AR), Basque (EU),
Chinese (ZH), German (DE), Hindi (HI), Hungarian
(HU), Indonesian (ID), Japanese (JA), Russian (RU),
Tamil (TA), Urdu (UR). The model architecture is
identical to NER experiments.

Data Sampling and Shots. For AmNLI and
PAWS-X, we subsample training and valida-
tion subsets from the provided validation splits.4

WikiANN and the Universal Dependencies tree-
bank comprise sufficiently large training and vali-
dation splits; we subsample shots from the training
data. We follow Lauscher et al. (2020) and train
models with k ∈ {10, 50, 100, 250, 500} target-
language shots, fixed by task and language.5

Training Details. The main MMT is the base
variant of XLM-R from the transformers library
(Wolf et al., 2020) with mixed precision. For all
tasks, we train models with AdamW (Loshchilov
and Hutter, 2019) with the learning rate fixed to
2e−5 and weight decay of 0.05. All models apply
10% dropout to the output representations prior to
the classification layer at training time. The maxi-
mal input sequence length is set to 256 subwords
for AmNLI and PAWS-X, and 512 for NER and
POS.6 ZS-XLT and SOURCE-TARGET variants are
trained for 10 epochs with the linear warm-up rate
of 0.1 and linear decay.7 We fine-tune TARGET

regimes for 50 epochs with a constant learning rate.
We train in mini-batches of size 32: the SOURCE-
TARGET regimes balance instances from source and
target languages – for MACRO-BI, we sample 16 in-
stances per language choose the language-balanced
loss (δ = 0.5); MIX-UP interpolates between 32
pairs of instances between the languages, resulting
with 32 ‘mixed’ bilingual examples. For MIX-UP,

4This is also why we evaluate AmNLI on the subset of 7
languages which come with enough validation instances.

5Unlike Zhao et al. (2021), we operate in a more general
unconstrained setup, and do not guarantee an equal number of
shots per each class in a task.

6As a sanity check, we verified that our ZS-XLT implemen-
tation scores comparably to other ZS-XLT work with similar
hyperparameters (Wu and Dredze, 2020; Hu et al., 2021).

7Note that for SOURCE-TARGET setups the source lan-
guage datasets dictate training times, as target language shots
are continously resampled. SOURCE-TARGET for AmNLI is
trained for 5 epochs to reduce computational overhead due to
the large size of English MNLI (Williams et al., 2018).

we keep α fixed to 0.4.8 We run all experiments
over three (fixed) random seeds. Further details on
reproducibility are provided in Appendix A.1.

Evaluation Details. We measure performance with
accuracy on AmNLI and PAWS-X. For WikiANN
and POS, we report the token-level F1 score. We
report both performance of final/last (L) and oracle
(O) checkpoints to provide appropriate bounds on
expected and ideal transfer performance.9

5 Results and Discussion

The main results are listed in Table 1. Full results
per individual target languages in each task are
available in the Appendix. First, we corroborate
the findings from prior work (Lauscher et al., 2020;
Zhao et al., 2021), and report considerable gains
with FS-XLT over ZS-XLT across the board and
with different FS-XLT methods. We now dissect the
results across multiple axes of comparison.

Joint versus Sequential FS-XLT. In general,
the joint (i.e., SOURCE-TARGET) FS-XLT variants
score on-par or outperform the sequential (i.e., TAR-
GET) variants, and the gains are observed both at
Last and Oracle checkpoints. Moreover, we note
that the scores taken at the L checkpoint with the
joint variants across all setups are typically higher
than the scores taken at the O checkpoint. This
renders them more suitable for true FS-XLT sce-
narios, and clearly suggests that the proposed joint
approaches remedy the issues with overfitting and
allow for a more stable fine-tuning. We attribute
this finding exactly to bilingual regularization and
transfer calibration (see §3).

Joint Methods: MACRO versus MIX-UP. The two
joint methods typically yield very similar perfor-
mance when all other components are kept equal,
and fine-tuning starts from the LAST or the ORACLE

checkpoint. MIX-UP data augmentation insignifi-
cantly affects performance. The effect is most ap-
parent when comparing SOURCE-TARGET setups
on the higher-level semantic tasks (AmNLI and
PAWS-X), where the model must learn to embed
sentence-pair semantics in the [CLS] token. To
this end, both tasks require initial source-language
fine-tuning as the LM variants lag substantially be-
hind LAST and ORACLE which rely on the initial

8We did not observe significant differences in results with
α ∈ {0.1, 0.4, 0.7, 1.0} in preliminary experiments.

9Prior work typically reported only the O performance
which, depending on the target language and downstream task,
can heavily overestimate true FS-XLT performance.
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SOURCE TARGET SOURCE-TARGET

Zero-Shot Few-Shot MACRO MIX-UP

Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE

L O L O L O L O L O L O L O L O L O
A

m
N

L
I 10 39.6 40.0 38.3 39.9 38.4 41.2 34.9 36.0 38.0 38.1 37.4 38.6 35.1 35.4 37.9 39.4 37.2 38.3

50 39.6 40.0 43.8 43.3 44.0 43.6 40.6 42.5 44.4 44.4 44.4 45.0 39.8 40.6 44.0 44.5 44.8 45.0
100 39.6 40.0 45.8 45.0 46.3 46.2 44.1 44.9 46.8 46.6 47.9 47.5 43.8 44.3 47.4 47.0 47.7 47.7
250 39.6 40.0 49.7 49.5 49.8 49.4 48.4 49.2 51.0 51.2 51.4 51.0 48.4 49.0 51.5 50.6 51.7 51.3
500 39.6 40.0 51.7 52.0 52.0 51.2 51.8 52.5 53.3 52.9 53.8 53.4 52.3 51.6 53.2 53.2 53.1 53.1

PA
W

S-
X 10 83.8 84.0 81.0 84.2 80.0 84.4 81.1 81.8 84.5 84.5 84.7 84.6 77.3 80.6 84.0 84.1 83.8 84.2

50 83.8 84.0 83.5 84.2 83.4 84.4 79.9 81.2 84.4 84.3 84.6 84.5 74.4 76.6 84.6 84.4 84.7 84.3
100 83.8 84.0 84.0 84.3 83.5 84.3 79.9 80.2 84.6 84.5 84.6 84.4 75.2 77.8 84.6 84.4 84.7 84.7
250 83.8 84.0 83.2 84.9 83.2 84.4 81.2 81.8 84.6 84.6 84.9 84.8 78.4 79.2 84.5 84.5 84.5 84.3
500 83.8 84.0 83.8 85.3 83.6 85.0 82.8 82.9 85.3 85.0 85.5 85.3 81.9 81.9 85.2 85.0 85.1 85.0

N
E

R

10 52.5 60.0 60.7 63.3 61.0 64.3 63.9 65.1 64.9 65.8 64.9 66.2 64.2 65.1 63.9 65.1 64.3 65.6
50 52.5 60.0 72.0 72.3 72.6 73.1 72.8 73.5 73.1 73.1 73.1 73.6 73.2 73.6 72.9 73.4 73.2 73.5

100 52.5 60.0 73.6 74.5 74.4 74.7 75.5 75.7 75.4 75.5 75.3 75.2 75.8 75.8 74.9 75.4 75.4 75.5
250 52.5 60.0 75.6 76.5 76.0 76.7 77.1 77.3 77.0 77.1 76.9 77.1 77.4 77.4 76.9 76.9 77.0 77.1
500 52.5 60.0 77.4 78.6 77.6 78.7 79.2 79.3 79.0 79.0 79.2 79.2 79.5 79.5 78.9 78.9 79.0 79.0

PO
S 10 62.6 63.8 79.9 79.9 80.2 80.2 80.5 80.6 79.9 80.0 80.1 80.2 80.0 80.2 79.9 80.0 80.1 80.2

50 62.6 63.8 84.9 84.7 85.1 85.1 85.4 85.4 85.1 85.2 85.3 85.3 85.4 85.3 85.3 85.3 85.5 85.5
100 62.6 63.8 86.6 86.6 86.7 86.9 87.3 87.3 87.1 87.1 87.2 87.2 87.1 87.2 87.1 87.1 87.2 87.2
250 62.6 63.8 88.7 88.7 88.8 88.9 89.3 89.2 89.1 89.1 89.2 89.2 89.2 89.2 89.1 89.1 89.2 89.2
500 62.6 63.8 90.1 90.2 90.2 90.2 90.5 90.4 90.4 90.4 90.5 90.5 90.4 90.4 90.4 90.4 90.5 90.5

Table 1: Benchmarking a spectrum of FS-XLT regimes (see §3). The results are averages over three random seeds,
aggregated over all target languages represented in each task (see §4) Training and evaluation data are identical
across all regimes in the evaluation. L (O) denote performance measured at last (oracle) checkpoint, see §4.

source fine-tuning. MIXUP-LM is most beneficial
for the token-level NER task, but does not yield
sizeable gains on average over the arguably con-
ceptually simpler MACRO paradigm.

