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Abstract

Unavailability of parallel corpora for training
text style transfer (TST) models is a very chal-
lenging yet common scenario. Also, TST
models implicitly need to preserve the content
while transforming a source sentence into the
target style. To tackle these problems, an in-
termediate representation is often constructed
that is devoid of style while still preserving the
meaning of the source sentence. In this work,
we study the usefulness of Abstract Meaning
Representation (AMR) graph as the interme-
diate style agnostic representation. We posit
that semantic notations like AMR are a natu-
ral choice for an intermediate representation.
Hence, we propose T-STAR: a model com-
prising of two components, text-to-AMR en-
coder and a AMR-to-text decoder. We pro-
pose several modeling improvements to en-
hance the style agnosticity of the generated
AMR. To the best of our knowledge, T-STAR
is the first work that uses AMR as an intermedi-
ate representation for TST. With thorough ex-
perimental evaluation we show T-STAR signif-
icantly outperforms state of the art techniques
by achieving on an average 15.2% higher con-
tent preservation with negligible loss (∼3%) in
style accuracy. Through detailed human evalu-
ation with 90, 000 ratings, we also show that T-
STAR has upto 50% lesser hallucinations com-
pared to state of the art TST models.

1 Introduction

A well accepted definition of style refers to the
manner (via linguistic elements like word choices,
syntactic structures, metaphors) in which semantics
of a sentence are expressed (McDonald and Puste-
jovsky, 1985; Jin et al., 2020). Text Style Transfer
(TST) is the task of rephrasing an input sentence to
contain specific stylistic properties without altering
the meaning of the sentence (Prabhumoye et al.,
2018). We refer the reader to Jin et al. (2020) for a

∗denotes equal contribution

detailed survey of approaches towards TST prob-
lem formulation, metrics and models. In the practi-
cal scenario, that we consider in this paper, where
a large corpus of parallel data is not available (Niu
and Bansal, 2018; Ma et al., 2020; Wu et al., 2020),
two family of approaches have been proposed in the
literature (Jin et al., 2020). 1. Disentanglement:
Content and Style are disentangled in a latent space
and only the style information is varied to trans-
form the sentence. 2. Prototype Editing: Style
bearing words in the source sentence are replaced
with those corresponding to the target style. The
sentence may be further re-arranged for fluency and
naturalness. Both the above approaches have draw-
backs in the way the style agnostic intermediate
representation is constructed, described as follows.
First, in the disentangling approaches, it is not easy
to verify the efficacy of separation between style
and content. Recent approaches (Subramanian
et al., 2018; Samanta et al., 2021) even state that as
content and style are so subtly entangled in text, it
is difficult to disentangle both of them in a latent
space. Consequently, this affects the model’s inter-
pretability in that it is hard to attribute an effect we
see in the output to the latent intermediate vector
or the style vector. Second, with prototype edit-
ing approaches for lingustic styles (such as author,
formality), where the content and style are tightly
coupled it is not feasible to segregate style and con-
tent carrying words (word examples: cometh, thou).
Furthermore, style-marker detection is a non-trivial
NLP task and needs to be addressed for every new
style that is added to the system causing scalabilty
concerns (Jin et al., 2020). In this paper, we pro-
pose T-STAR (Truthful Style Transfer using AMR
Graph as Intermediate Representation) that uses a
symbolic semantic graph notation called Abstract
Meaning Representation (AMR) as the style ag-
nostic intermediate stage. AMR (Banarescu et al.,
2013) is designed to capture semantics of a given
sentence in all entirety while abstracting away the
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Figure 1: Different syntactic variations, leads to the
same AMR as they all are similar in meaning.

syntactic variations, inflections and function words.
In other words, two sentences with the same mean-
ing but written in very different styles will have
a very similar AMR if not exactly the same (See
Figure 1).

This addresses the shortcomings with Disentan-
glement and Prototype Editing approaches. First,
AMR being a representation with well-defined se-
mantics, we can inspect, interpret and measure
quality of the intermediate representation and the
provenance of knowledge transfer between source
and target sentence. Second, AMR being a well
known standard has high quality, robust reference
implementations, especially for head languages
(e.g., English). Our contributions are as follows:
1. We propose a novel TST approach with AMRs,
an interpretable, symbolic intermediate representa-
tion, to achieve better content preservation. To this
end, we enhance AMR parsing techniques to better
suit the TST task. To the best of our knowledge,
we are the first work to use AMR representations
for the style transfer task (Sections 3, 4).
2. Through novel experimentation, we show that
an AMR, as a style agnostic intermediate represen-
tation, has better content preservation and less style
information of the given source sentence compared
to competitive baselines.(Sections 5, 6)
3. On multiple datasets we show T-STAR is able to
beat competitive baselines by producing sentences
with significantly higher content preservation with
similar style transfer scores. (Section 7)
4. With thorough human evaluations spanning
90,000 ratings we show T-STAR has ∼ 70% better
content preservation compared to state of art base-
line with 50% lesser hallucinations. (Section 8)

2 Related Work

2.1 Unsupervised Text Style Transfer

TST systems broadly use two family of approaches:
disentanglement (Shen et al., 2017) and prototype-

editing (Jin et al., 2020). Prior works (Hu et al.,
2017; John et al., 2019; Fu et al., 2017; Singh and
Palod, 2018; Logeswaran et al., 2018) disentangle
the content and style information in latent space
using style-based classifier or adversarial learning.
Prototype-editing based approaches (Li et al., 2018;
Madaan et al., 2020; Sudhakar et al., 2019) are used
to gain better controllability and interpretability.

Recently, some works propose to jointly opti-
mize for content and style information, to over-
come the limitations of explicitly disentangling
the style and content information. Yamshchikov
et al. (2019b) illustrates that architectures with
higher quality of information decomposition per-
form better on style transfer tasks. Subramanian
et al. (2018) argues that it is often easy to fool style
discriminators without explicitly disentangling con-
tent and style information, which may lead to low
content preservation (Xu et al., 2018). Instead, Sub-
ramanian et al. (2018); Logeswaran et al. (2018)
use back-translation to optimize for content preser-
vation. Luo et al. (2019); Liu et al. (2020) use
reinforcement learning framework with explicit re-
wards designed for content preservation. Wang
et al. (2019) pushes the entangled latent representa-
tion in the targeted-style direction using style dis-
criminators. Samanta et al. (2019) uses normaliz-
ing flow to infuse the content and style information
back before passing it to the decoder.

Cheng et al. (2020) proposes a context aware
text style transfer framework using two separate en-
coders for input sentence and the context. Similar
to our work, Krishna et al. (2020) also generates
an interpretable intermediate representation. The
authors first paraphrase the given source to first con-
vert it to a destylized version before passing it to
the targeted style-specific decoder. Complementary
to our work, (Shi et al., 2021) uses syntactic graphs
(dependency tree) as an intermediate representation
for attribute transfer to retain the linguistic struc-
ture. On the other hand, we focus on retaining the
semantics using AMR graphs as intermediate rep-
resentation and modifying the linguistic structure
(authorship style).

2.2 Text⇐⇒ AMR

In order to improve the parsing performance for
AMRs, neural models are receving increasing atten-
tion. Neural AMR parsers can be divided into fol-
lowing categories: i) sequence-to-sequence based
AMR-parsers (Xu et al., 2020a), ii) sequence-to-
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((a)) MRPC ((b)) QQP ((c)) STS

Figure 2: AMR comparison for MRPC, QQP, and STS datasets

graph based AMR parsers (Zhang et al., 2019),
where the graph is incrementally built by spanning
one node at a time. A more detailed survey on
related works can be found in Appendix A.

