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Abstract

Table-to-text generation has been widely stud-
ied in the Natural Language Processing com-
munity in the recent years. We give a new
perspective to this problem by incorporating
signals from both tables as well as associated
images to generate relevant text. While tables
contain a structured list of facts, images are a
rich source of unstructured visual information.
For example, in the tourism domain, images
can be used to infer knowledge such as the type
of landmark (e.g., church), its architecture (e.g.,
Ancient Roman), and composition (e.g., white
marble). Therefore, in this paper, we introduce
the novel task of Vision-augmented Table-To-
Text Generation (VISTOT), defined as follows:
given a table and an associated image, produce
a descriptive sentence conditioned on the mul-
timodal input. For the task, we present a novel
multimodal table-to-text dataset, WIKILAND-
MARKS, covering 73,084 unique world land-
marks. Further, we also present a competitive
architecture, namely, VT3 that generates accu-
rate sentences conditioned on the image and
table pairs. Through extensive analyses and
experiments, we show that visual cues from im-
ages are helpful in (i) inferring missing informa-
tion from incomplete or sparse tables, and (ii)
strengthening the importance of useful infor-
mation from noisy tables for natural language
generation. We make the code and data pub-
licly available1.

1 Introduction

Structured data-to-text generation is a well-studied
problem that demands a model to produce mean-
ingful and factually accurate sentences based on
its comprehension of the source context that are
usually in the form of fact graphs, tables, or hierar-
chical spreadsheets (Lebret et al., 2016; Wiseman
et al., 2017). Many datasets and several competitive

1https://vl2g.github.io/projects/vistot

Conventional Transformer-based
Table-to-Text:
“Lough Leane is a 4700 acre estate in
Killarney, County Kerry, Ireland.”

Vision-augmented Table-to-Text
(this work):
“Lough Leane is a large lake in Kil-
larney, County Kerry, Ireland.”

Ground Truth: “Lough Leane is the
largest of the three lakes of Killarney,
in County Kerry.”

Figure 1: VISTOT: Vision-augmented Table-to-Text. In
this novel proposed task, the goal is to explore the utility
of visual cues besides the information in the table for
natural language generation. Note the presence of large
lake in the text generated by our proposed model; on
the other hand, existing table-to-text models wrongly
generate estate in the output text.

models have been proposed for data-to-text gener-
ation in the last few years. Data-to-text has been
used to generate variety of texts including weather
reports (Angeli et al., 2010), sports news (Wiseman
et al., 2017) and biographies (Lebret et al., 2016).

Specifically, for table-to-text, several bench-
mark datasets have been proposed including Wik-
iBio (Lebret et al., 2016), WebNLG (Gardent et al.,
2017), E2E (Novikova et al., 2017), DART (Nan
et al., 2021), RotoWire (Wiseman et al., 2017), and
Wikipedia Person and Animal dataset (Ye et al.,
2020). These datasets vary in terms of their lexical
richness, syntactic variation, and semantic and lin-
guistic adequacy. Further, there are several recent
methods utilizing neural encoder-decoder frame-
works to generate text descriptions from tables (Le-
bret et al., 2016; Bao et al., 2018; Chisholm et al.,
2017; Liu et al., 2018). Despite this progress, the
current table-to-text literature has underexplored
the challenge of including a multimodality require-
ment in this task.

While tables provide a series of facts at the con-
ceptual level, images provide unstructured visual-
level signals. Therefore, the information in the two
modalities can be complementary and may lead
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Dataset Domain #Data- Has
Text Pairs Images?

WeatherGov (Liang et al., 2009) Weather 22.1K ✗
Wikibio (Lebret et al., 2016) Biography 728.3K ✗
RotoWire (Wiseman et al., 2017) Baseketball 4.9K ✗
WebNLG (Gardent et al., 2017) Selected DBPe-

dia Categories
25.3K ✗

E2E (Novikova et al., 2017) Restaurants 50.6K ✗
LogicNLG (Chen et al., 2020a) Open Domain 37.0K ✗
ToTTo (Parikh et al., 2020) Open Domain 136.2K ✗
WIKILANDMARKS (Ours) World 73.2K ✓

Landmarks

Table 1: Comparison of Data-to-Text generation
datasets. WIKILANDMARKS is the only dataset with
tables along with associated images.

to significant improvements in generated text, es-
pecially for domains such as tourism, dining, and
products, where images contain rich information.
Images could also act as a significant source of ad-
ditional information when tables are sparse or noisy.
Hence, in this paper, we propose an extension to
the typical table-to-text task, where not just tables
but also associated images are needed to generate
meaningful and complete sentences. We refer to
this novel task as Vision-Augmented Table-to-Text
Generation or VISTOT. Figure 1 shows an exam-
ple for this task. Note the presence of “large lake”
in the text generated by our proposed model; on
the contrary, existing table-to-text models wrongly
generate “estate” in the output text.

Unlike table-to-text datasets that only contain
(table, text) pairs, VISTOT requires a dataset that
maps (table, image) pair to a text. Hence, we con-
tribute a new dataset – WIKILANDMARKS, with
infoboxes (tables) corresponding to 73,084 unique
landmarks, ∼10 images on average per landmark,
and a descriptive text with ∼35 tokens on average.
Table 1 shows a comparison of various datasets
with WIKILANDMARKS.