Starting Point of FS-XLT. Expectedly, starting FS-
XLT from the ORACLE checkpoint typically yields
better performance than starting from the LAST

checkpoint. ORACLE, however, violates the as-
sumption of a true FS-XLT setup: it uses the val-
idation set in the target language to select a bet-
ter checkpoint for additional FS-XLT fine-tuning,
which is organically better-aligned with the target
language. We note that the gap in performance
between these two initializations slightly decreases
in case of joint SOURCE-TARGET FS-XLT variants:
this again points to improved robustness compared
to sequential FS-XLT.

Performance over Languages and Tasks. Per-
formance benefits with different FS-XLT regimes,
naturally, depend on the task and target languages
at hand. AmNLI starts profiting from FS-XLT only
with k ≥ 50 shots. The target languages in AmNLI
are extremely low-resource and unseen in MMT
pretraining: the model thus must see more target-
language data points than, e.g., in NLI transfer to
higher-resource languages from the XNLI bench-
mark (Lauscher et al., 2020). Our new SOURCE-
TARGET variants again substantially outperform
currently established FS-XLT methods, and we ob-
serve increasing returns with more shots. In con-
trast, performance on PAWS-X – which comprises
only high-resource languages (see §4) – primarily

benefits from the more robust joint FS-XLT regimes
rather than from the increased number of shots.
For NER and POS, we observe strong performance
also with the LM initialization. We speculate that
this is because class-conditional token represen-
tations align well with the representations from
the original MMT pretraining; on the other hand,
the models for NLI and paraphrasing must cap-
ture higher-level sentence semantics (via source-
language fine-tuning) before the FS-XLT step.

5.1 Further Analyses

We base our further analyses and comparisons be-
tween sequential and joint approaches on the fol-
lowing two representative variants: TARGET-LAST

and MACRO-LAST. They operate in the ‘real-life’
true FS-XLT scenarios without any validation data
to guide few-shot learning (Perez et al., 2021).

Stability of Transfer. Figure 2 compares stabil-
ity of the two variants for {10, 50, 500} shots (cf,
Appendix A.2). It demonstrates that joint training
substantially reduces instability and variance of FS-
XLT fine-tuning across the board: we observe its
increased robustness and stability across different
tasks, languages, and the numbers of shots. The
plots also illustrate that the joint regime in the true
FS-XLT setup offers performance which is com-
petitive and comes substantially closer to perfor-
mance achieved when exploiting target-language
validation set: this directly indicates that, with joint
bilingual fine-tuning (MACRO) in place, any ad-
ditional labeled instances in the target language
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Figure 2: FS-XLT regimes (joint MACRO versus sequential TARGET) starting from the LAST checkpoint of the initial
source language fine-tuning step. The colored dots group runs for each seed by language and mark the checkpoints
that transfer best to target-language validation data. The line plots the mean (incl. ±1σ) test set spread (in %) of
best validation and current checkpoint.

would be better “spent” if used for training than for
validation. Relying on the joint MACRO variant, the
best-performing checkpoints generally shift closer
to the end of the training, which is a desired be-
havior in the absence of the validation set. In other
words, the joint FS-XLT variants not only improve
but also consistently make FS-XLT fine-tuning more
stable and more predictable, that is, less prone to
language- and task-dependent variations.

Notes on Efficiency and Modularity. While the
joint FS-XLT regimes improve final transfer perfor-
mance, they are less modular by design and might
incur larger computational costs than the sequential
regimes. Namely, they require combining source-
language and target-language instances for each
individual source-target transfer direction, which is
not the case in the sequential regimes. In what fol-
lows, we thus delve deeper into studying efficiency-
and modularity-related research questions.

Joint Multilingual and Multilingual-Bilingual
MACRO. Given NT target languages, instead of
fine-tuning NT separate bilingual models (MACRO-
BI), we can, similar to Xu and Murray (2022), train
a single joint multilingual model (MACRO-MULTI,
see §3) which serves all NT at once. Such FS-XLT

variant, besides potentially reducing computational
and memory costs, might also profit from increased
task data provided in multiple languages (Ansell
et al., 2021). What is more, we can use the LAST

checkpoint of the MACRO-MULTI as the starting
point of the additional subsequent bilingual FS-XLT

specialization (i.e., MACRO-BI). We denote this

novel modular variant, where both steps are based
on the joint FS-XLT paradigm, as MULTI ) BI.

Furthermore, we conduct another experiment,
again focused on efficiency of joint FS-XLT fine-
tuning, which includes all the different MACRO

variants: (i) the original MACRO-BI, (ii) MACRO-
MULTI, and (iii) MACRO-MULTI)BI. The goal is
to investigate how the different joint paradigms
perform under different computational budget con-
straints. To this end, we train those MACRO variants
with {1, 2, 5, 10}× the number of steps of the se-
quential TARGET variant.

For the multilingual step, training is always con-
ducted by including 8 instances for each language
in a mini-batch: this is done to provide sufficient
language-specific examples per mini-batch without
dramatically increasing the mini-batch size. For
AmNLI and PAWS-X, we include all available lan-
guages in training. For NER, we train on {DE, EN,
SW, TA,VI, ZH}, and for POS on {AR, EN, EU, HU,
ID, JA, UR}. We now evaluate all the MACRO and
TARGET variants on the following languages: for
AmNLI, AYM, QUY, and TAR; for PAWS-X, DE,
KO, JA; for NER, SW, VI, ZH; for POS, EU, UR, JA.

Table 2 presents the complete results of this set
of experiments, averaged over the three target lan-
guages of each task. First, MACRO-MULTI is on-par
or better than TARGET throughout almost all setups,
but, with the exception of token-level tasks, does
not consistently match the performance of MACRO-
BI, which fine-tunes for a particular source-target
direction. The highest overall performance is ob-
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TARGET SOURCE-TARGET (MACRO)

TARGET BUDGET

1× 2× 5× 10× FT

MULTI ) BI BI MULTI ) BI BI MULTI ) BI BI MULTI ) BI BI MULTI ) BI BI MULTI MULTI ) BI

Shots L O L O L O L O L O L O L O L O L O L O L O L O L O

A
m

N
L

I

10 36.8 38.8 36.3 36.9 37.6 38.5 36.7 37.7 38.1 38.3 36.2 36.7 37.1 37.9 36.3 36.8 36.5 37.6 36.3 37.7 36.6 36.5 37.1 37.4 35.9 36.7
50 43.4 42.6 45.6 46.2 42.6 41.9 44.4 44.9 42.4 42.1 44.8 44.7 42.7 43.1 45.4 45.7 42.6 43.4 45.2 45.2 44.4 45.1 43.7 44.7 45.8 45.5