3 AMR as an Intermediate
Representation

Abstract Meaning Representations (AMRs) is a se-
mantic formalism construct that abstracts away the
syntactic information and only preserves the seman-
tic meaning, in a rooted, directed and acyclic graph.
In Figure 1, we present certain syntactic variations
(changing the voice, and tense) for a sentence with-
out altering meaning. All variations result in the
same AMR graph. The nodes in the AMR graphs
(“produce-01”, “they”, “before”, etc.) are con-
cepts (entities/predicates) that are canonicalized
and mapped to semantic role annotations present in
Propbank framesets1. The edges (“ARG0”, “time”,

“duration”, etc.) are then relations between these
concepts. In other words, AMRs aim at decoupling
“what to say” from “how to say” in an interpretrable
way. We posit that this could be beneficial for text
style transfer, where the goal is to alter the “how to
say” aspect while preserving “what to say”.

Recently, semantic meaning representation prop-
erty of AMRs has been shown to be useful in
other generation tasks. In abstractive summariza-
tion, Liao et al. (2018) uses AMR as an intermedi-
ate representation to first obtain a summary AMR
graph from document and then generate a summary
from it. Hardy and Vlachos (2018) use AMRs to
cover for the lack of explicit semantic modeling in
sequence-to-sequence models. In machine transla-
tion, Song et al. (2019) adopted AMRs to enforce
meaning preservation while translating from En-
glish to German. For Paraphrase Generation, Cai

1https://propbank.github.io/

et al. (2021) found that using AMRs as intermedi-
ate representation reduces the semantic drift. More-
over, incorporating symbolic representations as an
intermediate representation provides a way to ef-
fectively understand the reasons behind a model’s
shortcomings. We utilize this advantage to analyse
the weaknesses of T-STAR in Section 8.2.

In order to demonstrate the semantic meaning
preservation property of AMRs, we design an ex-
periment using three publicly available paraphrase
benchmarks, i.e., MRPC (Dolan and Brockett,
2005), QQP2, and STS. MRPC and QQP are sen-
tence pair datasets with each pair labeled yes if they
are paraphrases of each other no otherwise. STS
dataset assigns a scores from 0 (not similar) to 5
(exactly similar) to a sentence pair. We hypothesize
that if AMRs are indeed semantic meaning preserv-
ing, two sentences with similar meaning should
have highly similar AMRs. To measure the similar-
ity between two AMRs, we use the SMATCH score
(Cai and Knight, 2013) that calculates the number
of overlapping triplets between two AMRs. We use
an off-the-shelf AMR parser 3 to generate AMR
given a sentence. We plot the distribution of the
SMATCH scores for MRPC, QQP and STS datasets
in Figure 2. For MRPC, we infer that the SMATCH

scores for paraphrases are significantly higher than
the SMATCH scores for non-paraphrases. Simi-
larly, for QQP, quartile distribution of SMATCH

scores for paraphrases is higher in comparison to
non-paraphrases. For STS dataset, we observe a
gradual increase in quartile distribution of SMATCH

scores as we move towards more similar sentences.
The experiments above corroborate the claim

that AMRs can preserve meaning under lexical vari-
ations like paraphrasing, tense and voice changes.

2https://www.quora.com/profile/Ricky-Riche-2/First-
Quora-Dataset-Release-Question-Pairs

3https://amrlib.readthedocs.io/en/latest/
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Vanilla T-STAR Encoder T-STAR Encoder
Sentence: To make us feel existence, and to shew

(a/and
:op1(m/make-02
:ARG1(f/feel-01
:ARG0(w/we)
:ARG1(e/exist-01
:ARG1 w)))

:op2 (s / shew-01
:ARG0 w))

(h/have-purpose-91
:ARG2(a/and
:op1(m/make-02
:ARG1(f/feel-01
:ARG0(w/we)
:ARG1(e/exist-01
:ARG1 w)))

:op2(s/show-01
:ARG0 w
:ARG1 e)))

Sentence: But trust not this; too easy Youth, beware!
(m/multi-sentence
:snt1(c/contrast-01
:ARG2(t/trust-01
:polarity -
:mode imperative
:ARG0(y/you)
:ARG1(t2/this)))

:snt2(b/beware-01
:mode imperative
:ARG0(y2/youth
:ARG1-of(e/easy-05
:ARG2-of(h/have-degree-91
:ARG1 y2
:ARG3 (t3/too))))))

(c/contrast-01
:ARG2 (a/and
:op1 (t/trust-02
:polarity -
:mode imperative
:ARG0 (y/you
:mod (y2/youth))

:ARG1 (t2/this))
:op2 (h/have-degree-91
:ARG1 t2
:ARG2 (e/easy-05
:ARG1 t2)

:ARG3 (t3/too))))

Table 1: Comparison between AMRs from vanilla T-
STAR Encoder and T-STAR Encoder. T-STAR En-
coder generates better AMRs for stylized sentences.

Recent research discussed earlier, have success-
fully used this property to show task improvements.
Building on the above qualitative, quantitative and
prior research evidence, we further explore the ap-
plicability of AMR for the TST task.

Figure 3: An overview of T-STAR model architecture.
It consists of two modules: T-STAR Encoder, that trans-
forms a given sentence si in style i to its AMR repre-
sentation Ai. To convert the sentence to style j, Ai is
passed to T-STAR Decoder specific to style j.

4 Proposed Solution

Our proposed model T-STAR consists of two mod-
ules (refer Figure 3). First, T-STAR Encoder gen-
erates an AMR given source sentence in style i.
Second, T-STAR Decoder generates a sentence in
style j with similar meaning as preserved in the
generated intermediate AMR. We take T5-Base
(Raffel et al., 2020) pre-trained model as our basic
seq2seq architecture for both the modules. In order
to use AMR as a sequence in T5, we borrow the
choice of DFS Traversal from (Bevilacqua et al.,
2021), that thoroughly study the effect of various
traversals on AMR parsing.

4.1 T-STAR Encoder
We train our simplest encoder, called the vanilla
T-STAR Encoder, by fine-tuning T5 base with the

Figure 4: Generic sentences from AMR 3.0 corpus are
stylized using a TST model. The corresponding AMR
and stylized sentences are mapped together as silver
training dataset to finetune T-STAR Encoder.

open source AMR 3.0 dataset (Knight et al., 2021).
The AMR 3.0 dataset consists of roughly 59,000
generic English sentences (denoted as si for the
ith sentence) and their corresponding AMRs (de-
noted as Ai). In a qualitative analysis, we observe
that the vanilla T-STAR encoder under performs
in two significant ways as illustrated in Table 1.
First, style bearing words (such as “shew”) be-
come concepts in the AMRs (Sentence-1 in Ta-
ble 1) as opposed to being canonicalized to their
respective propbank role annotations. Second, the
meaning of the stylized sentences get incorrectly
encoded in the AMRs, as shown in the second ex-
ample in Table 1. To overcome this, we propose a
style-agnostic fine-tuning strategy as follows.
Style-agnostic Fine Tuning: We hypothesize that
vanilla Text to AMR encoder is unable to effec-
tively transform stylized sentences to AMRs be-
cause it has only been trained on generic En-
glish sentences. Therefore, we propose a data-
augmentation strategy (refer to Figure 4), where
we use an off the shelf style transfer model, e.g.,
STRAP (Krishna et al., 2020), to stylize a generic
English sentence si in style p (ŝpi ). While convert-
ing si to ŝpi , we alter the style of original sentence,
keeping the meaning intact. For a high quality
synthetic dataset, we filter out samples with low se-
mantic similarity between si and ŝpi . We provide a
detailed empirical analysis on this filtering strategy
in Appendix C. Since the meaning is preserved, we
can now map ŝpi to the same AMR Ai. We then
fine-tune our T-STAR Encoder on S̄ = S ∪ Ŝ ,
where Ŝ = {ŝpi , Ai}N∀p ∈ P and P is the total
number of styles in the dataset.

4.2 T-STAR Decoders

Due to the unavailability of parallel style corpora,
we are provided P mono-style corpora Rp =
{rpi }Mp written in style p, where P refers to the
total number of styles and rpi refers to the ith sen-
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Dimension Metric Description Metric used in related works
AMR simi-
larity

SMATCH SMATCH (Cai and Knight, 2013) measures degree of overlap between AMR
graphs of S,T. The score is computed based on triplet (edge) overlap by finding
a variable node mapping that maximizes the count of matching triplets.