Further, to perform VISTOT on WIKILAND-
MARKS, we first experiment with standard pre-
viously proposed methods of encoding table and
images. Next, to handle the joint tables and im-
age information more accurately, we propose a
novel model, namely Visual-Tabular Data-to-Text
Transformer or VT3. For encoding image infor-
mation, we experiment with Faster RCNN (Ren
et al., 2015), ViT (Dosovitskiy et al., 2020), CLIP-
ViT (Radford et al., 2021a) and Swin (Liu et al.,
2021). For encoding tables, we represent key-value
pairs in a sequence. Both the table and visual en-
codings are fed as input to our model initialized
from the pretrained BART (Lewis et al., 2020) to
generate text. To adapt the proposed model for

our task, we present three novel pretraining strate-
gies, namely image-table matching, masked value
modeling, and image captioning.

In summary, our contributions are as follows:
(i) A novel task namely VISTOT, of natural text
generation from the table and image data. (ii) An
accompanying multimodal dataset in English viz.
WIKILANDMARKS having ∼73K samples with a
focus on the domain of world landmarks. (iii) A
novel method, VT3, that performs natural language
text generation conditioned on multimodal data.
(iv) Extensive automatic and human evaluations
reporting results on our dataset.

2 Related Work

2.1 Table-to-Text Generation

Data-to-text generation is a long-established prob-
lem with the objective of generating sentences
from structured data. Early works (Sripada et al.,
2003; Reiter, 2007; Liang et al., 2009) focused
on template-based data-to-text generation. Wik-
iBio (Lebret et al., 2016), Rotowire (Wiseman et al.,
2017), and E2E (Novikova et al., 2017) proposed
more challenging and diverse datasets focusing
on domains of biographies, basketball games, and
restaurants, respectively. Modern works such as
ToTTo (Parikh et al., 2020) and WebNLG (Gar-
dent et al., 2017) go a step beyond and cover open-
domain data, including many categories of world
knowledge, as well as introduce data in graphical
form. More recent methods deal with logical, nu-
merical, and hierarchical reasoning in domains like
sports, politics, entertainment (Chen et al., 2020a)
and products (Zhang et al., 2022). While such
works have become popular benchmarks for eval-
uating competitive table-to-text generation meth-
ods (Lewis et al., 2020; Su et al., 2021), current
literature has underexplored the challenge of in-
cluding a multimodality requirement in this task.
In this work, we propose an extension to the current
table-to-text task, where besides tables, associated
images are also useful to generate meaningful and
complete sentences. We believe that the data-to-
text generation community would benefit from this
challenge of vision augmentation to the rather clas-
sical and well-explored unimodal task.

2.2 Vision-and-Language Models

Besides vision and language tasks being explored
independently, steady progress has been made to-
ward problems that require joint modeling of both
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Property Value

Training set size 58,456
Unique landmarks/infoboxes 73,084
Images per landmark (Median/Avg) 4/10.0
Avg Target Length (tokens) 34.7
Target vocabulary size 160,203
Fields per infobox (Median/Avg) 12/13.0

Validation set size 7,314
Test set size 7,314

Table 2: WIKILANDMARKS dataset statistics.

modalities. These joint Vision-and-Language (V-
L) tasks demonstrate visual understanding by gen-
erating or responding to language in the context
of images or videos. Multimodal Transformers
like VisualBERT (Li et al., 2019), ViLBERT (Lu
et al., 2019), LXMERT (Tan and Bansal, 2019)
and CLIP (Radford et al., 2021b) have shown im-
pressive performance on several V-L tasks such as
visual question answering, visual commonsense
reasoning, and text-to-image retrieval by following
a “pretrain-then-finetune” approach. We follow a
similar approach to model table and image infor-
mation jointly by devising novel task-specific pre-
training strategies, namely image-table matching,
masked value modeling, and image captioning.

3 The VISTOT Problem and
Accompanying Dataset

3.1 VISTOT: Problem Definition

The proposed Vision-augmented Table-to-Text or
VISTOT task can be formally defined as fol-
lows. Given a labeled training dataset D =
{⟨tj , ij , sj⟩}Nj=1 where tj is a table with key-value
pairs describing an entity e, ij is a related image
and sj is a natural language description for e con-
taining mj words w1, w2, . . . , wmj , the goal is to
learn a model with parameters θ∗ such that the prob-
ability P of generating sentence sj , given inputs tj
and ij , is maximized. Mathematically,

θ∗ = argmax
θ

N∏

j=1

mj∏

k=1

P (wk|ck, tj , ij , θ)

Here ck = w1, . . . , wk−1 is the sequence of all
context words preceding wk.

In this work, we choose to work on the land-
marks domain as descriptions of landmarks usually
have important visual aspects such as architecture,
type of building, composition, and surroundings.
Nevertheless, our proposed model is equally suit-
able for all domains where visual inputs provide

complementary information to factual information
in the table for natural language generation.