100 45.7 45.8 48.2 48.4 45.7 45.3 48.7 48.0 46.0 45.6 48.5 48.8 46.3 45.7 48.7 49.2 45.9 46.2 49.2 49.1 46.7 47.2 47.2 47.3 49.0 48.4
250 50.4 50.2 52.3 52.3 48.4 47.6 52.2 52.4 49.4 49.3 52.7 53.0 49.7 48.9 52.9 52.6 50.5 50.4 53.0 52.6 52.0 51.9 51.0 50.7 52.8 52.6
500 51.7 52.5 52.3 52.7 52.2 51.1 53.5 53.5 52.8 51.5 53.2 53.0 53.4 52.5 53.3 53.3 53.3 53.1 52.7 53.8 54.0 53.7 54.0 53.7 53.7 53.5

PA
W

S-
X

10 77.5 81.5 80.6 80.8 80.8 81.2 81.0 81.3 80.6 81.3 80.5 81.1 80.7 81.3 80.2 81.6 80.6 81.5 80.2 81.7 81.7 81.5 81.1 81.0 80.7 81.3
50 81.1 81.2 80.9 81.4 81.6 81.3 80.8 81.0 82.0 82.1 80.6 80.8 81.6 81.7 80.8 81.1 81.8 82.0 80.9 81.0 81.7 81.6 81.6 81.5 81.6 81.8

100 81.6 81.6 82.2 82.4 81.8 82.1 82.5 82.8 81.5 81.9 82.7 82.9 81.6 81.9 82.7 82.8 81.7 81.7 82.8 83.0 81.8 82.1 81.7 81.6 82.0 82.3
250 80.4 82.4 82.8 83.1 82.2 82.2 82.4 82.8 82.3 82.4 82.5 82.7 82.1 82.0 82.5 82.6 82.0 82.0 82.4 82.8 82.0 81.8 81.9 81.8 82.7 82.7
500 81.3 82.7 82.9 83.5 83.0 82.9 83.1 83.5 83.0 82.5 83.3 83.4 82.5 82.7 83.6 83.6 83.1 83.0 83.9 83.7 82.7 82.5 83.1 83.0 83.6 83.1

N
E

R

10 56.0 58.4 62.2 66.3 61.4 61.8 65.2 66.2 61.8 62.6 65.9 65.9 62.2 62.9 66.5 67.1 62.1 63.6 67.0 67.8 62.6 63.6 62.1 63.9 67.7 68.4
50 71.4 71.8 73.0 73.8 69.9 70.0 73.5 73.8 71.0 71.3 73.5 73.9 71.1 71.7 73.5 74.2 71.6 72.3 73.3 74.0 71.8 72.2 72.4 72.8 74.0 74.8

100 72.7 73.8 75.2 75.7 73.2 73.2 75.5 76.0 73.5 73.9 75.7 75.8 73.4 74.0 75.8 76.2 74.3 74.7 76.1 76.4 74.7 74.8 74.7 74.9 76.1 76.5
250 77.4 78.4 78.7 79.6 76.7 77.0 78.7 79.0 77.1 77.4 78.7 79.0 77.6 78.0 78.9 78.9 78.2 78.4 79.3 79.4 78.2 78.2 78.3 78.3 79.4 79.7
500 79.3 80.0 80.9 81.4 79.1 79.1 80.7 80.8 79.3 79.5 81.1 81.1 79.8 80.2 81.4 81.3 80.2 80.4 81.1 81.5 80.2 80.3 80.4 80.4 81.4 81.4

PO
S

10 77.5 77.5 80.6 80.7 76.4 76.4 80.7 80.6 77.6 77.7 80.9 80.9 77.9 78.2 81.0 81.0 78.0 78.2 81.0 81.1 78.4 78.3 79.2 79.3 81.2 81.4
50 83.4 83.3 85.6 85.8 81.2 81.2 85.6 85.5 82.4 82.4 85.7 85.8 83.3 83.3 85.7 85.8 83.5 83.6 85.8 85.8 84.4 84.4 84.8 84.8 86.0 86.0

100 85.6 85.6 87.5 87.8 84.5 84.4 87.6 87.6 85.3 85.2 87.6 87.7 85.7 85.7 87.8 87.8 86.0 86.0 87.7 87.8 86.6 86.5 87.0 86.9 87.9 88.0
250 88.0 88.2 89.1 89.4 87.3 87.3 89.4 89.5 87.9 87.8 89.6 89.6 88.4 88.4 89.7 89.6 88.6 88.6 89.6 89.6 88.9 88.8 89.1 89.1 89.7 89.7
500 89.6 89.8 90.2 90.4 89.1 89.1 90.3 90.4 89.5 89.5 90.5 90.5 90.0 89.9 90.5 90.6 90.1 90.0 90.7 90.6 90.1 90.0 90.2 90.1 90.5 90.5

Table 2: FS-XLT results where each fine-tuning regimes commences from the final checkpoint of English fine-tuning.
All tasks comprise three target languages, and the scores are averaged over three fixed random seeds, with training
and validation subsets being the same for each seed.

AMNLI PAWS-X NER POS

T S-T T S-T T S-T T S-T

Shots L O L O L O L O L O L O L O L O

10 36.5 36.5 35.8 36.3 78.0 83.6 83.4 83.1 50.8 53.8 54.0 55.3 80.8 80.8 78.5 78.8
100 43.8 44.1 46.9 46.3 81.3 83.0 83.5 82.8 66.9 68.2 69.7 70.2 88.1 88.1 88.6 88.6
500 50.1 49.7 52.9 52.4 82.2 83.0 84.5 84.3 74.2 75.0 76.7 76.6 91.0 91.1 91.3 91.3

Table 3: FS-XLT with Chinese as the source language. S=SOURCE, S-T=SOURCE-TARGET (MACRO is used).

tained with the hybrid MACRO-MULTI)BI, which
reaps the best of both worlds: 1) multilingual fine-
tuning prevents overfitting to a single source lan-
guage and provides a better initialization point for
2) the more specialized bilingual fine-tuning for
a particular source-target direction. Note that the
two-stage MULTI)BI fine-tuning also improves the
TARGET variant quite consistently. We report in-
crease in performance both for L and O checkpoints.
Nevertheless, MACRO still outperforms TARGET.

The results over different computational bud-
gets reveal that longer training is beneficial for the
MACRO variants. As expected, the setups with
more shots typically require fewer steps to con-
verge. A general finding is that 1) the bilingual
SOURCE-TARGET variants do trade off some of
the computational efficiency for enhanced perfor-
mance, but 2) bilingual fine-tuning times can be
decreased by starting from a better (i.e., multilin-
gual) initialization: cf., the MULTI)BI columns.

Another Source Language. Cross-lingual transfer
predominantly focuses on English as the source
language (Hu et al., 2020; Lauscher et al., 2020),
mostly because of the wide availability and abun-
dance of annotated task data in English. In order to
verify that our main findings generalise and reach

beyond English as the source language, we con-
duct another set of experiments relying on Chi-
nese as the source language.10 The results for the
TARGET-LAST and MACRO-LAST variants are pre-
sented in Table 3. The observed patterns largely
follow the general trends we reported with English
as the source language; what is more, the gains
of SOURCE-TARGET over TARGET even widen for
AmNLI and PAWS-X. We speculate that this might
be due to a lower quality of the source Chinese
instances. Namely, except for POS, the task an-
notations for Chinese were either automatically
translated (AmNLI, PAWS-X) or induced via some
heuristics (WikiANN). Joint bilingual fine-tuning
then provides increased robustness against such
noisy source annotations.

6 Conclusion

Recent work demonstrated large benefits of few-
shot cross-lingual transfer (FS-XLT) with multilin-
gual language models, where a handful of anno-
tated examples in the target language exist, over its
zero-shot counterpart (ZS-XLT). However, as we
have proven in this paper, prior work overestimated

10For AmLI and PAWS-X, we experiment with the same
three languages as in joint multilingual experiments. For NER,
we transfer to AR, UR, and JA, and to AR, DE, and UR for POS.
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FS-XLT performance, relying on an unrealistic as-
sumption of having a dedicated validation set in
the target language to guide model selection. In
this work, we have performed an extensive compar-
ative study of a wide variety of FS-XLT approaches,
challenging the status quo in FS-XLT. Our detailed
analyses have rendered established FS-XLT largely
unstable and performing sub-par in true FS-XLT

setups without the target validation data. We have
thus proposed novel FS-XLT fine-tuning regimes
that take into account interaction between source-
language and target-language data instances, yield-
ing improved, more stable, and more predictable
FS-XLT performance across different tasks, lan-
guages, and numbers of target-language shots. We
hope that our study will inspire better FS-XLT train-
ing and evaluation practices in future work, and
guide new developments for true FS-XLT setups.