Used extensively to measure similar-
ity between two AMRs, across AMR-
parsing literature.

Lexical
Diveristy

Self-BLEU ↓ BLEU-4 (Papineni et al., 2002) between S,T (Hu et al., 2017; Li et al., 2018; Lo-
geswaran et al., 2018; Xu et al., 2018)

Content
Preservation
(C.P.)

WMD ↓ Word Mover Distance (Kusner et al., 2015) measures dissimilarity between S,T
as the minimum distance between their embedded words.

Yamshchikov et al. (2020) states that
WMD correlates best with human-
evaluations on semantic similarity

SIM ↑ SIM (Wieting et al., 2019a) uses an embedding model proposed in (Wieting
et al., 2019b) to measure semantic similarity

(Krishna et al., 2020; Luo et al., 2019)

Style
Transfer (S.T.)

Style Accuracy ↑ Score of 4-way and 2-way fine-tuned RoBERTa-Large (Liu et al., 2019) model
for styles in CDS and Author-Imitation datasets respectively

(Krishna et al., 2020)*,(Hu et al., 2017;
Fu et al., 2017; Madaan et al., 2020)*

C.P. & S.T. Weighted Style
Accuracy ↑

Style Accuracy weighed by their corresponding semantic similarity scores
averaged across all test instances.

(Krishna et al., 2020)*,(Li et al., 2018)*

Table 2: Evaluation Metrics: Source and Target sentences denoted as S,T respectively. We use all the dimensions
except AMR similarity to measure the performance of TST. Note that Weighted Style Accuracy is the only metric
that encompasses two crucial dimension : C.P. and S.T. in one metric. AMR similarity is used to select best
performing TSTAR-Encoder. * represents the works that use slight variations of the mentioned metrics. Note that
across all metrics we compute an average scores across all test instances.

Algorithm 1: Iterative T-STAR
Input: parallel corpora (S), mono-lingual corpus

(Rp, ∀p ∈ P )
1 Ŝ = {ŝpi , Ai}N∀p ∈ P using an existing TST

model, e.g., STRAP
2 X := S ∪ Ŝ
3 while Convergence do
4 fine-tune TSTAR-Encoder famr(.) on X

5 Ŝ := {}
6 for p ∈ P do
7 Use famr(.) to create R̂p := {rpi , Ãp

i }M
8 fine-tune TSTAR-Decoder fp(.) for style p
9 Use TSTAR-Decoder to get

Ŝp = {ŝpi , Ai}N
10 Ŝ = Ŝ ∪ Ŝp

11 X := S ∪ Ŝ

tence of the p style dataset which hasMp sentences.
Training a style specific decoder (fp(.)) to generate
a sentence in style p from an AMR consists of two
steps. First, we use our fine-tuned T-STAR En-
coder (Section 4.1) to generate AMRs Âp

i for every
sentence rpi for every style corpora. Second, we
fine tune a T5 base model to recover the original
sentence rpi given the AMR Âp

i , obtaining style-
specific decoders. In other words, we fine tune
using Mp pairs of ( rpi , Âp

i ) constructed from the
first step. Note that, we experimented with a data
augmentation technique for the decoders as well,
however it did not lead to an improvement in the
style transfer performance (refer to Appendix E).

Once style specific decoders have been trained
for every style in P , we can use the T-STAR En-
coder in tandem with the T-STAR Decoders to
convert between arbitrary style combinations as
in Krishna et al. (2020).

4.3 Iterative T-STAR
The performance of our modules, T-STAR Encoder
and T-STAR Decoders depends on the quality of
the synthetic datasets (Ŝ, R̂p) generated by their
complementary modules. We adopt the iterative
back-translation technique used in unsupervised
machine translation (Hoang et al., 2018). Iteration
proceeds in rounds of training an encoder and de-
coder from mono-style data. In every round, we
aim to iteratively improve the quality of the encoder
and decoder modules by generating increasingly
better synthetic data from the previous round. We
briefly describe this process in Algorithm 1.

5 Experimental Setup

In this section we briefly describe the various T-
STAR variations that are analyzed in the subse-
quent sections, baselines, and the implementation
details. The models are validated against the met-
rics summarized in Table 2.

5.1 T-STAR variations
Vanilla T-STAR: The T-STAR Encoder used in
this version, is only trained on AMR 3.0 dataset,
and not finetuned for stylized sentences.
T-STAR: We train the encoder and decoders using
Algorithm 1 for only one iteration.
Iterative T-STAR: We follow two iterations of Al-
gorithm 1 to obtain better quality synthetic dataset.

5.2 Baselines
UNMT: (Subramanian et al., 2018) models style
transfer as unsupervised machine translation task.
DLSM (He et al., 2020) is a deep generative model
that unifies back-translation and adversarial loss.
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RLPrompt (Deng et al., 2022a) uses a discrete
prompt optimization approach using reinforcement
learning. It is adopted in a zero-shot setting where
we use Distil-BERT (Sanh et al., 2019) and run the
optimization for 1k steps.
STRAP (Krishna et al., 2020) first normalizes the
style information by paraphrasing the source text
into generic English sentence, which is then passed
through a style-specific GPT-2 based model to gen-
erate the styled output.

5.3 Datasets
We evaluate performance of T-STAR on two En-
glish datasets that capture Linguistic Styles (Jin
et al., 2020). First, Shakespeare Author Imitation
Dataset (Xu et al., 2012) consists of 18K pairs of
sentences written in two styles. Original Shake-
speare’s plays have been written in Early Mod-
ern English, a significantly different style. Sec-
ond, Corpus of Diverse Styles (CDS) (Krishna
et al., 2020). This dataset consists of non-parallel
sentences written in 11 different styles. We will
present our results on a subset of four styles : Bible,
Poetry, Shakespeare and Switchboard which con-
sists of 34.8K, 29.8K, 27.5K, 148.8K instances
respectively (CDS uses MIT License).

5.4 Implementation Details
We use pre-trained T5-Base model architecture for
both the encoder and decoder. Following iterative
back translation literature (Kumari et al., 2021),
we run Iterative T-STAR for two iterations. The
AMRs are preprocessed and postprocessed based
on the method mentioned in Appendix B. The best
modules are selected based on the performance
on validation set. Finer details about the model
architecture and hyperparameters can be found in
Appendix B.

6 Robustness of AMRs for Text Style
Transfer

An ideal style agnostic intermediate representation
for TST should a) encode complete semantic infor-
mation and b) minimal style information. We quan-
titatively measure AMR’s efficacy in these two di-
mensions. We compare T-STAR with STRAP (Kr-
ishna et al., 2020) for it uses a human readable
intermediate representation as well.

6.1 Semantic Containment of AMR
If semantics of input sentence is completely pre-
served in the intermediate representation, we

Style Model Content Preservation S. R. ↑
WMD ↓ SIM ↑

Bible
STRAP 0.200 0.715 0.979
T-STAR 0.170 0.792 0.979

Poetry
STRAP 0.290 0.664 0.969
T-STAR 0.215 0.760 0.965

Shakespeare
STRAP 0.328 0.610 0.971
T-STAR 0.222 0.754 0.972

Switchboard
STRAP 0.222 0.751 0.999
T-STAR 0.163 0.848 1.0

Table 3: Reconstructing the original sentences using
the intermediate semantic representation outperforms
the baseline with a significant margin with respect to
content preservation. T-STAR is on par with style re-
tention (S.R.) with the baseline model.