3.2 WIKILANDMARKS: A novel dataset for
Vision-augmented Table-to-Text

We introduce WIKILANDMARKS – a dataset for
studying the novel problem of vision-augmented
Table-to-Text in the English language. In the lit-
erature, there are several datasets for studying
the table-to-text task, such as WikiBio (Lebret
et al., 2016), Rotowire (Wiseman et al., 2017),
ToTTo (Parikh et al., 2020). We could have used
these datasets by augmenting corresponding im-
ages to them. However, the images are unlikely
to have a greater impact in generating text corre-
sponding to the tables in these datasets. For ex-
ample, it might be hopelessly hard to improve the
biographical summary of a person by adding their
images to the Wikibio dataset. Therefore, we cu-
rate a new dataset where table-to-text can benefit
from using relevant visual cues. To this end, we
present WIKILANDMARKS, which contains 73,084
tables augmented with 766,723 images of world
landmarks, and a brief text summary (first sentence
of the Wikipedia webpage) corresponding to each
table. We make code and data publicly available2.
Data curation: We begin our data collection by
obtaining a list of prominent world landmarks from
the Google Landmarks Dataset v2 (Weyand et al.,
2020). We then harvest Wikipedia pages and in-
foboxes corresponding to these landmarks. We re-
move all those landmarks which either do not con-
tain infoboxes or contain completely non-English
Wikipedia pages3. Each data sample of WIKI-
LANDMARKS contains an infobox, a landmark im-
age and a Wikipedia summary.
Dataset split: The final dataset has been divided
into: training (80%), validation (10%) and test
(10%) sets by ensuring non-overlap of entities or
landmarks between the sets. A summary of dataset
statistics is reported in Table 2.

Figure 3 shows the frequency distribution of
the number of key-value pairs across tables in our
dataset. The average number of key-value pairs is
13.0, with a standard deviation of 5.4. The top-15
most frequent keys in the dataset in non-ascending
order are: name, location, image, coordinates, cap-
tion, website, architect, type, area, built, photo,
country, map_caption, locmapin, map established.

2https://vl2g.github.io/projects/vistot
3Current version of WIKILANDMARKS only focuses on

generating English text.
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Figure 2: Word cloud for top few values for architectures, countries, materials, and types for the landmarks
respectively (left to right) in the WIKILANDMARKS dataset.
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Figure 3: Frequency Distribution of Number of key-
value pairs per table in WIKILANDMARKS

Figure 2 shows word clouds of frequent values of
popular visual attributes in the dataset.

Further, we scrutinized 100 randomly-chosen
sentences from WIKILANDMARKS to understand
the extent and type of visual information present.
Table 3 shows the distribution of types of visual
information. We observe that there is good hope
of extracting visual cues from landmark images
and using them for improving text generation. We
provide further analyses of WIKILANDMARKS in
the Appendix.

4 VT3: Visual-Tabular Data-to-Text
Transformer

To address VISTOT, we present a novel trainable
neural architecture namely Visual-Tabular Data-
to-Text Transformer (or VT3 in short). VT3 is a
BART-based encoder-decoder Transformer model.
The overall architecture of VT3 and our proposed
novel pretraining tasks are illustrated in Figure 4.
Next, we describe the architectural details of VT3
followed by proposed pretraining strategies.

4.1 Image Encoding

An image embedding approach is required to feed
images as input to our model. A common approach
among several popular VL-models (Tan and Bansal,

Category Example Percentage

Type of landmark Castle, Statue 87
Type of holy place Mosque, Pagoda 25
Architectural style Neo-classical, Mughal 21
Type of building Office, Museum 5
Composition of landmark Steel, Marble 5
Type of park Urban, Sports 5
Is the landmark a ruin? Yes / No 4

Table 3: Distribution of types of visual information
found among 100 randomly chosen target sentences
from WIKILANDMARKS. Note that the percentage val-
ues do not add up to 100 because sentences could have
overlap of categories.

2019; Li et al., 2020; Chen et al., 2020b) is to use
region features of the images, also referred to as
bottom-up features (Anderson et al., 2018). These
capture semantic features of salient objects in im-
ages. They are obtained from detectors like Faster-
RCNN (Ren et al., 2015), which is trained on the
Visual Genome (Krishna et al., 2017) dataset to de-
tect common objects (e.g., couch, dog) in images.
However, region features have these limitations:
(i) RCNN models are limited to express only a
predefined set of object categories in images. (ii)
Landmark images do not often contain common
objects such as couches or dogs, and their presence
is irrelevant to the landmarks.

Hence, we also experiment with a much sim-
pler, lightweight, and convolution-free approach
of using a Vision Transformer to embed images.
Vision Transformers embed the whole image rather
than a few select regions of interest. In particu-
lar, we experiment with ViT (Dosovitskiy et al.,
2020), CLIP-ViT (Radford et al., 2021a) and Swin-
Transformer (Liu et al., 2021) to extract a sequence
of grid features from non-overlapping patches of
the image. Given an image I , we first use these
methods to obtain a set of g grid features, {xi}gi=1.
We set g = 12×12 in our experiments and use a lin-
ear layer to transform each grid representation xi to
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Key Value

Name Lough Leane

Location Killarney, County Kerry

Coordinates 58°2’30’’N 9°33’0’’W

Basin countries Ireland

Surface Area 4,700 acres

Islands Innisfallen

Pretrained-BART
Encoder

Pretrained-BART
Decoder

Swin-Transformer

[NAME] Lough Leane [Location] Killarney, Co… [Coordinates] …

Reshape & 
Slice

…

Pretrained-BART
Encoder

MLP Match / Not a match

Pretrained-BART
Encoder

Table Embeddings Image Embeddings

(b) Image-Table Matching (ITabM) (c) Masked Value Modeling (MVM) (d) Image Captioning (IC)

?

Table Embeddings Image Embeddings

?

??

“acres”“County”

Pretrained-BART
Encoder

Pretrained-BART
Decoder

Image Embeddings

“Lake Union is a lake in the commune of …” 

?