7 Limitations

While we have striven to present a comprehen-
sive and wide study of a large spectrum of FS-XLT

fine-tuning regimes, several additional factors must
be taken into consideration. First, few-shot learn-
ing naturally comes with high variance, as demon-
strated by our work (where we set out to decrease
the variance) and a body of prior research in mono-
lingual and cross-lingual transfer contexts. This
study demanded an extremely large computational
budget (see Appendix A.1), so we constrained ex-
periments to independent runs with three seeds.
Ideally, more independent runs (5-10) might yield
even more consistent estimates.

Furthermore, due to computational constraints,
our work largely focuses on cross-lingual natu-
ral language understanding (NLU) and sequence-
labeling tasks. In addition, the community might
find a similar set of experiments insightful for
cross-lingual transfer in other areas such as (i) task-
oriented dialogue systems, or (ii) long-range tasks
like document classification. Moreover, while we
keep hyper-parameters constant throughout differ-
ent regimes, it is highly likely that they can be
further adapted and fine-tuned for a particular task,
language, and selection of shots. However, our core
findings demonstrate that the novel joint FS-XLT

fine-tuning regimes consistently match or exceed
oracle performance while requiring no substantial
hyper-parameter tuning or checkpoint selection.
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Vulić. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1778–1796,
Dublin, Ireland. Association for Computational Lin-
guistics.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
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A Appendix

A.1 Reproducibility
Infrastructure and Compute. We train our mod-
els on a cluster that provides virtual machines on
which each model was trained on a single NVIDIA
Tesla V100 32GB GPU. We evaluate 7 setups with
three seeds for k ∈ {10, 50, 100, 250, 500} shots
across 4 tasks in our base experiments, amounting
to 5,145 models trained for 3,756 GPU hours for
our main results. Therein, AmNLI alone takes up
2,170 hours (57.8%).

Datasets. We access all datasets via the Hugging-
face datasets library (Lhoest et al., 2021). When-
ever we subsample data, we initially shuffle the
dataset with one of seed s ∈ {42, 43, 44} built-
in datasets method and subsequently extract the
first k required instances for our experiments. In
case we require a validation subset from the same
dataset, we extract the |ND| − 500 last available
observations after shuffling to evaluate our models
during training (i.e., to measure ORACLE perfor-
mance). We manually verified that our approach
yields consistent subsamples by seed.

Code. Our code is available at: https://github.
com/fdschmidt93/fsxlt
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A.2 Stability Of Few-Shot Cross-Lingual Transfer

Figure 3: FS-XLT regimes (joint MACRO versus sequential TARGET) starting from the LAST checkpoint of the initial
source language fine-tuning step. The colored dots group runs for each seed by language and mark the checkpoints
that transfer best to target-language validation data. The line plots the mean (incl. ±1σ) test set spread (in %) of
best validation and current checkpoint.
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A.3 Full Results over Individual Target Languages
A.4 AmericasNLI

SOURCE TARGET SOURCE-TARGET

Zero-Shot Few-Shot MACRO MIX-UP

Weights k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE

Metric L O L O L O L O L O L O L O L O L O
Aymara 10 39.7 39.5 38.0 39.0 39.3 41.8 34.5 37.0 36.9 37.1 34.8 38.0 34.5 35.9 36.8 38.1 36.7 38.3
AYM 50 39.7 39.5 44.9 45.0 44.7 46.1 40.9 42.1 45.4 45.6 42.2 42.8 37.1 40.0 44.5 44.8 45.6 45.5

100 39.7 39.5 45.7 45.5 46.9 48.7 45.9 46.4 46.0 46.7 47.7 46.9 43.0 43.6 49.0 47.9 47.3 47.9
250 39.7 39.5 49.3 50.0 50.1 50.9 50.0 51.4 51.6 51.4 53.3 51.5 50.5 51.6 52.0 51.1 52.0 52.2
500 39.7 39.5 52.0 52.5 51.6 50.8 51.6 51.6 54.6 54.8 55.2 56.1 52.5 50.9 53.7 54.3 53.5 54.4

Bribri 10 40.8 40.4 39.1 40.0 39.0 40.7 36.4 36.3 39.9 39.7 41.0 41.6 36.1 35.9 40.3 40.2 39.1 39.8
BZD 50 40.8 40.4 44.7 45.2 44.5 44.2 44.1 45.7 47.6 45.8 49.0 49.4 42.5 43.0 47.0 48.6 47.5 48.7

100 40.8 40.4 48.6 46.8 49.2 48.2 49.2 49.6 51.5 50.5 52.5 51.2 48.2 48.1 51.7 51.2 52.5 50.7
250 40.8 40.4 52.6 52.0 54.9 55.1 52.0 51.4 54.2 54.6 53.4 53.7 51.3 52.3 55.2 54.8 55.3 54.6
500 40.8 40.4 56.6 56.4 56.8 56.7 54.6 56.1 57.9 57.3 57.7 58.2 56.4 55.0 56.5 56.7 57.2 56.8

Guarani 10 41.1 42.1 40.3 41.7 39.3 44.0 35.7 35.7 38.6 39.4 38.3 40.0 34.4 34.5 40.6 42.5 39.4 39.1
GN 50 41.1 42.1 46.8 47.1 45.2 44.9 40.8 42.5 45.3 45.4 45.5 46.1 40.7 40.2 47.1 46.7 45.6 46.7

100 41.1 42.1 47.6 46.6 48.8 47.9 45.0 45.3 49.2 47.6 49.3 49.7 44.8 46.3 49.6 48.8 49.6 50.4
250 41.1 42.1 52.1 51.4 49.7 49.7 49.8 51.7 51.6 52.2 51.6 51.8 48.3 50.2 51.4 50.8 51.7 50.5
500 41.1 42.1 54.2 52.8 53.4 51.3 51.3 52.4 53.3 52.7 54.0 52.9 53.5 52.8 52.6 52.5 53.5 52.6

Wixarika 10 38.4 37.5 36.9 38.4 37.5 39.3 33.8 35.5 37.6 38.4 36.4 37.3 34.4 34.3 36.2 38.0 35.5 36.6
HCH 50 38.4 37.5 40.3 39.9 40.6 39.8 35.9 38.1 40.3 40.3 40.1 40.2 36.4 35.8 39.9 39.5 39.8 40.8

100 38.4 37.5 41.8 39.9 41.0 40.8 37.0 38.3 40.8 40.5 41.6 42.0 37.9 37.2 41.8 42.6 42.3 41.7
250 38.4 37.5 44.2 44.5 43.4 41.5 40.3 40.3 45.2 45.9 44.8 43.1 39.5 39.3 45.6 45.5 44.0 44.7
500 38.4 37.5 44.8 46.1 44.5 43.8 45.7 46.8 46.4 45.7 45.5 45.2 44.7 44.0 46.9 46.5 45.7 46.0

Quechua 10 37.3 38.3 37.2 40.1 38.6 42.6 33.6 33.6 37.2 36.0 36.9 37.6 34.4 34.5 37.1 39.1 37.4 38.8
QUY 50 37.3 38.3 43.9 43.1 46.1 46.0 42.3 45.1 44.4 46.0 46.7 48.2 42.5 42.4 43.2 44.6 46.6 46.0

100 37.3 38.3 47.8 46.2 48.2 48.1 41.3 41.5 47.5 48.1 50.4 49.0 45.3 45.6 47.7 46.1 49.8 49.4
250 37.3 38.3 52.2 51.7 51.5 52.1 50.3 49.7 52.8 52.1 54.5 54.5 50.1 51.2 52.8 52.8 54.8 54.0
500 37.3 38.3 52.7 53.3 54.0 53.6 52.1 52.7 55.6 55.1 55.3 54.9 52.7 53.1 54.8 55.4 54.7 55.0