Style Original Paraphrase AMR
Vanilla-T-STAR T-STAR

Bible 97.72 79.97 74.64 71.90
Switchboard 99.47 89.79 87.74 64.66
Poetry 83.17 81.04 49.05 61.61
Shakespeare 70.07 78.07 88.8 80.73
Average 87.61 82.22 75.06 69.73

Table 4: Accuracy of style classifiers trained on origi-
nal, paraphrase and AMR inputs. AMR has least per-
formance denoting it encodes least style information.

should be able to reconstruct the input sentence
from it. To evaluate the robustness of AMRs across
all styles for content preservation, we first generate
intermediate AMR given the sentence in style p us-
ing our encoder and then reconstruct the same sen-
tence using our decoder fp(.) in style p. We study
how close the generated sentence (from STRAP, T-
STAR) is with respect to the original sentence. We
can infer from Table 3 that AMRs as an interme-
diate representation performs significantly better
on content preservation as compared to STRAP
across all the styles. Specifically, it gives an av-
erage of 0.10 and 0.06 absolute improvement on
SIM and WMD scores across the four styles re-
spectively. Also, we get comparable performance
on retaining the original style. We present an ab-
lation study on AMR parser in Appendix C, and
propose a new unsupervised Text-AMR evaluation
metric to measure the content preservation of AMR
parsing along with its results on the CDS dataset in
Appendix D.

6.2 Style Agnosticity of AMR

A style classifier C assigns a style class label to
an input sentence S. If S does not encode style
information, it should result in poor classifier per-
formance. We use this observation to design an ex-
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periment to evaluate the style-agnosticity of AMRs
as follows. We train three versions of 4-way style
classifier using original sentences, paraphrased sen-
tences (as used in STRAP) and AMRs as the input
sequences to the classifier. Two models are used
to generate AMRs: Vanilla T-STAR Encoder and
T-STAR Encoder. For all versions of the style clas-
sifier, we mask content bearing words like entities,
numbers, common nouns and AMR tags in the in-
put sequences.

The accuracy of the 4 classifiers is shown in
Table 4. First, even Vanilla T-STAR Encoder has
lower classifier accuracy for three out of four styles
in comparison to original and paraphrases sen-
tences. Second, with the T-STAR Encoder, we ob-
serve further reduction in classifier’s performance,
and obtain an average absolute drop of 15.19%
and 7.1% as compared to paraphrase and Vanilla
T-STAR Encoder respectively.

We illustrate some examples in Table 1, where
the T-STAR Encoder generates better AMRs as
compared to the Vanilla T-STAR Encoder. In
the first example,the T-STAR Encoder, unlike the
vanilla T-STAR Encoder, is able to map style-
specific word “shew” to the valid concept “show”
and also associate “existence” to it. In the sec-
ond example, the T-STAR Encoder does not split
the AMR into two sentences while parsing. Addi-
tionally, it is able to make the association between
“you” and “youth”. Through the above quantitative
and qualitative analysis we demonstrate that the T-
STAR Encoder generates AMRs which are robust
in preserving meaning of the source sentence while
predominantly losing style information.

7 Performance on Style Transfer Tasks

In this section, we compare our model performance
T-STAR and Iterative-T-STAR to the baselines
across two datasets: Shakespeare Imitation Dataset
and CDS dataset.

7.1 Performance Analysis on Shakespeare
Imitation Dataset

In Table 5, we present the results of T-STAR and
Iterative-T-STAR in comparison with the baselines
for the Shakespeare Author Imitation dataset for
both the directions :original to modern style and
vice versa. The Weighted Style Accuracy is the pri-
mary metric as it is shown to effectively combine
both style accuracy and content preservation (Kr-
ishna et al., 2020).

Model Content Preserv. Lex. Div. S.T. WSAcc.
SIM ↑ WMD ↓ Self-BLEU ↓

Original to Modern Style
UNMT 0.461 0.318 0.118 0.586 0.256
DLSM 0.447 0.369 0.079 0.192 0.115
RLPrompt 0.508 0.387 0.164 0.354 0.292
STRAP 0.647 0.337 0.118 0.886 0.552
Vanilla-TSTAR 0.848 0.182 0.269 0.601 0.497
TSTAR 0.754 0.257 0.175 0.754 0.554
Iterative-TSTAR 0.799 0.227 0.209 0.715 0.556

Modern to Original Style
UNMT 0.373 0.375 0.057 0.414 0.158
DLSM 0.421 0.373 0.086 0.391 0.174
RLPrompt 0.550 0.348 0.261 0.547 0.203
STRAP 0.656 0.332 0.139 0.681 0.433
Vanilla TSTAR 0.897 0.14 0.379 0.47 0.418
TSTAR 0.842 0.185 0.324 0.490 0.402
Iterative-TSTAR 0.853 0.181 0.329 0.540 0.446

Table 5: T-STAR models comparison with baseline
models on Shakespeare Author Imitation Dataset for
both the directions. Iterative T-STAR outperforms all
the baselines on Weighted Style Accuracy.

We observe that our model, T-STAR slightly per-
forms better than STRAP model for original to
modern style, but has lower performance for mod-
ern to original style. However Iterative T-STAR,
outperforms all the baselines for both the direc-
tions on Weighted Style Accuracy. We observe
that STRAP has very high style accuracy that it
achieves by compromising on Content Preserva-
tion. Through human evaluation (Section 8) we see
STRAP employs significantly higher hallucinations
to achieve style transfer. Vanilla T-STAR on the
other hand achieves high content preservation via
significant copying from source as seen by the sub-
stantially high self-BLEU score. Iterative T-STAR
finds the middle ground of achieving style transfer
while not compromising on content preservation.
We also found that the length of generated sentence
is similar to the input sentence, with on average
one word difference. In the subsequent sections,
we compare T-STAR to only the best performing
baseline, STRAP.

7.2 Performance Analysis on CDS Dataset

In Table 6, we compare the performance of T-STAR
and Iterative T-STAR against STRAP and Vanilla
T-STAR, across all 12 directions for {Poetry, Shake-
speare, Switchboard, Bible} styles. We make the
following observations: First, both our models
T-STAR and Iterative T-STAR outperform the state-
of-the-art baseline, STRAP, on 11 out of 12 direc-
tions, with an average absolute improvement of
7.7% and 9.7% respectively. Second, Vanilla T-
STAR is observed to be a stronger baseline than
STRAP, as it beats STRAP on 8 out of 12 direc-
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Direction Model
L.D. Cont. Preserv. S.R. ↓ S.T. ↑ WSAcc ↑
S-BLEU ↓ WMD ↓ SIM ↑

poetry→ bible

STRAP 0.067 0.314 0.571 0.335 0.548 0.289
Van-TSTAR 0.170 0.183 0.812 0.430 0.289 0.226
TSTAR 0.084 0.268 0.670 0.202 0.618 0.391
Itr-TSTAR 0.106 0.241 0.721 0.231 0.566 0.383

shak. → bible

STRAP 0.073 0.343 0.535 0.291 0.677 0.346
Van-TSTAR 0.212 0.194 0.817 0.540 0.422 0.337
TSTAR 0.123 0.286 0.656 0.277 0.705 0.437
Itr-TSTAR 0.149 0.260 0.712 0.271 0.701 0.477

switch. → bible

STRAP 0.042 0.323 0.476 0.062 0.670 0.307
Van-TSTAR 0.128 0.196 0.729 0.085 0.456 0.330
TSTAR 0.758 0.260 0.605 0.007 0.725 0.419
Itr-TSTAR 0.097 0.241 0.637 0.006 0.745 0.456

poetry→ shak.

STRAP 0.067 0.327 0.571 0.159 0.810 0.450
Van-TSTAR 0.207 0.166 0.821 0.398 0.576 0.460
TSTAR 0.131 0.244 0.717 0.241 0.733 0.509
Itr-TSTAR 0.164 0.207 0.768 0.278 0.704 0.522

switch. → shak.

STRAP 0.045 0.328 0.489 0.012 0.956 0.461
Van-TSTAR 0.152 0.187 0.740 0.034 0.948 0.696
TSTAR 0.089 0.250 0.651 0.009 0.971 0.628
Itr-TSTAR 0.122 0.22 0.696 0.010 0.973 0.675

bible→ shak.