“Lough Leane is a large lake in Killarney, …”

[bos] Lough Leane is a large lake in

ITabM Loss LITabM MVM Loss LMVM

Language Modeling Loss LLM

Language Modeling Loss LLM

Mask token

CLS token

Table token

Image token

Table

Image

(a) VT3 Model

Figure 4: Overview of the proposed Visual-Tabular Data-to-Text Transformer viz. VT3: (a) Given a table
(T) and an associated image (I) of a landmark entity, VT3 aims to generate an accurate summary text. Encoded
visual features are obtained using Swin. However, other visual encoders such as Faster-RCNN, ViT, or CLIP-ViT
can also be used. The multimodal transformer processes the encoded table and visual features to autoregressively
generate a summary text. (b), (c) and (d) illustrate the pretraining tasks of VT3, namely Image-Table Matching
(ITabM), Masked Value Modeling (MVM), and Image Captioning (IC), respectively. These pretraining objectives
aid in learning richer multimodal alignment between landmark tables and images.

match the dimensions of the BART input. Overall,
the image I is encoded as FI = {linear(xi)}gi=1.

4.2 Table Encoding

In the literature, several ways have been explored
to effectively encode tabular information (Lebret
et al., 2016; Liu et al., 2018). We note, however,
that Wikipedia infoboxes are rather simple tables
with a list of entries or fields in the form of key-
value pairs. A straightforward approach to encod-
ing such tables would be to list their key-value pairs
as a sequence and feed it to an encoder. Inspired
by Su et al. (2021), we represent each key as a
special token in the model’s vocabulary to better
capture the semantic meaning of unique keys in the
WIKILANDMARKS dataset. The embeddings for
these keys are learned from scratch.

Thus, given a Wikipedia infobox table T with n
key-value pairs {⟨k1, v1⟩, ⟨k2, v2⟩, . . . , ⟨kn, vn⟩},
we encode its keys {ki}ni=1 as special tokens
{κi}ni=1, and the values are tokenized using
the byte-level Byte-Pair-Encoding scheme of the
BART-tokenizer. Each of the key-value pairs
are separated using an end-of-field (EOF) token.
Thus, the table representation input to BART is
FT = [κ1, v1,EOF, κ2, v2,EOF, . . . , κn, vn].

We feed the image representation FI along with

the table representation FT to a BART encoder
which ensures joint processing of semantics across
the image and the table. Finally, we unify the visual
(FI ) and tabular (FT ) input by concatenating them
sequentially, with a [SEP] token between them,
as E = [FI ,SEP, FT ]. Furthermore, positional
embeddings are added to preserve sequential in-
formation, and different segment embeddings are
added to the table and visual embeddings to further
aid the model in differentiating the two modalities.

4.3 Pretraining Strategies
As VT3 is initialized from the pretrained BART, a
language model, it lacks joint modeling for vision
and language data. To strengthen the relationship
between these two modalities and learn richer fea-
tures to aid the VISTOT task, we propose three
novel pretraining objectives to be used in a multi-
stage manner, as described next.

4.3.1 ITabM: Image-Table Matching
Analogous to the Image-Text Modeling objective
popular in vision-language pretraining, we pro-
pose Image-Table Matching (ITabM). In ITabM,
the VT3 encoder is presented an image-table pair
as [CLS FT SEP FI ] and tasked to predict whether
the table and image are a matched pair, i.e., whether
they describe the same landmark. The output of
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Method BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEURT

Image captioning-based
PureT (Wang et al., 2022) 6.4 26.1 33.2 12.8 31.1 0.40

Table-to-Text
Pointer-Generator (See et al., 2017) 17.8 39.2 51.6 31.7 49.2 0.50
BERT-to-BERT (Rothe et al., 2020) 22.1 43.9 55.3 35.6 53.1 0.50
T5 (Kale and Rastogi, 2020) 25.8 48.1 58.8 38.8 57.0 0.54
PlanGen (Su et al., 2021) 8.6 20.6 32.5 20.2 31.9 0.49

Visual-Tabular Data-to-text
LSTM+ResNet50 6.5 19.8 31.0 19.1 30.3 0.39
VisualBERT+BERT 26.1 49.0 60.4 39.2 58.8 0.54
VT3 30.2 53.5 62.9 43.4 60.8 0.56

Table 4: Performance comparison across various methods on WIKILANDMARKS test set. Details in Section 5.

the classification token, hCLS, is taken to indicate
the fused representation of both modalities, and an
MLP layer is learned to predict the match score
s. We randomly replace the table or image with
another to generate negative pairs. We utilize the
binary cross-entropy loss to train ITabM.

4.3.2 MVM: Masked Value Modeling
In this objective, we mask ∼15% of the values
part of key-values in the infobox tables and replace
them with a special token [MASK]. We then train
the model to reconstruct the masked tokens given
the context of the image and remaining table input.
The Masked Value Modeling objective is inspired
by the Masked Language Modeling objective in
BERT (Devlin et al., 2018). The model predicts
a likelihood distribution over the vocabulary for
the masked token and is trained to minimize the
negative log-likelihood loss. We mask table values
as they are more contextually relevant than keys.
Values also contain nouns such as “church” and
“cottage”, that are inferable from the image, unlike
table keys such as “Location” and “Name”.

4.3.3 IC: Image Captioning
The Image Captioning objective trains the model
to maximize the likelihood of a target sentence
using only the image of a landmark. It follows
the same language modeling loss that we finetune
the VT3 model with. This pretraining objective
helps the model learn to interpret visual features
of various landmark categories and their attributes
and accurately describe them in the generated text.