Shipibo 10 41.0 42.9 41.0 42.8 40.3 42.0 36.4 38.7 40.0 39.8 39.2 40.0 36.7 37.5 40.2 42.4 37.9 40.9
SHP 50 41.0 42.9 44.4 43.0 44.4 42.8 39.6 41.9 44.5 44.2 42.9 43.0 40.1 42.4 44.4 44.4 44.3 44.2

100 41.0 42.9 45.9 44.4 44.4 43.9 45.2 47.4 45.9 45.6 44.6 45.9 43.8 44.2 46.2 46.7 45.2 45.3
250 41.0 42.9 47.7 48.0 48.2 47.8 48.7 50.8 50.0 50.2 50.5 50.4 50.5 49.6 51.5 50.1 50.3 50.0
500 41.0 42.9 51.3 51.2 51.5 50.6 55.0 55.2 53.8 53.7 54.3 52.8 54.1 53.4 54.5 54.3 54.4 52.6

Raramuri 10 39.1 39.2 35.3 37.3 34.9 37.6 33.9 35.4 35.7 36.4 35.1 35.9 34.9 34.9 34.2 35.4 34.8 35.0
TAR 50 39.1 39.2 41.5 39.7 42.5 41.1 40.4 42.1 43.4 43.6 44.4 45.1 39.0 40.4 42.0 42.9 44.1 42.8

100 39.1 39.2 43.5 45.8 45.7 46.1 45.0 45.5 46.7 46.9 49.0 47.8 43.3 45.2 45.7 45.6 46.8 48.4
250 39.1 39.2 49.5 48.8 50.8 48.8 48.0 48.8 51.7 52.2 51.8 52.4 48.6 49.1 51.9 49.3 53.9 53.2
500 39.1 39.2 50.4 51.7 52.4 51.4 52.6 52.6 51.6 51.2 54.3 53.9 52.1 51.9 53.3 52.9 52.9 54.3
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A.5 PAWS-X
SOURCE TARGET SOURCE-TARGET

Zero-Shot Few-Shot MACRO MIX-UP

Weights k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE

Metric L O L O L O L O L O L O L O L O L O
German 10 88.7 88.7 84.4 88.7 82.9 88.9 87.4 87.2 89.5 89.5 89.2 89.1 84.6 86.0 88.8 88.7 89.1 89.2
DE 50 88.7 88.7 88.5 88.8 88.5 88.8 86.2 87.1 89.0 89.1 89.6 89.3 80.4 83.7 89.0 89.0 89.0 88.5

100 88.7 88.7 88.9 88.9 88.9 89.1 86.8 86.6 89.4 89.4 89.2 88.8 82.2 83.4 89.1 89.0 89.3 88.9
250 88.7 88.7 87.2 88.8 87.4 88.7 87.4 86.6 89.2 88.9 89.4 89.4 84.6 84.7 89.0 89.2 89.1 89.1
500 88.7 88.7 87.6 89.0 86.5 88.9 87.2 87.0 89.4 89.5 89.6 89.4 86.4 87.2 89.3 89.2 89.5 89.2

Spanish 10 89.5 89.7 85.9 89.7 85.9 89.7 88.3 88.4 89.8 89.4 89.8 89.4 85.9 88.2 89.8 89.8 89.8 89.8
ES 50 89.5 89.7 88.9 89.7 88.9 89.7 88.5 88.0 90.0 89.8 90.0 89.8 84.7 85.5 89.7 89.2 89.7 89.2

100 89.5 89.7 89.0 89.3 89.0 89.3 87.2 86.8 89.6 89.7 89.6 89.7 82.5 85.2 90.0 90.1 90.0 90.1
250 89.5 89.7 88.7 89.7 88.7 89.7 88.1 87.6 89.9 89.7 89.9 89.7 85.0 85.6 89.5 89.0 89.5 89.0
500 89.5 89.7 88.2 90.3 88.2 90.3 88.9 88.8 90.3 89.2 90.3 89.2 87.9 87.8 89.8 89.5 89.8 89.5

French 10 89.6 90.2 87.7 89.8 86.5 90.4 89.1 89.0 90.0 90.4 90.5 90.3 87.3 88.2 90.0 89.4 89.8 89.6
FR 50 89.6 90.2 88.7 90.0 89.2 90.4 84.1 87.8 90.0 89.7 90.1 90.1 80.1 84.4 90.3 90.2 90.2 90.0

100 89.6 90.2 89.4 89.6 89.4 90.2 87.2 87.6 90.2 89.9 90.6 90.5 84.5 86.4 90.2 90.2 90.4 90.1
250 89.6 90.2 88.9 90.1 89.0 90.1 87.3 88.0 90.0 90.4 90.5 90.7 86.0 86.4 90.5 90.4 90.2 89.9
500 89.6 90.2 89.3 90.2 88.7 90.1 89.2 89.1 91.0 91.0 91.0 91.0 88.6 88.5 90.6 90.3 90.4 90.7

Japanese 10 77.1 77.1 75.7 77.2 74.5 77.1 72.7 73.5 77.3 77.1 77.2 77.5 68.3 71.6 76.7 77.5 76.1 77.0
JA 50 77.1 77.1 76.6 77.1 74.7 76.8 71.3 73.9 77.6 77.5 76.7 76.9 62.8 64.5 78.0 77.8 78.0 77.3

100 77.1 77.1 77.2 77.5 74.0 76.3 72.3 73.0 77.2 78.0 77.2 77.2 67.2 70.9 77.8 77.5 77.1 77.4
250 77.1 77.1 76.9 78.8 76.4 77.3 74.4 75.4 78.4 78.2 78.2 78.0 69.9 71.2 77.5 77.8 78.0 77.6
500 77.1 77.1 77.7 79.6 77.4 78.9 76.4 76.9 79.2 79.0 79.4 79.3 75.8 75.2 79.4 79.4 78.8 79.1

Korean 10 76.7 77.2 72.2 78.6 72.2 78.2 71.1 73.4 78.3 78.0 78.7 78.4 62.9 69.9 77.3 77.6 77.2 77.6
KO 50 76.7 77.2 78.2 77.5 77.6 78.6 71.4 72.6 78.5 78.2 78.9 79.5 65.0 67.0 78.9 78.3 78.9 78.6

100 76.7 77.2 78.6 78.6 78.6 78.5 70.6 71.0 78.7 78.8 78.6 78.7 65.8 67.9 78.6 78.1 79.2 79.3
250 76.7 77.2 77.2 79.6 77.1 78.8 72.9 74.1 78.4 78.3 78.6 78.4 68.8 70.6 78.6 78.3 78.8 78.2
500 76.7 77.2 78.8 79.7 79.6 79.7 75.4 75.5 79.5 79.1 79.4 79.8 73.8 74.2 80.1 79.6 79.6 79.3

Chinese 10 81.1 81.3 80.0 81.6 78.2 82.2 78.0 79.4 82.3 82.5 82.8 82.8 74.6 79.6 81.3 81.5 81.0 81.9
ZH 50 81.1 81.3 80.3 81.7 81.3 82.2 77.8 78.0 81.4 81.4 82.3 81.5 73.2 74.4 81.7 82.0 82.4 82.4

100 81.1 81.3 81.2 82.2 81.2 82.3 75.4 76.0 82.2 81.4 82.4 81.4 68.8 73.2 81.7 81.6 82.1 82.7
250 81.1 81.3 80.2 82.1 80.4 82.1 77.4 78.8 81.6 82.2 82.8 82.8 75.7 76.8 82.0 82.0 81.6 81.9
500 81.1 81.3 81.6 83.2 81.1 82.4 79.7 80.2 82.1 82.5 83.1 83.0 78.7 78.7 82.3 82.2 82.2 82.1
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A.6 WikiANN
SOURCE TARGET SOURCE-TARGET