STRAP 0.110 0.242 0.634 0.231 0.764 0.465
Van-TSTAR 0.214 0.151 0.842 0.377 0.613 0.508
TSTAR 0.100 0.227 0.713 0.309 0.676 0.472
Itr-TSTAR 0.126 0.210 0.743 0.299 0.683 0.499

bible→ switch.

STRAP 0.088 0.238 0.625 0.080 0.918 0.565
Van-TSTAR 0.171 0.162 0.810 0.186 0.813 0.649
TSTAR 0.084 0.227 0.713 0.082 0.916 0.646
Itr-TSTAR 0.101 0.213 0.73 0.083 0.911 0.658

shak. → switch.
STRAP 0.039 0.344 0.534 0.000 0.998 0.533
Van-TSTAR 0.138 0.212 0.767 0.002 0.988 0.755
TSTAR 0.089 0.283 0.661 0.000 0.998 0.660
Itr-TSTAR 0.110 0.249 0.719 0.002 0.991 0.712

poetry→ switch.

STRAP 0.054 0.312 0.616 0.007 0.993 0.610
Van-TSTAR 0.164 0.184 0.825 0.028 0.972 0.801
TSTAR 0.113 0.250 0.740 0.015 0.985 0.728
Itr-TSTAR 0.141 0.213 0.791 0.019 0.981 0.774

bible→ poetry

STRAP 0.060 0.275 0.633 0.346 0.621 0.374
Van-TSTAR 0.094 0.195 0.777 0.533 0.417 0.315
TSTAR 0.054 0.253 0.684 0.323 0.597 0.394
Itr-TSTAR 0.064 0.237 0.700 0.348 0.559 0.375

shak. → poetry

STRAP 0.071 0.353 0.550 0.160 0.818 0.449
Van-TSTAR 0.155 0.219 0.753 0.228 0.748 0.551
TSTAR 0.108 0.286 0.641 0.166 0.815 0.512
Itr-TSTAR 0.128 0.258 0.693 0.190 0.794 0.538

switch. → poetry

STRAP 0.037 0.331 0.524 0.094 0.844 0.432
Van-TSTAR 0.101 0.215 0.715 0.261 0.486 0.334
TSTAR 0.064 0.268 0.631 0.106 0.701 0.427
Itr-TSTAR 0.084 0.239 0.673 0.158 0.603 0.388

All Styles Avg.

STRAP 0.063 0.311 0.563 0.148 0.801 0.440
Van-TSTAR 0.159 0.189 0.784 0.259 0.644 0.497
TSTAR 0.093 0.256 0.674 0.145 0.787 0.519
Itr-TSTAR 0.116 0.232 0.715 0.158 0.768 0.538

Table 6: Performance comparison of T-STAR models
with STRAP on 12 different directions, across four
styles. T-STAR and Iterative T-STAR beats STRAP for
11 directions out of 12. S.R. - Style Retention, S.T. -
Style Transfer, WSAcc - Weighted Style Accuracy.

tions. Third, when we compare iterative T-STAR
against vanilla T-STAR, we beat it in 7 out of 12
directions, where the average absolute improve-
ment across these 7 directions is 8%, as compare
to the average absolute loss in 5 out of 12 styles is
2%. Fourth, Iterative T-STAR model outperforms
T-STAR model on 9 out of 12 directions, which
shows that the improvement in synthetic dataset
quality, is boosting the performance of the down-
stream task. Consistent with the findings of the
previous experiment, we see Iterative T-STAR is
able to find the middle ground of transferring style
without compromising on content preservation.

7.2.1 Qualitative Analysis
In Table 7, we enumerate few examples with gener-
ated stylized sentences using STRAP and T-STAR
variations. We can infer that, although STRAP
performs well in transforming the sentence to the
given style, it alters the meaning (row 1,3, and 4).
On the other hand, vanilla T-STAR does not always
transform the style (row 1 and 2). However, with
T-STAR and Iterative T-STAR are able to transform
the sentences while keeping the style intact.

We further quantify these observations through
an extensive set of human annotations as described
below.

8 Human Evaluations

Automatic metrics are insufficient to thoroughly
understand subjective quality measures like content
preservation. Therefore, we conduct an extensive
case study with human evaluations. Our analysis
is two folds, first we compare STRAP with our
models T-STAR and Iterative T-STAR on meaning
preservation. Second, we further understand the
various categories of meaning loss failures.

For both the human evaluation tasks below, the
criteria for choosing annotators were i) proficient in
English with a minimum education of Diploma. ii)
The annotators have to first qualify on two simpler
questions, else they are not allowed to continue
on the task. Each instance is annotated by three
taskers, and the final annotation is a majority vote.

8.1 Comparison on Meaning Preservation

In order to study the faithfulness of the T-STAR
models, we do a side-by-side human evaluation. In
this task, a source sentence is shown with 2 styl-
ized target sentence (one from T-STAR and another
from STRAP). We present the annotators with three
options to judge content preservation with respect
to source sentence: option on left better than one
on right, right better than left and both equal.

We extensively compare the two models across
all 12 directions for four styles. For each direction
we randomly sample 500 instances. Each instance
is rated by 3 annotators leading to a total of 18,000
ratings. We summarize our findings in Table 8.
Both T-STAR ad Iterative T-STAR significantly out-
perform STRAP in terms of being better at content
preservation (The > STRAP column in Figure 8).
Further Iterative T-STAR has 7% higher meaning
preservation compared to T-STAR. In addition to
the quantitative content preservation metrics dis-
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Direction Input Sentence STRAP Vanilla T-STAR T-STAR Iterative T-STAR
Poetry→Bible “Dear Lord! It has a

fiendish look”–
But they laughed, and
said, Oh my God!

Thou lookest fiendish,
O LORD

Behold, it beholdeth to
be fiendish, saith the
LORD.

Dear Lord, it looketh
fiendish unto thee.

Bible→Poetry And he said unto an-
other, Follow me.

And bade the other fol-
low me;

And another: “O fol-
low me!” said he,

And follow me! and I
will be be ye gone,

And thou, my love,
will follow me.

Shake.→Switch. Dead art thou, dead! did you get a uh a uh
you have a dead art

you’re dead i say you
are dead

oh you’d die you’re dead yeah

Shake.→Switch. Thus with a kiss I die. so i’m i’m dying to get
a kiss

so i die with a kiss i die with a kiss so i die with a kiss

Table 7: Example of generated stylized sentences for STRAP, Vanilla T-STAR, T-STAR and Iterative T-STAR
models for the given input sentence.

Model > STRAP < STRAP = STRAP
T-STAR 70.8% 26.4% 2.8%
Itr. T-STAR 77.5% 20.5% 2.0%

Table 8: Comparison of T-STAR and Iterative T-STAR
models against STRAP for content preservation.

Model Type of Error
None↑ Hal. Sem. Drift. Incomp.

STRAP 10.48% 39.38% 35.38% 14.75%
T-STAR 19.36% 24.46% 33.71% 22.45%
Itr. T-STAR 24.83% 22.6% 36.98% 15.58%

Table 9: Aggregate Error Analysis for error types: Hal-
lucinations, Semantic Drift and Incomplete for 6,000
samples. With Iterative T-STAR, the number of sam-
ples with no errors and less hallucinations increase sig-
nificantly.

cussed in Section 7, this analysis gathers additional
qualitative evidence towards AMRs as an effective
intermediate representation for content preserving
style transfer. The complete statistics per direction
are available in Appendix F.

8.2 Error Analysis

In the next study, we further aim to study the nature
of meaning loss errors made by style tranfer models.
We categorize these errors into three categories i)
Hallucinations: new information not present in
the source sentence is added to target ii) Semantic
Drift: the target sentence has a different meaning
to source sentence iii) Incomplete: some important
content information is missed in the target. The
taskers also have the option to select “No Error” if
the meaning is preserved in the generated target.
As in the previous experiment, we collect 18,000
ratings and the results are summarized in Table 9.