VT3 is pretrained on all the three training ob-
jectives on WIKILANDMARKS itself. We empiri-
cally found that the multistage pretraining approach
works best for the objectives. First, the model is
trained with ITabM, followed by MVM and IC,
respectively, and then fine-tuned for the VISTOT
task.

Metric FRCNN CLIP-ViT ViT Swin

BLEU 27.4 28.2 29.6 30.2
METEOR 50.8 51.6 52.9 53.5
ROUGE-1 59.9 60.3 61.7 62.9
ROUGE-2 42.3 43.0 42.7 43.4
ROUGE-L 58.2 58.9 59.5 60.8

Table 5: Ablation with different VT3 visual encoders.

5 Experiments

5.1 Baselines and Metrics

We compare with the following baseline methods.
Image Captioning-based approach. It may not be
trivial to generate sentences in WIKILANDMARKS

using images alone. However, to have a compre-
hensive evaluation, and assess the importance of
visual signals in our task, we compare our approach
against a state-of-the-art image captioning-based
baseline, PureT (Wang et al., 2022).
Table-to-Text Approaches. Table-to-text is a well-
explored area in the literature. We compare our
approach against the following four recent ap-
proaches: Pointer-Generator (See et al., 2017),
BERT-to-BERT (Rothe et al., 2020), T5 (Kale
and Rastogi, 2020) and PlanGen (Su et al., 2021).
These baselines help us understand what perfor-
mance can be achieved on WIKILANDMARKS by
using only the table and no associated images.
Visual-Tabular Data-to-Text Approaches. We
also propose and compare with baseline models
that use images as well as tables to generate text
similar to our proposed work. Specifically, we com-
pare against: (i) LSTM+ResNet50 model: LSTM
is used to encode the table, and ResNet50 to encode
the image, followed by late fusion. The decoder
is also an LSTM. (ii) VisualBERT+BERT Model:
Transformer method with VisualBERT-initialized
encoder paired with a BERT-initialized decoder.

We use the standard natural language generation
and image captioning metrics such as BLEU, ME-
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Model Image Table Pretraining BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

1 × ✓ × 25.3 47.0 58.4 38.9 56.8
2 ✓ × × 3.9 19.9 26.8 8.1 24.7
3 ✓ ✓ × 27.7 50.0 60.8 41.2 59.1
4 ✓ ✓ MVM 28.1 50.9 61.4 42.0 60.2
5 ✓ ✓ ITabM 28.4 51.4 61.7 41.9 59.6
6 ✓ ✓ IC 29.5 51.9 62.0 42.4 60.1
7 ✓ ✓ ITabM + MVM + IC 30.2 53.5 62.9 43.4 60.8

Table 6: Ablation studies for the VT3 model on the WIKILANDMARKS test set. Model 1 is the BART model
finetuned only on the table part of WIKILANDMARKS. Thus, model 1 is VT3 (w/o vision).

VT3 (w/o vision) VT3

Removed Key BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

T 25.0 46.8 58.2 38.6 56.6 29.4 52.8 62.1 42.6 60.0
A 25.2 47.0 58.4 38.9 56.8 29.7 53.0 62.4 42.9 60.3
C 25.3 47.0 58.4 38.9 56.8 30.0 54.4 62.7 43.3 60.6
T+A 25.0 46.7 58.1 38.6 56.6 29.0 52.3 61.7 42.1 59.6
T+C 25.0 46.8 58.2 38.6 56.6 29.2 52.7 62.0 42.5 59.9
A+C 25.2 47.0 58.4 38.9 56.8 29.6 53.0 62.3 42.8 60.2
T+A+C 24.9 46.7 58.2 38.6 56.6 28.9 52.2 61.6 42.0 59.5
Random 25.2 47.0 58.4 38.9 56.8 29.8 53.0 62.5 43.0 60.4

Table 7: Missing Keys Experiment. We probe VT3 for its usage of visual modality by masking few visually strong
keys in the infobox. Here, T=Type, A=Architecture, C=Composition.

TEOR, ROUGE-1, ROUGE-2 and ROUGE-L, and
BLEURT for evaluating the performance of text
generation in our experiments. Higher values for
all the scores are desired. Further, to measure how
humans perceive the quality of the generated text,
we also report human evaluation using fluency and
faithfulness defined in Section 5.3. Implementa-
tion details for reproducibility are detailed in Ap-
pendix B.

5.2 Quantitative Results and Ablations

We compare the accuracy of our proposed model,
VT3, against the baselines in Table 4. We observe
that the image captioning-based approach performs
poorly. This result is obvious as predicting pre-
cise facts such as location, date of inception, etc.,
are non-trivial and nearly impossible from images
alone. Table-to-text baselines achieve better per-
formance on VISTOT. However, as image-blind
models, table-to-text models fall short. As ex-
pected, the visual-tabular data-to-text models per-
form the best. Overall, we observe that on all
the automatic performance measures, VT3 signifi-
cantly outperforms the most competitive table-only
models and other visual-tabular models. Particu-
larly, LSTM+ResNet50 performs poorly because
of a lack of pretraining, inability to handle out-of-
vocabulary tokens, and inability to capture interac-
tions between table and images due to late fusion.

We perform ablations on VT3 to study the im-
pact of (i) visual encoder and (ii) pretraining strate-

gies. We investigate the impact of four strong vi-
sual encoders on VISTOT in Table 5. We observe
that Faster-RCNN, an object-detection-based vi-
sion encoder performs the poorest, which is ex-
pected as visual objects, and their relationships do
not play a strong role in our data. Further, recently
introduced Vision Transformers (ViT, CLIP-ViT,
and Swin) perform well, and Swin outperforms all
encoders. We posit that its effectiveness is due to
its hierarchical architecture, allowing it to capture
features more accurately at different scales.