Zero-Shot Few-Shot MACRO MIX-UP

Weights k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE

Metric L O L O L O L O L O L O L O L O L O
Afrikaans 10 72.9 73.3 72.9 75.6 72.6 75.5 75.0 75.2 75.5 76.3 76.0 75.8 75.4 75.9 75.6 74.5 75.4 75.3
AF 50 72.9 73.3 76.9 76.9 77.8 77.9 78.7 78.6 78.8 77.4 78.2 78.2 77.7 77.8 78.2 78.2 78.8 77.9

100 72.9 73.3 78.6 79.8 79.3 79.2 80.1 80.3 79.6 79.6 80.0 79.3 79.7 79.5 80.1 80.3 80.5 80.2
250 72.9 73.3 81.2 81.2 81.0 81.9 81.6 82.0 82.2 82.1 82.0 81.9 82.0 81.8 82.3 82.0 82.2 81.9
500 72.9 73.3 82.8 83.7 83.3 83.7 83.7 83.5 83.6 83.5 83.5 83.4 84.3 84.4 83.7 83.7 83.7 83.7

Arabic 10 43.2 49.0 66.6 66.7 64.2 66.7 69.1 69.6 69.1 69.9 68.8 70.6 69.0 70.6 68.0 69.8 70.0 71.6
AR 50 43.2 49.0 72.5 73.0 72.1 72.5 73.2 73.8 73.9 74.4 74.3 74.6 73.8 73.9 74.0 74.6 74.3 74.8

100 43.2 49.0 73.4 73.8 73.2 73.9 74.5 74.9 75.4 75.9 75.5 76.0 75.5 76.0 75.4 76.0 75.7 76.2
250 43.2 49.0 74.8 76.7 75.5 76.7 77.1 77.3 77.4 77.6 77.8 77.8 77.7 77.8 78.0 78.0 78.1 78.1
500 43.2 49.0 76.6 79.1 76.8 78.4 79.7 80.0 79.7 79.7 79.8 79.8 80.0 79.9 79.8 79.9 79.8 79.7

German 10 70.6 71.6 68.3 72.3 68.2 73.5 72.6 73.9 71.7 72.5 71.8 72.5 73.5 73.6 71.6 72.3 72.2 73.1
DE 50 70.6 71.6 72.1 73.1 72.6 73.8 74.8 75.0 73.9 74.5 74.3 74.8 75.2 75.4 74.1 74.4 74.5 74.6

100 70.6 71.6 73.1 73.6 73.2 73.7 75.6 76.2 75.0 75.1 75.1 75.7 75.5 75.6 74.9 75.6 75.9 76.0
250 70.6 71.6 75.5 76.6 75.7 76.7 77.1 77.5 76.9 76.9 76.7 76.9 77.3 77.4 76.7 76.7 77.1 77.2
500 70.6 71.6 76.4 77.9 77.1 78.4 78.7 78.7 78.3 78.3 78.5 78.5 78.7 78.8 78.1 78.3 78.4 78.5

Japanese 10 17.1 17.9 32.0 32.8 32.6 33.1 31.5 32.8 34.9 36.2 35.3 36.8 31.5 33.0 32.2 34.7 33.5 34.4
JA 50 17.1 17.9 43.5 44.0 44.7 45.3 46.5 47.4 46.9 47.1 47.4 47.2 47.2 47.5 44.9 46.2 46.2 47.8

100 17.1 17.9 47.8 48.1 49.2 49.7 51.4 52.2 50.2 50.9 50.8 51.3 51.1 51.5 50.3 50.6 49.6 50.5
250 17.1 17.9 52.7 53.4 54.2 54.4 56.3 56.4 55.7 55.6 55.0 55.3 56.2 56.3 55.0 55.0 55.2 55.4
500 17.1 17.9 55.8 57.6 58.0 58.0 59.7 59.7 59.1 59.1 59.5 59.5 59.7 59.9 58.8 58.8 58.8 59.2

Quechuan 10 54.8 55.3 61.1 61.5 59.8 63.9 58.8 62.9 62.2 60.1 62.2 63.2 63.7 64.0 63.2 64.7 63.8 62.9
QU 50 54.8 55.3 70.5 69.2 74.6 73.1 69.6 71.9 68.9 68.3 69.3 70.2 71.2 72.4 69.9 71.7 70.0 69.5

100 54.8 55.3 71.4 72.9 74.9 73.2 76.3 76.2 74.4 73.3 75.2 73.2 78.0 76.4 70.9 72.0 74.6 74.2
Russian 10 65.7 66.5 64.7 72.0 64.7 72.0 71.6 73.3 73.0 73.8 73.0 73.8 73.1 73.4 72.1 73.8 72.1 73.8
RU 50 65.7 66.5 78.1 78.4 78.1 78.4 78.1 78.4 78.0 78.4 78.0 78.4 78.8 78.8 77.9 78.2 77.9 78.2

100 65.7 66.5 80.3 80.2 80.3 80.2 78.7 78.5 79.2 79.5 79.2 79.5 79.1 79.2 79.4 79.6 79.4 79.6
250 65.7 66.5 80.5 82.0 80.5 82.0 81.3 81.4 81.6 81.6 81.6 81.6 81.4 81.5 81.4 81.5 81.4 81.5
500 65.7 66.5 82.3 83.3 82.3 83.3 83.2 83.1 83.3 83.3 83.3 83.3 83.1 83.1 83.1 83.2 83.1 83.2

Rwanda 10 57.6 57.3 57.6 62.8 59.0 63.5 64.0 61.1 62.2 64.0 60.4 62.9 60.6 59.0 63.3 63.0 59.6 60.4
RW 50 57.6 57.3 75.9 73.2 74.5 76.5 76.6 75.8 73.3 74.0 75.0 75.4 75.1 73.9 73.2 73.2 75.5 74.4

100 57.6 57.3 75.5 77.6 75.2 76.8 78.3 76.6 76.3 78.2 75.8 75.3 78.4 77.0 76.4 77.4 77.8 76.9
Swahili 10 61.1 63.8 70.6 70.5 70.8 72.6 73.8 74.1 74.7 74.8 73.9 74.9 74.7 74.8 73.2 74.6 74.4 74.6
SW 50 61.1 63.8 84.3 84.2 84.4 84.5 84.3 84.3 83.8 84.8 84.2 83.9 84.2 84.1 84.1 84.3 84.2 83.6

100 61.1 63.8 84.6 85.0 85.5 85.3 85.4 86.0 86.5 86.3 85.3 85.8 85.9 85.4 85.8 86.5 85.1 85.1
250 61.1 63.8 87.3 88.2 87.8 87.5 87.7 88.1 88.1 87.9 87.8 87.6 88.4 88.8 88.1 88.3 87.9 87.9
500 61.1 63.8 89.0 89.8 88.7 89.6 89.5 89.2 89.5 89.6 89.4 89.9 89.6 89.2 89.6 89.5 89.6 89.6

Tamil 10 58.6 61.4 62.8 62.9 63.2 64.8 63.0 63.7 66.4 66.9 66.3 66.9 62.7 64.1 64.5 66.0 65.4 66.7
TA 50 58.6 61.4 70.6 71.2 71.4 71.2 72.3 71.9 72.3 72.1 72.8 72.7 72.0 72.0 72.9 72.4 72.7 72.8

100 58.6 61.4 73.6 73.4 73.0 72.7 74.1 73.9 74.3 74.4 74.1 74.1 74.0 74.0 73.7 74.3 74.5 74.4
250 58.6 61.4 74.9 76.1 75.7 76.1 77.0 76.9 77.0 77.1 77.0 77.0 77.3 76.9 76.7 76.5 77.3 77.1
500 58.6 61.4 76.7 77.7 76.5 78.3 78.4 79.2 78.7 78.6 79.0 78.6 79.6 79.3 77.9 78.1 78.5 78.3

Urdu 10 56.9 64.0 74.6 75.1 75.0 77.5 77.5 78.0 75.9 77.4 76.8 77.2 77.3 78.6 73.6 76.2 76.8 78.2
UR 50 56.9 64.0 79.7 79.6 80.5 81.4 80.8 80.6 81.3 81.5 80.6 81.3 81.1 81.9 81.0 82.8 81.3 82.2