We observe that our models T-STAR and Itera-
tive T-STAR consistently beat STRAP in the “No
Error” category. Furthermore, the amount of hallu-
cinations significantly drops to 24.46% and further
22.6% with Iterative T-STAR across all styles from

39.3% for STRAP. Reduction in hallucination can
be clearly seen as a benefit of encoding critical
information in the source sentence using a seman-
tic parse representation like AMR. As a sign of
improving the AMR parsing quality, we see that
iterative T-STAR further reduce the Incomplete to
15.5%. For further details refer to Appendix F.

8.2.1 Usefulness of an interpretable
intermediate representation

With intermediate AMRs being interpretable, it is
possible to broadly understand if such errors are
emerging from either encoder or decoder module.
To intuitvely understand the reason for high number
in Incomplete and Semantic Drift errors, we qualita-
tively analyzed some instances along with the gen-
erated intermediate AMRs. We have listed down
these examples in Appendix F. We observed that
for Incomplete errors, the generated AMRs were
not encoding complete information, and thus this
error percolated from the T-STAR encoder. For the
majority of the instances, either some entities were
missing, and if the clause was separated using “:,;”,
it was not parsed in the intermediate graph. Seman-
tic Drift errors indicate shortcomings in both the
modules, for some instances the encoder is not ab-
stracting out the meaning efficiently and for others
the decoder is not able to generate sentences with
the meaning encoded in the intermediate AMR.

9 Conclusion

We explored the use of AMR graphs as an inter-
mediate representation for the TST task. We see
that the performance of the proposed method T-
STAR surpasses state of the art techniques in con-
tent preservation with comparable style accuracy.
Through qualitative analysis we show that obtain-
ing very high style accuracy scores without altering
meaning is indeed a challenging problem.
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10 Limitations

Some of the limitations for T-STAR based models
are the following. First, although our proposed
models are performing better in the joint objective
of content preservation and style transfer, but they
are not able to outperform vanilla T-STAR (overall
best performing model for CP) and STRAP (overall
best performing model for ST). This is a promising
future direction, to keep boosting the performance
on both the directions without comprising on the
other dimension. Second, we are not incorporat-
ing graph structure in our models, and thus there
could be some information loss while interpreting
and generating the AMRs. Third, based on our er-
ror analysis, although our T-STAR encoder is able
to generate better AMRs for stylized sentences as
compared to vanilla T-STAR model, we are gener-
ating significant incomplete AMRs that are missing
out on important entities and relations to preserve
meaning of source sentence. Fourth, similar to
prior research to generate synthetic dataset, initial
iteration of our model are dependant on an existing
off the shelf TST model, however the quality of
the generated AMRs improves significantly using
the described data augmentation strategy. Fifth,
our work is dependant on a robust AMR parsing
approach, which makes it challenging to adopt our
approach for other languages. However, with the
recent advancements in multilingual AMR parsing,
it will be feasible in upcoming future works.
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A Extended Related Works

A.1 TST Metrics

Table 2 summarizes different metrics that have
been used to measure content preservation and
style transfer efficacy. Yamshchikov et al. (2020)
presents a comprehensive analysis and categoriza-
tion of several such metrics with respect to human
evaluations. Tikhonov et al. (2019) also points out
some flaws in traditional evaluation techniques and
insists on using human written reformulations for
better evaluation4.

A.2 Text to AMR

Recent works (Bevilacqua et al., 2021; Cai and
Lam, 2020; Zhou et al., 2020) for text-to-AMR
task have pushed the SOTA, that makes it feasible
to automatically construct AMR given a sentence.
As a consequence, semantic-preserving NLG tasks,
such as Neural Machine Translation (Song et al.,
2019; Xu et al., 2020b), Abstractive Summariza-
tion (Takase et al., 2016), and Question Decomposi-
tion for multi-hop question answering (Deng et al.,
2022b) use AMRs as intermediate representations.
However, AMRs have not been explored for style
transfer tasks before our work.

The increase in AMRs being adopted for several
seq2seq tasks is due to the boost in the quality of
AMR parsers. Earlier works, relied on statistical
approaches (Peng et al., 2017; Flanigan et al., 2014,
2016) to generate AMRs for a given piece of text.
With the emergence of deep learning, various AMR
parsers are being proposed, which can be divided
into following categories: i) sequence-to-sequence
based AMR-parsers (Xu et al., 2020a), ii) sequence-
to-graph based AMR parsers (Zhang et al., 2019),
where the graph is incrementally built by spanning
one node at a time. More recently, several works
have adopted pretrained models for AMR parsers,
and have observed a boost in performance. Bai et al.
(2022) uses BART model and posit the AMR pars-
ing task as a seq2seq task, and generates a traversal
of the AMR parser as the output. Bai et al. (2022)
incorporates a pretraining strategy to better encode
graph information in the BART architecture. Xu
et al. (2020a) uses sentence encoding generated
from BERT model. In this work, we adopt the pre-
trained technique based AMR parser, to generate
high quality AMRs for the given stylized sentences.

4Due to the difficulty of our task, we instead restrict to
human evaluations instead of obtaining human gold-standard
benchmarks.

Although off-the-shelf AMR parsers work well
for some problems (Fan and Gardent, 2020), they
often need to be modified to be useful in the down-
stream tasks. For instance, Deng et al. (2022b)
proposed graph segmentation strategy to perform
question decomposition on a multi-hop query.

Xia et al. (2021) and Du and Flanigan (2021)
illustrated that using silver data augmentation can
help improve in the task of AMR parsing. In this
work, we also illustrate the benefit of using silver
data towards improving the style agnosticity of
AMR graphs as an intermediate representation.

A.3 AMR to Text
Similar to text-to-AMR models, AMR-to-text
frameworks can also be categorised into two types
- i ) sequence-to-sequence generation frameworks
(), ii) graph-encoder based frameworks (Song et al.,
2018; Wang et al., 2021, 2020). Bai et al. (2020)
propose a decoder that back-predicts projected
AMR graphs to better preserve the input meaning
than standard decoders. Bai et al. (2022) argues that
PLMs are pretrained on textual data, making is sub-
optimal for modeling structural knowledge, and
hence propose self-supervised graph-based training
objectives to improve the quality of AMR-to-text
generation.

B Implementation Details

Offensive language We used the “List of Dirty,
Naughty, Obscene or Otherwise Bad Words”5 to
validate that the source and the generated target
text do not contain any offensive text.

Model Architecture: We use a standard
t5-base encoder-decoder model as described in
(2020). The pre-trained HuggingFace6 T5 trans-
former is used for both text-to-AMR and AMR-to-
text parts of the proposed architecture. The model
is pre-trained on the Colossal Clean Crawled Cor-
pus (C4) 7 comprising of ∼750 GBs worth of text
articles. The model comprises of 220 billion pa-
rameters, and is pre-trained for 219 steps before
fine-tuning. For pre-training, AdaFactor optimizer
(Shazeer and Stern, 2018) is used with “inverse
square root” learning rate schedule.

AMR Graph Construction: We use the
SPRING model (Bevilacqua et al., 2021) to gen-
erate AMR graphs from source style text. We use

5https://github.com/LDNOOBW/List-of-Dirty-Naughty-
Obscene-and-Otherwise-Bad-Words

6https://github.com/huggingface/transformers
7https://www.tensorflow.org/datasets/catalog/c4
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amrlib8 package to generate the AMR graphs.
This implementation uses T5-base (Raffel et al.,
2020) as its underlying model, as opposed to
the BART model (Lewis et al., 2019) in the
SPRING architecture. It is trained on AMR 3.0
(LDC2020T02) dataset (Knight et al., 2021) that
consists of 59K manually created sentence-AMR
pairs. The model is trained for 8 epochs using a
learning rate of 10−4. The source and target se-
quence lengths are restricted to 100 and 512 tokens
respectively. Note that t5-based SPRING model
achieves an SMATCH score of 83.5, which guaran-
tees the quality of obtained AMR representations
zi.