Further, in Table 6, we perform an ablation to il-
lustrate the individual and combined efficacy of our
proposed pretraining strategies (please refer to Sec-
tion 4.3). IC approach is observed to be the most ef-
fective pretraining method. We theorize that since
the model is trained to generate sentences based on
the images alone in IC, it learns to strongly utilize
the visual information to generate better captions
in the VISTOT task.

Missing Keys Experiment: To further test the util-
ity of visual signals in cases when certain keys are
missing from the table, we perform an experiment
by removing keys of Type, Architecture, Composi-
tion, their combination, and random keys. Under
these ablation settings, we compare the results us-
ing the full VT3 model and the VT3 model without
the image input, i.e., VT3 (w/o vision).

We show this result in Table 7. In all the com-
binations, VT3, by virtue of having access to the
visual information, surpasses VT3 (w/o Vision).
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Par liament Gardens are a

park in the centre of

the Parliament Building in Wind

ho ek , Nam ibia

Ground Truth: Parliament Gardens is a small park in downtown Windhoek, 
Namibia.

VT3: Parliament Gardens are a park in the centre of the Parliament Buildings 
in Windhoek, Namibia

Parliament Gardens 
Parliament gardens, Windhoek
View of Parliament Gardens from the 
Tintenpalast steps
Natural Area
Namibia, Windhoek
1932
College of the Arts

Name 
Image
Caption

Type
Location
Created
Operator

Figure 5: Multimodal Attention Visualization during sentence generation. We observe that to generate the words
‘Garden’ and ‘park,’ VT3 attends to the associated regions of the image as well as the relevant key ‘Type’ in the table.
Further, we see that the model attends to the building structures in the image to generate the words ‘Parliament
Buildings’. For table visualization, special tokens have been removed.

Conne Island
Eiskeller
Eiskeller, Klubhaus Erich Zeigner
Conne island Leipzig
The Center in 2013
Leipzig, Germany
Music venue and self-managed 
social centre
19th century
1991Ground Truth: 

Conne Island is a music venue and self-managed social centre in the Connewitz district of 
Leipzig, Germany.
VT3 (w/o vision):
Conne Island (German: Eiskeller) is an island in Leipzig, Germany.
VT3: 
Conne Island, originally Eiskeller, is a small music venue and self-managed social centre in 
Leipzig, Germany.

Capitol Park Historic District 
Capital Park Detroit MI
Capitol Park, from the north
Detroit, Michigan, U.S.
46.64611°’N 7.6525°’W
1877
Albert Kahn Associates et al.
Italianate, Romanesque Revival
March 18, 1999
Michigan State Historic Site

Name 
Image
Caption
Location
Coordinates
Built
Architect
Architecture
Added
Designated

Name 
Nickname
Former 
Names
Image
Caption
Location
Type
Built
Opened

Ground Truth: 
The Capitol Park Historic District is a historic district located in downtown Detroit, Michigan.
VT3 (w/o vision):
Capitol Park is a park in Downtown Detroit, Michigan, United States. 
VT3: 
Capitol Park Historic District is a commercial historic district located in downtown Detroit, 
Michigan. 

Figure 6: Qualitative results from evaluation on WIKILANDMARKS. We observe that VT3 (w/o Vision) misinterprets
the underlying landmarks. For example, It misinterprets ‘Capitol Park Hill District’ as a park and ‘Conne Island’ as
an island. However, with the help of vision augmentation, VT3 correctly interprets the landmark types.

5.3 Human Evaluation

To better understand the effect of using visual in-
formation in VISTOT, we conduct a human eval-
uation of the results obtained by VT3 and VT3
(w/o vision). To this end, we randomly sample 200
generated sentences by each model on the WIK-
ILANDMARKS test set and have them evaluated
by three human evaluators. All these evaluators
are in the age group of 20-25, years including two
males and one female. They all have undergradu-
ate degrees, are proficient in English, and are travel
enthusiasts. They were all compensated appropri-
ately for their contributions. The annotators were
tasked to evaluate the generated sentences on the
following metrics: (i) Fluency: measures coher-
ence and grammatical correctness of a candidate
sentence, and (ii) Faithfulness: measures whether
all the facts stated in the candidate sentence can be
inferred from the image or table. Fluency and Faith-

Model Fluency Faithfulness

VT3 (w/o vision) 1.83 1.66
VT3 1.84 1.78

Table 8: Human evaluation results. Three English-
proficient graders evaluated fluency and faithfulness
scores for 200 randomly-picked generated sentences on
a 3-point scale (0, 1 or 2), and mean scores are reported.

fulness are measured on a 3-point Likert scale (0, 1,
or 2). The evaluators are presented a candidate sen-
tence with the table as well as the accompanying
image. To avoid any bias, the sentences are pre-
sented randomly. Detailed annotation guidelines
are in Appendix A.

We report the human evaluation results in Ta-
ble 8. We observe that sentences generated by both
models are highly fluent (1.83 and 1.84). Inter-
estingly, VT3 (w/o vision) fails to perform com-
parably with VT3 on faithfulness (1.66 and 1.78).
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Our analysis is that the vision augmentation helps
generated text remain faithful, particularly when
the information in the table is sparse or noisy, thus
preventing hallucinations in text, e.g., an image of
a district confirms the relevant related facts in the
table even when the table and title might weakly
suggest it is a park (Figure 6). We analyze this
further with a categorical error analysis on the gen-
erated text sentences in Appendix F.