100 56.9 64.0 80.5 81.8 80.9 83.3 82.9 82.7 83.2 82.4 82.2 81.7 82.0 82.5 83.3 83.6 82.7 83.2
250 56.9 64.0 83.8 83.9 84.5 85.4 85.3 85.4 85.0 85.3 84.9 85.4 85.1 85.1 85.1 85.3 85.3 85.8
500 56.9 64.0 85.7 86.5 85.3 86.6 87.3 87.2 87.2 86.7 87.8 87.5 87.6 87.6 87.4 87.4 87.9 87.7

Vietnamese 10 70.7 70.8 64.2 71.6 64.9 72.0 73.2 75.5 74.1 75.5 75.0 76.1 74.0 74.5 74.9 75.1 74.8 75.6
VI 50 70.7 70.8 78.3 78.9 77.8 78.5 78.4 79.0 78.8 78.7 78.8 78.9 79.5 80.1 78.7 79.2 78.7 79.3

100 70.7 70.8 79.9 80.1 79.4 79.6 79.8 80.0 79.5 79.6 79.7 80.1 80.7 81.0 79.9 80.6 80.0 80.4
250 70.7 70.8 82.2 83.0 81.9 82.5 82.3 82.4 82.0 82.0 82.0 82.2 83.0 83.1 82.1 82.1 81.7 82.0
500 70.7 70.8 83.0 83.2 82.2 83.5 83.4 83.8 83.0 83.1 83.0 82.9 83.8 83.9 82.9 83.1 82.5 82.8

Yoruba 10 28.1 48.7 61.3 65.9 65.5 67.3 61.8 65.8 65.0 66.8 65.2 69.0 63.1 65.7 61.7 62.5 61.2 67.4
YO 50 28.1 48.7 82.0 85.5 83.5 85.1 79.2 83.2 86.8 86.3 84.7 87.7 80.9 83.7 86.4 85.6 84.7 86.1

100 28.1 48.7 85.1 85.5 89.3 87.2 86.4 87.0 88.1 87.3 88.0 86.7 86.7 87.7 86.7 86.5 87.1 87.3
Chinese 10 25.6 27.8 33.0 33.0 33.0 33.0 38.7 40.6 39.2 40.6 39.2 40.6 35.8 38.9 36.7 39.0 36.7 39.0
ZH 50 25.6 27.8 51.7 52.3 51.7 52.3 53.4 55.0 52.9 53.2 52.9 53.2 54.4 55.2 52.9 53.7 52.9 53.7

100 25.6 27.8 53.6 56.3 53.6 56.3 58.5 59.3 58.0 58.5 58.0 58.5 58.6 59.1 56.8 57.8 56.8 57.8
250 25.6 27.8 62.8 63.9 62.8 63.9 65.4 65.5 64.3 64.8 64.3 64.8 65.0 65.3 63.8 64.0 63.8 64.0
500 25.6 27.8 66.0 67.0 66.0 67.0 68.7 68.9 68.0 68.3 68.0 68.3 68.4 68.6 67.6 67.5 67.6 67.5
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A.7 Part-Of-Speech Tagging
SOURCE TARGET SOURCE-TARGET

Zero-Shot Few-Shot MACRO MIX-UP

Weights k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE

Metric L O L O L O L O L O L O L O L O L O
Afrikaans 10 86.5 86.5 91.6 91.4 92.8 92.8 91.2 91.1 90.2 90.2 90.9 90.6 91.5 91.5 90.5 90.4 91.0 91.2
AF 50 86.5 86.5 94.5 94.4 94.9 94.7 94.0 94.0 93.0 93.0 93.3 93.5 94.2 94.1 93.0 93.1 93.7 93.7

100 86.5 86.5 95.3 95.3 95.6 95.6 95.1 95.1 94.7 94.6 94.6 94.6 95.5 95.4 94.7 94.5 94.9 94.6
250 86.5 86.5 96.8 96.7 96.9 96.9 97.0 96.9 96.3 96.3 96.5 96.6 97.0 97.0 96.4 96.3 96.4 96.4
500 86.5 86.5 97.3 97.3 97.4 97.5 97.6 97.5 97.4 97.3 97.6 97.5 97.7 97.7 97.2 97.2 97.5 97.4

Arabic 10 70.6 71.4 83.2 83.1 83.2 83.2 83.4 83.4 82.8 82.8 82.7 82.8 82.7 82.8 82.9 82.9 83.1 83.4
AR 50 70.6 71.4 84.8 84.9 85.0 85.1 85.2 85.2 85.4 85.4 85.3 85.2 85.1 85.1 85.3 85.4 85.4 85.3

100 70.6 71.4 85.4 85.6 85.5 85.6 86.1 86.1 86.2 86.2 86.2 86.2 85.8 85.8 86.2 86.2 86.4 86.4
250 70.6 71.4 86.7 86.7 86.8 86.8 87.2 87.2 87.3 87.3 87.4 87.3 87.0 87.0 87.2 87.2 87.3 87.3
500 70.6 71.4 87.4 87.4 87.4 87.5 87.7 87.7 87.8 87.7 87.8 87.8 87.5 87.6 87.7 87.7 87.7 87.7

Basque 10 54.5 55.2 73.7 73.8 74.1 74.1 73.9 74.0 73.4 73.6 73.9 74.2 73.7 74.0 74.2 74.2 74.3 74.4
EU 50 54.5 55.2 81.6 81.5 81.9 81.9 81.9 82.0 81.7 81.9 81.7 81.9 82.0 82.1 82.3 82.3 82.6 82.5

100 54.5 55.2 84.8 84.8 84.9 85.1 85.4 85.3 85.7 85.7 85.5 85.5 85.4 85.4 85.6 85.7 85.9 85.9
250 54.5 55.2 88.0 88.4 88.5 88.9 89.0 89.1 89.0 89.1 89.1 89.2 89.0 89.0 89.2 89.2 89.3 89.4
500 54.5 55.2 90.4 90.6 90.7 90.8 91.1 91.0 91.0 91.0 91.0 91.0 91.0 90.9 91.0 91.0 91.0 91.1

Chinese 10 34.2 40.8 64.9 64.9 65.0 65.2 67.8 68.0 67.3 67.3 67.1 67.4 66.1 66.9 66.9 67.1 67.3 67.2
ZH 50 34.2 40.8 74.9 74.9 75.4 75.6 77.6 77.4 76.8 76.8 77.2 77.1 78.0 77.8 77.0 77.0 77.6 77.6

100 34.2 40.8 78.7 78.6 79.1 79.2 81.7 81.7 80.8 80.7 81.2 81.3 81.5 81.5 80.8 80.8 81.1 81.1
250 34.2 40.8 82.9 82.9 83.2 83.1 84.7 84.6 84.2 84.2 84.5 84.5 84.6 84.6 84.1 84.1 84.6 84.5
500 34.2 40.8 85.5 85.5 85.6 85.7 86.8 86.7 86.5 86.4 86.6 86.6 86.7 86.7 86.3 86.3 86.5 86.5

German 10 86.1 86.3 90.0 90.0 90.0 90.0 90.0 90.1 89.2 89.4 89.1 89.5 90.1 90.1 89.2 89.6 89.3 89.6
DE 50 86.1 86.3 92.4 92.4 92.4 92.4 92.3 92.3 91.6 91.8 91.6 91.7 92.2 92.3 91.7 91.8 91.6 91.9

100 86.1 86.3 93.4 93.5 93.5 93.5 93.4 93.4 92.9 93.0 92.9 92.9 93.5 93.4 92.9 93.0 92.9 92.9
250 86.1 86.3 94.6 94.6 94.5 94.7 94.7 94.8 94.4 94.4 94.4 94.4 94.8 94.8 94.5 94.5 94.5 94.5
500 86.1 86.3 95.2 95.3 95.1 95.3 95.4 95.4 95.2 95.2 95.2 95.2 95.4 95.4 95.2 95.3 95.3 95.3