AMR-Based Style Transfer: We use the
T5wtense (T5 with tense) architecture from the
amrlib package. The T5wtense architecture
encodes part-of-speech (POS) tags to the concepts
in the AMR graph, which helps the generation
model to predict the tense of the output sentence
since AMR graphs do not retain any tense infor-
mation from their corresponding sentence. This
model outperforms the standard T5-based model by
10 BLEU points on the AMR 3.0 (LDC2020T02)
dataset (Knight et al., 2021). To keep the training
steps comparable for the subsets of the CDS dataset
(Krishna et al., 2020), we train this t5-base
model for 20 epochs for the Bible, Romantic Po-
etry, and Shakespeare datasets, and 5 epochs for
the Switchboard dataset. The model was trained
for 20 epochs for the Shakespeare Author Imitation
Dataset (Xu et al., 2012) as well. We used a learn-
ing rate of 10−4 for both datasets, and restricted
source and target sequence lengths to 512 and 90
throughout, respectively. Everything else was kept
same as the amrlib implementation to keep the
results consistent.

STRAP baseline: We train the model keeping
the same hyperparameter configuration as reported
in Krishna et al. (2020). We train each style-
specific decoder for 3 epochs with learning rate
of 5 × 10−5 with Adam optimizer (Kingma and
Ba, 2014). During inference we set the p-value
for nucleus sampling (Holtzman et al., 2019) to
0.7 to have an appropriate balance between content
preservation and style accuracy scores.

Style classifiers: Similar to Krishna et al.
(2020), we fine-tune a RoBERTa-large model
(Liu et al., 2019) using the official implementa-

8https://github.com/bjascob/amrlib

tion in the fairseq package9 to train the style
classifiers mentioned in Table 3. For all classifier
variants, learning rate of 10−5 and a mini-batch
size of 32 was used. The models were trained for
10 epochs using Adam optimizer (Kingma and Ba,
2014). We also masked out named entities, nouns
and numbers from the input before training the
classifier. We used spacy package10 to obtain
the named entities and POS tags. To obtain the
named-entities and POS for AMR graphs, informa-
tion extracted from original sentences was used.

Train-Validation-Test splits: The data splits
were kept the same as the baseline model, STRAP
(Krishna et al., 2020) and can be found in Table 10.

Dataset Train split Validation split Test Split

CDS

Bible 31,404 1,714 1,714
Switchboard 145,823 1,487 1,488
Poetry 26,880 1,464 1,470
Shakespeare 24,852 1,313 1,293

SAID
Original 18,395 1,128 1,462
Modern 18,395 1,218 1,462

Table 10: Size of train, validation and test sets for CDS
dataset (Krishna et al., 2020) and Shakespeare Author
Imitation Dataset (SAID) (Xu et al., 2012).

Computational time and device setup: All ex-
periments were done on a 16 GB NVIDIA V100
GPU system with 120 GB n1-standard-32 Intel
Broadwell CPU. It took ∼16 hrs to train the AMR-
to-Text models for Shakespeare Author Imitation
dataset (Xu et al., 2012) and ∼25 hrs for the CDS
dataset.

Evaluation Metrics: We used the gensim11

package to compute the Word Mover Distance
(WMD) (Kusner et al., 2015), nltk12 package to
compute the BLEU scores (Papineni et al., 2002),
smatch package13 to compute the SMATCH
score (Cai and Knight, 2013) and implementation
by Krishna et al. (2020)14 for the cosine similarity
using SIM embeddings (Wieting et al., 2019a).

License of the packages used: The follow-
ing packages use the MIT License15 - amrlib,
spacy, fairseq, smatch, and STRAP. The
following packages use the Apache License 2.016

- nltk, and huggingface’s transformer.

9https://github.com/pytorch/fairseq
10https://spacy.io/
11https://radimrehurek.com/gensim/
12https://www.nltk.org/
13https://github.com/snowblink14/smatch
14https://github.com/martiansideofthemoon/style-transfer-

paraphrase
15https://opensource.org/licenses/MIT
16https://www.apache.org/licenses/LICENSE-2.0

8819



The following packages use the GNU LGPL license
3.017 - gensim.

C T-STAR-Encoder Ablation Study

The performance of our T-STAR-Encoder heavily
depends on the quality of synthetic dataset gener-
ated while stylizing the sentences present in AMR
3.0 dataset. Therefore, we conducted thorough em-
pirical analysis to identify a filtering strategy to
boost the performance of the encoder.

To obtain the initial set of stylized sentences, we
use the state-of-the-art model available to transform
generic English sentences to relevant styles {Poetry,
Shakespeare, Bible, Switchboard}, i.e., seq2seq
inverse paraphrase module (Krishna et al., 2020).

We then fine-tune our T-STAR-Encoder on syn-
thetic datasets obtained from different filtering
strategies, and compare the performan on test split
of AMR 3.0, to ensure that the quality of the gener-
ated AMRs do not drop significantly. We present
our findings in Table 11. We observe that using the
whole set of generated samples, leads to a signifi-
cant drop in the performance (row-1).

Therefore, we filter out the augmented stylized
sentences with SIM similarity score (Wieting et al.,
2019a) below the threshold δ. This filtering strategy
was able to significantly improve over the T-STAR-
Encoder performance, giving competitive results to
the non-augmented Vanilla T-STAR-Encoder. We
select the best performing δ based on the perfor-
mance on the test-split of AMR 3.0. Note that we
have used the best performing threshold, δ = 0.7

Datasets Precition Recall F-Score
Vanilla T-STAR Encoder 0.829 0.794 0.811
T-STAR-Encoder 0.671 0.390 0.493
T-STAR Encoder-Flt (δ=0.5) 0.830 0.790 0.810
T-STAR Encoder-Flt (δ=0.6) 0.807 0.753 0.779
T-STAR Encoder-Flt (δ=0.7) 0.836 0.798 0.816
T-STAR Encoder-Flt (δ=0.8) 0.828 0.793 0.810
Iterative T-STAR-Encoder(δ=0.7) 0.829 0.794 0.811

Table 11: SMATCH scores on various versions of T-
STAR-Encoder on AMR 3.0 dataset’s test split.

D Unsupervised Evaluation of AMR
parsing

Since we use AMR graphs as the intermediate rep-
resentation for the TST task, it is important to vali-
date the generation quality of generated AMRs in
terms of content preservation with respect to the
input sentence. However, there does not exist an

17https://www.gnu.org/licenses/lgpl-3.0.en.html

unsupervised metric to evaluate content overlap be-
tween an AMR graph and a sentence. Hence we
propose to use a slight variation of the Word Mover
Distance (Kusner et al., 2015) for this purpose. We
choose WMD over other content preservation met-
rics for the following reasons -

• Yamshchikov et al. (2019a) illustrate the effi-
cacy of WMD to evaluate text style transfer
over other metrics based on correlation with
human evaluations. Which means that it is
more robust to the domain difference in the
input and the output sentence, making it an
ideal candidate for text-AMR similarity mea-
surement.

• Syntactic metrics like BLEU would not be
able to compute the content overlap between
an AMR graph and a sentence because word
representation in an AMR graph discards
noun forms and tense information, and some
verb tokens are mapped to a different Prop-
Bank verb. These modifications along with
the disparity in sequential-graphical represen-
tation makes syntactic metrics infeasible for
the task.

• Semantic representations like SIM are fragile
to the input sequence order, and affected by
non-content bearing words as well. However,
WMD adopts on a bag-of-words paradigm,
making it more suitable for the task.

We propose the following two variants of WMD
-

• WMD Overall - In this variant, we aimed
to keep the content bearing tokens from the
sentence and AMR graphs. For sentence, we
removed the stopwords (after doing a detailed
corruption study on sentences, refer to Ta-
ble 13), while for AMR Graphs we removed
AMR notation specific tokens (like “:op?”,
“ARG?”), punctuations (like “(”, ‘” ’), as-
signed variables and propbank code for verbs
(eg. changing “s / say-01” to “say”).

• WMD Verb Overall - In this variant we
specifically want to compute the similarity
of verbs in the parsed AMR graphs and input
sentence. For this, use nltk POS tagging
tool to extract out verbs from the input sen-
tence, and directly extract out propbank based
verbs from the AMR graph.