5.4 Qualitative results and Visualization

Figure 6 shows qualitative results generated by
VT3 and VT3 (w/o vision). We observe that the full
model can generate more accurate and expressive
sentences, incorporating information from tables
and images. Further, to learn what VT3 attends
to in the image and table during generation, we
provide a visualization of the attention heatmap
over the image and table during the generation of a
sentence in Figure 5.

6 Conclusion

We have highlighted the possible benefits of lever-
aging multimodal data for better sentence genera-
tion by introducing a novel task, viz. VISTOT and
a large-scale accompanying dataset namely WIKI-
LANDMARKS. We presented a competitive model –
VT3 that is trained using three novel task-specific
pertaining strategies, namely, image-table match-
ing, masked value modeling, and image caption-
ing. VT3 shows impressive performance gain over
those models which only rely on tabular data for
table-to-text generation. In general, inspired by our
proposed novel task and dataset, we look forward
to exciting future research on bridging multimodal
cues for more precise NLG.

7 Limitations

We note a few limitations of this work: (i) The pro-
posed dataset provides a nice testbed for VISTOT
in the tourism domain. In this paper, we showed sig-
nificantly improved accuracy using VISTOT using
travel images. We believe these accuracy improve-
ments should generalize to other domains with rich
visual cues. For example, (a) In healthcare, auto-
mated generation of short reports given medical
images and tabular data from medical tests can be
modeled as a VISTOT task. (b) The other potential
domains could be e-commerce, sports, and din-
ing. Nevertheless, empirical validation needs to be
carried out. We plan to therefore expand to more

domains in the future. (ii) Richer context for table-
to-text: The proposed approach (VT3) takes a table
and a corresponding single image as input. How-
ever, multiple images may capture different aspects
of natural language description in many scenar-
ios. Similarly, other forms of multimodal context
could be explored while extending the table-to-text
framework further. (iii) Our dataset has a higher
representation of landmarks belonging to countries
such as England and the USA, which may lead to
unintentional regional biases. (iv) Human evalua-
tion could not follow a few best practices due to
resource constraints, such as using a 7-scale Likert
scale or evaluating a larger sample size. We ac-
knowledge that such measures could have yielded
more conclusive outcomes. (v) Our current work
has focused on generating English sentences; in
the future, we would like to extend this work to
generate non-English language sentences. Espe-
cially the utility of visual cues for generating text
for low-resource languages from tables and associ-
ated images seems an interesting research avenue.
(vi) Given a table and an image, a human could
generate a personalized summary s of information
relevant to them. In this work, we modeled VIS-
TOT as a problem of maximizing the probability
of reproducing an existing sentence s′, given the
table and image. It is unclear how similar s and s′

would be in real use cases. Again, due to resource
constraints, we modeled the VISTOT task as a ma-
chine learning task of optimizing for s′ rather than
gathering s at a large scale.

8 Ethical Concerns

No personally identifiable data has been used for
this work. WIKILANDMARKS data creation has
been explained in detail in the main paper. Also,
note that the images are all a part of Wikimedia.
Therefore, most of these images are available under
a Creative Commons Attribution license. All these
images are publicly available on the web and may
have different licenses.
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Appendix

A Human Evaluation Guidelines

The evaluators were provided with the following
guidelines for annotation.
Goal: Evaluate the natural-language generated sen-
tences on the following metrics.
Metrics:

• Fluency: How fluent and understandable is
the generated sentence? Score on a 3-point
scale: Not-Fluent, Mostly-Fluent, Fluent (or
0, 1 or 2 points)

• Faithfulness: Does the generated sentence
have facts only inferred from the table and
image? Score on a 3-point scale: Not-Faithful,
Mostly-Faithful, Faithful (or 0, 1 or 2 points)

A.1 Example #1

Key Value

name Colwell Bay
location Isle of Wight
interest Geological
area 13.56 hectare
notifydate 1959
map Natural England

Table 9: Table for Example #1

Figure 7: Image for Example #1 and #2

Generated Sentence: Colwell Bay is a bay on the
west coast of the Isle of Wight.
Expected annotation: Fluency=2, Faithfulness=2

A.2 Example #2

Key Value

name Colwell Bay
location Isle of Wight
interest Geological
area 13.56 hectare
notifydate 1959
map Natural England

Table 10: Table for Example #2

Generated Sentence: Colwell Bay is a 13.56
hectare biological Site of Special Scientific Interest
on the Isle of Wight.
Expected annotation: Fluency=2, Faithfulness=1

A.3 Example #3

Key Value

name Taunton Castle
location Taunton , Somerset
caption Taunton Castle
map_type Somerset
type Norman
coordinates 51.0158 N, -3.1046 W
built 1129
builder William Giffard
materials Stone

Table 11: Table for Example #3

Figure 8: Image for Example 3

Generated Sentence: Taunton Castle is a Norman
castle in the village of Taunton, Somerset, England.
Expected annotation: Fluency=2, Faithfulness=2

B Implementation Details for
Reproduciblity

VT3 is implemented using the Hugging Face li-
brary (Wolf et al., 2020). The backbone of VT3
is the pre-trained BARTbase model, and the vision
backbone is a frozen Swinlarge (Liu et al., 2022)
model pre-trained on ImageNet-21K at a resolution
of 384× 384. Extracted visual embeddings for an
image consist of 144 features having a dimension
length of 1536. In total, VT3 has 339M parameters
(including 197M belonging to Swin). We optimize
training using the AdamW optimizer (Kingma and
Ba, 2015) with a learning rate of 2e-5, a warmup
for 2000 steps from 1e-7, and a batch size of 200
with a gradient accumulation value of 2. The model
is trained for about 120K steps on four NVIDIA
A100 GPUs, which takes ∼48 hours to complete
the training process. For details, refer code4.