Hindi 10 66.7 67.2 84.3 84.3 84.5 84.7 84.7 84.8 83.6 83.9 84.2 84.1 84.1 84.3 83.8 83.8 84.0 84.1
HI 50 66.7 67.2 88.4 88.4 88.3 88.3 88.6 88.4 88.3 88.4 88.5 88.5 88.2 88.1 88.4 88.5 88.5 88.6

100 66.7 67.2 89.1 89.3 89.4 89.3 89.6 89.5 89.6 89.6 89.5 89.6 89.2 89.3 89.5 89.4 89.7 89.6
250 66.7 67.2 90.5 90.7 90.4 90.6 90.9 90.9 90.9 90.9 90.9 91.0 90.8 90.9 90.9 90.8 90.9 90.9
500 66.7 67.2 91.1 91.2 91.2 91.2 91.5 91.5 91.5 91.4 91.5 91.5 91.4 91.4 91.5 91.5 91.5 91.5

Hungarian 10 75.0 75.3 86.9 86.9 87.2 87.2 85.2 85.3 84.9 85.1 84.8 85.4 85.6 85.7 84.8 84.9 84.7 85.0
HU 50 75.0 75.3 91.7 91.7 91.8 91.8 92.0 91.8 91.5 91.3 91.3 91.1 91.7 91.7 91.5 91.7 91.5 91.5

100 75.0 75.3 93.0 93.0 93.2 93.2 93.3 93.2 93.0 92.9 93.1 93.1 93.3 93.3 93.0 92.9 93.1 93.1
250 75.0 75.3 94.8 94.6 94.9 94.9 94.9 94.8 94.8 94.8 94.9 94.9 95.1 95.0 95.0 94.9 95.0 95.0
500 75.0 75.3 95.8 95.8 95.9 95.9 95.9 95.9 95.9 95.9 95.9 95.8 95.8 95.9 95.9 95.8 95.9 95.8

Indonesian 10 71.6 71.6 74.1 74.1 74.6 74.6 74.4 74.4 73.4 73.6 73.7 73.8 74.2 74.2 73.9 73.9 74.1 74.0
ID 50 71.6 71.6 76.3 76.3 76.5 76.3 75.7 75.7 75.8 75.9 75.9 75.9 75.7 75.9 76.2 76.3 76.4 76.5

100 71.6 71.6 76.5 76.5 76.4 76.4 76.1 76.0 76.3 76.3 76.4 76.2 76.0 76.0 76.7 76.7 76.6 76.6
250 71.6 71.6 77.0 76.9 76.8 76.9 76.8 76.7 77.0 76.9 77.0 77.1 76.7 76.7 77.1 77.1 77.1 77.0
500 71.6 71.6 76.9 77.0 76.7 76.8 76.8 76.7 77.0 77.0 77.1 77.1 76.9 76.6 77.2 77.1 77.3 77.2

Japanese 10 24.7 28.3 75.2 75.2 75.6 75.5 78.9 79.0 78.2 78.0 78.3 78.5 77.4 77.5 77.3 77.5 77.2 77.2
JA 50 24.7 28.3 81.2 81.2 81.5 81.6 83.8 83.7 83.6 83.6 83.5 83.3 83.6 83.6 83.3 83.1 83.1 82.8

100 24.7 28.3 83.3 83.3 83.4 83.7 85.1 85.0 85.1 84.8 85.4 85.3 84.7 84.9 84.5 84.6 84.6 84.5
250 24.7 28.3 86.1 86.1 86.2 86.3 87.3 87.2 87.1 87.0 87.3 87.0 87.1 87.1 86.7 86.6 86.8 86.7
500 24.7 28.3 87.4 87.8 87.7 87.7 88.1 88.2 88.2 88.1 88.2 88.2 87.8 87.8 88.1 88.0 88.2 88.1

Russian 10 82.8 83.1 85.3 85.3 85.2 85.2 86.2 86.4 85.5 85.6 85.6 85.7 86.4 86.4 85.5 85.6 86.1 86.1
RU 50 82.8 83.1 88.4 88.4 88.8 88.8 88.9 88.9 87.8 87.9 88.1 88.2 89.3 89.3 88.4 88.5 88.8 88.8

100 82.8 83.1 90.2 90.2 90.3 90.4 90.5 90.6 89.6 89.7 90.1 90.1 90.6 90.6 90.0 90.0 90.3 90.4
250 82.8 83.1 91.8 91.9 91.9 92.1 92.3 92.3 91.7 91.7 91.9 91.9 92.3 92.3 92.0 92.0 92.1 92.1
500 82.8 83.1 93.0 93.1 93.1 93.2 93.4 93.4 93.0 93.1 93.3 93.3 93.3 93.3 93.2 93.2 93.4 93.4

Tamil 10 43.5 44.0 66.5 66.3 66.9 66.3 66.2 66.7 67.2 67.1 68.1 67.1 65.5 65.5 67.1 66.7 67.3 66.7
TA 50 43.5 44.0 76.7 75.5 77.7 77.6 78.3 78.7 78.5 78.1 79.7 78.8 77.3 77.2 78.6 78.4 78.7 78.8

100 43.5 44.0 80.9 80.7 81.0 81.8 82.9 82.7 82.6 82.3 82.9 82.1 81.4 81.4 82.1 82.4 82.4 82.5
250 43.5 44.0 85.4 84.3 85.6 85.4 86.1 86.0 86.1 85.8 86.3 86.5 85.7 85.8 86.1 86.0 86.0 85.9

Urdu 10 55.6 55.9 83.7 83.7 83.8 83.8 83.6 83.6 83.6 83.4 83.2 83.3 82.9 82.9 83.2 83.3 83.1 83.2
UR 50 55.6 55.9 87.4 87.3 87.5 87.5 87.2 87.2 87.8 87.8 87.5 87.7 87.1 87.1 87.5 87.4 87.8 87.7

100 55.6 55.9 88.9 88.8 88.7 88.7 88.9 88.7 89.1 89.2 89.0 89.0 88.9 88.9 89.1 88.9 89.0 88.9
250 55.6 55.9 90.0 90.2 90.0 90.0 90.4 90.2 90.4 90.4 90.6 90.6 89.9 89.9 90.3 90.2 90.3 90.4
500 55.6 55.9 90.9 90.9 90.8 90.9 90.9 90.9 91.1 91.0 91.2 91.2 90.7 90.7 90.9 91.0 91.0 91.2
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A.8 Multilingual Results
TARGET S-T MULTI

MACRO-LAST

L O L O L O

A
N

L
I

10 38.3 39.9 38.0 38.1 38.0 38.2

50 43.8 43.3 44.4 44.4 43.9 44.7

100 45.8 45.0 46.8 46.6 46.8 46.8

250 49.7 49.5 51.0 51.2 50.1 50.1

500 51.7 52.0 53.3 52.9 52.6 52.4

PA
W

S-
X

10 81.0 84.2 84.5 84.5 84.4 84.2

50 83.5 84.2 84.4 84.3 84.4 84.3

100 84.0 84.3 84.6 84.5 84.2 84.0

250 83.2 84.9 84.6 84.6 84.3 84.2

500 83.8 85.3 85.3 85.0 85.2 85.1

N
E

R

10 59.8 62.1 65.2 66.1 64.5 66.1

50 71.4 71.9 72.4 72.7 72.9 73.2

100 73.0 73.7 74.7 74.8 74.8 74.9

250 76.6 77.6 77.7 77.7 77.9 77.9

500 78.2 79.1 79.5 79.6 79.7 79.6

PO
S

10 79.4 79.4 79.4 79.4 80.1 80.2

50 84.3 84.3 84.3 84.3 84.7 84.7

100 85.9 85.8 85.9 85.8 86.3 86.2

250 87.6 87.6 87.6 87.6 87.9 87.9

500 88.5 88.4 88.5 88.4 88.6 88.6

Table 4: Multilingual FS-XLT transfer results. Please refer to §5 for details.
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