4https://vl2g.github.io/projects/vistot
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Location Percentage

England 22.5
USA 10.0
Norway 7.0
India 5.7
Japan 3.3
Sweden 2.6
Italy 2.6
Australia 2.0
Germany 2.0
France 1.9
Philippines 1.9
China 1.7
Denmark 1.5
Canada 1.5
Others 33.7

Table 12: Country-wise distribution of landmarks in
WIKILANDMARKS for the top 15 most frequent coun-
tries.

Location Avg. BLEU

USA 31.1
England 32.4
Germany 34.5
Canada 28.1
France 30.1
Italy 28.8
Australia 36.8
Japan 34.4
India 20.4
Switzerland 42.7
Others 27.3

Table 13: Performance of VT3 across the top-10 fre-
quent locations in the test set of WIKILANDMARKS.

C Examples from WIKILANDMARKS

We provide a selection of examples from WIKI-
LANDMARKS in Figure 9.

D Geographical Distribution of
Landmarks in WIKILANDMARKS

To understand where the landmarks in the WIKI-
LANDMARKS dataset are geographically located
and their distribution, we provide information re-
garding the most frequent landmark locations in
Table 12.

E Analysis of the performance of VT3

We measure the performance of VT3 across the fol-
lowing dimensions of landmarks: (i) Location (in
Table 13), (ii) Type (in Table 14), (iii) Architecture
(in Table 15), and (iv) Material (in Table 16).

F Error Analysis of VT3 Generated
Sentences

We perform detailed error analysis on 100 ran-
domly selected test samples and compare VT3 and
VT3 (w/o Vision). The error categories found from
the results and their definitions are as follows – (i)

Landmark Type Avg. BLEU

Castle 28.6
Reservoir 34.6
Stratovolcano 20.6
Public 28.3
Protected 40.7
Art museum 39.7
Settlement 11.3
Urban park 21.8
Public park 23.5
Lake 31.4
Others 30.2

Table 14: Performance of VT3 across the top-10 fre-
quent landmark types in the test set of WIKILAND-
MARKS.

Architecture Avg. BLEU

Greek Revival 30.0
Classical Revival 38.6
Gothic Revival 42.2
Georgian 28.2
Federal 35.7
Italianate 31.1
Gothic 41.8
Late Victorian 45.9
Romanesque 36.3
Colonial Revival 33.5
Others 30.0

Table 15: Performance of VT3 across the top-10 fre-
quent landmark architectures in the test set of WIKI-
LANDMARKS.

Material Avg. BLEU

Steel 27.9
Limestone 15.4
Stone 30.2
Concrete 32.8
Bronze 34.2
Reinforced concrete 22.8
Brick 28.4
Marble 18.2
Granite 33.6
Prestressed concrete 22.2
Others 30.2

Table 16: Performance of VT3 across the top-10 fre-
quent landmark materials in the test set of WIKILAND-
MARKS.

Error Category VT3 VT3 (w/o vision)

Incorrect Landmark Type 7 24
Fact undercoverage 18 26
Fact hallucination 6 10
Grammar Error 8 12

Table 17: Results of the error analysis on 100 randomly
sampled generated test sentences from VT3 and VT3
(w/o vision).

Incorrect Landmark Type: model fails to inter-
pret the landmark type correctly. (ii) Fact under-
coverage: model fails to use all relevant facts from
the table or image. (iii) Fact hallucination: gener-
ated sentences contain facts that are not grounded
in table nor image. (iv) Grammar errors: gen-

9948



The Niesen is a mountain peak of the Bernese Alps in 
the Canton of Bern, Switzerland.

Name 
Elevation
Prominence
Isolation
Parent Peak
Location
Range
Coordinates
Easiest Route

Niesen 
2632 m
407 m
2.3 km
Albristhron
Canton of Bern, Switzerland
Bernese Alps
46.64611°’N 7.6525°’W
Niesenbahn

Name 
Location
Coordinates
Broke Ground
Opened
Owner
Surface
Cost
Architect
Tenants
Seating Capacity
Dimensions

Parkview Field 
1301 Ewing St. Fort Wayne, IN 46802
41.07406°N -85.14286°W
December 26, 2007
April 16, 2009
Hardball Capital
Kentucky Bluegrass
$30.6 million
Populous
Fort Wayne TinCaps (2009-present)
6,516 (Fixed seats) 8,100 (Total)
Left Field – 336 ft, Center Field – 400 ft, 
Right Field - 318 ft

Name 
Map
Map Size
Location Country
Location
Dedicated To

Amitabha Drukpa 
Location within Nepal
250
Nepal
Kathmandu
Amitabha 

Amitabha Monastery is a Tibetan Buddhist Monastery 
in Nepal

Parklow Field is a minor league baseball stadium 
located in the central business district of Fort Wayne, 

Indiana, US,

Figure 9: A selection of examples from WIKILANDMARKS. Please refer to Section 3.2 for more details.

erated sentence contain misplaced, incorrect, or
redundant words, or incomplete sentences. We
present the findings in Table 17.
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