8820



Refer to Table 12 for an example of the preprocess-
ing strategy adopted.

Input Sentence -
Malaysian vice-prime minister Anwar ended a visit to China this
afternoon , and left Shanghai for Tokyo.
Extracted content from Input Sentence -
malaysian vice-prime minister anwar ended visit china afternoon ,
left shanghai tokyo.
Extracted Verbs from Input Sentence -
ended left
Input AMR-
(a2 / and :op1 (e2 / end-01 :ARG0 (p / person
:name (n / name :op1 ”Anwar”) :ARG0-of (h / have-org-role- 91
:ARG1 (c7 / country :name (n3 / name
:op1 ”Malaysia”)) :ARG2 (m / minister
:mod (p2 / prime) :mod (v /
vice)))) :ARG1 (v2 / visit-01 :ARG0 p
:ARG1 (c6 / country :name (n2 / name :op1
”China”))) :time (d / date-entity :dayperiod (a3 / afternoon)
:mod (t / today))) :op2 (l / leave-11
:ARG0 p :ARG1 (c8 / city :name (n4 / name
:op1 ”Shanghai”)) :ARG2 (c9 / city
:name (n5 / name :op1 ”Tokyo”))))
Extracted sequence-
and end person name Anwar have-org-role country name
Malaysia minister prime vice visit country name China
afternoon today leave city name Shanghai city name Tokyo
Corresponding Verb extraction (AMR) -
end visit leave

Table 12: Illustrative example of the preprocessing
done in proposed text-AMR unsupervised WMD Over-
all and WMD Verb Overall metrics.

Model WMD Mean / Std dev. SIM Mean / Std dev.
Original 0.0 / 0.0 1.0 / 0.0
Stop Words 0.1049 / 0.0761 0.9373 / 0.0734
Lowercase 0.0754 / 0.1319 0.9946 / 0.0321
Stop Words + Lowercase 0.1663 / 0.1347 0.9373 / 0.0734
POS 0.1081 / 0.0731 0.8680 / 0.1929
Stop Words + Lowercase + POS 0.1966 / 0.1438 0.8492 / 0.1957
Synonym Replacement 0.1864 / 0.1266 0.6946 / 0.1832
Synonym + Stop Words 0.2228 / 0.1335 0.6545 / 0.1979
Synonym + Lowercase 0.2133 / 0.1511 0.6946 / 0.1832
Synonym + Stop Words + Lowercase 0.2476 / 0.1534 0.6545 / 0.1979
Synonym + POS 0.2320 / 0.1306 0.5948 / 0.2209
Synonym + Stop Words + Lowercase + POS 0.2686 / 0.1525 0.5817 / 0.2243

Table 13: WMD scores on various corruption strategies
against original sentence on test set of AMR 3.0 dataset.
POS refers to removing tags other than nouns, verbs
and adjectives from the sentence.

We also study the effect on text-AMR WMD
score juxtaposed to text-text WMD scores on vary-
ing degree of similarity between the compared se-
quences. For this we use the diverse paraphraser
trained by Krishna et al. (2020) on the test set of
AMR 3.0 dataset, and generate paraphrases with
varying nucleus sampling p-values (Holtzman et al.,
2019) from 0.0 to 1.0 with step size of 0.1. We no-
tice that the WMD scores for text-text WMD (blue
line in Fig. 5) and text-AMR WMD (red line in
Fig. 5) are similar to each other throughout.

We present the WMD Overall scores and WMD
Verb Overall scores for the CDS dataset in Table
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Figure 5: WMD Scores on AMR 3.0 dataset for
sentence-paraphrase pairs (blue) and amr-paraphrase
pairs (red). The shaded region denotes standard devi-
ations from the mean.

Models Styles WMD Overall Verb WMD Overall

Vanilla T-STAR Encoder

Bible 0.243 0.409
Poetry 0.272 0.532
Shakespeare 0.322 0.484
Switchboard 0.292 0.467

T-STAR Encoder (Unfiltered)

Bible 0.339 0.511
Poetry 0.357 0.599
Shakespeare 0.403 0.552
Switchboard 0.341 0.537

T-STAR Encoder Flt (δ=0.7)

Bible 0.290 0.461
Poetry 0.322 0.568
Shakespeare 0.365 0.522
Switchboard 0.323 0.512

Iterative T-STAR Encoder Flt (δ=0.7)

Bible 0.281 0.439
Poetry 0.300 0.550
Shakespeare 0.344 0.500
Switchboard 0.301 0.491

Table 14: WMD Overall and WMD Verb Overall
scores for evaluation of unsupervised content preserva-
tion of different models across different styles in the
CDS dataset (Krishna et al., 2020).

14; validating the content retention in parsed AMR
graphs for different strategies. We notice that It-
erative T-STAR Encoder outperforms the T-STAR
Encoder-Flt (δ=0.7) and T-STAR Encoder (unfil-
tered) baselines in both WMD overall and Verb
WMD overall. Even though comparable, it is still
however lesser than the Vanilla T-STAR Encoder
numbers. However, we believe we can credit that to
more style information retention in Vanilla T-STAR
Encoder (refer to Section 6.2), leading to poorer
performance in downstream text style transfer task.

E Data Augmentation for T-STAR
Decoder

We hypothesize that the T-STAR decoder perfor-
mances will improve if the underlying model, is bet-
ter at generating text given an AMR graph. To this
end, we create synthetic dataset using sentences
from Wikipedia corpus. We sample 10 million
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Dataset BLEU Score
GoldAMR (Baseline) 44.36
Wikipedia 1M (Unfiltered) 48.14
Wikipedia 120K- Filter(<0.15) 44.56
Wikipedia 1M -Filter (<0.15) 48.58
Wikipedia 2.3M - Filter (<0.15) 49.14

Table 15: Fine-tuning model for AMR-To-Text gen-
eration task using data augmentation technique using
Wikipedia Sentences

sentences from it and generate the corresponding
AMRs using our vanilla T-STAR model. We fur-
ther filter out the samples for which WMD Overall,
mentioned in Appendix D and keep samples with
a WMD score below 0.15, which results in 2.3M
instances.

We first fine-tune the T5-Base model for AMR to
Text task on this filter dataset. We obtain a BLEU
score of 49.13 on Gold AMR test set. Note that
this performance is very close to the state-of-the
art result 49.2 BLEU for this task (Bai et al., 2022).
Table 15 lists down the different filtering strategy
and dataset sizes we experimented to identify the
best strategy to improve the performance.

We then compare the performance of the best
performing model on the style transfer task again
STRAP. We observe that this model is not beat-
ing the STRAP performance across various style
directions. Therefore, we conclude that a vanilla
fine-tuning of model for AMR to text task, does
not necessarily boost the performance in the down-
stream tasks.

F Error Analysis

F.1 Comparison on Meaning Preservation
We present the results across all the 12 directions
for content preservation comparitive analysis in Ta-
ble 16 and 17 respectively. We can observe that
for every direction our models are consistently bet-
ter in content preservation with respect to STRAP
model.

F.2 Error Analysis per direction
In this section, we present the error analysis for
each direction in Table 18. We observe that T-
STAR and Iterative T-STAR models are consis-
tently better on No-Error and Hallucinations across
all the directions. Moreover, we observe that for 7
out of 12 direction, Iterative T-STAR model is bet-
ter than STRAP for Incompleteness error. Note that
our T-STAR model was under-performing, however
another iteration of model improvements increases

Direction TSTAR >STRAP STRAP <TSTAR TSTAR=STRAP
bible→ poetry 60.8% 37.6% 1.6%
bible→ shak. 66.6% 32.2% 1.2%
bible→switch. 67% 30.4% 2.6%
poetry→bible 68.6% 29.4% 2%
poetry→ shak. 78.6% 19.6% 1.8%
poetry→switch. 69.4% 27.4% 3.2%
shak.→bible 73% 24.8% 2.2%
shak.→poetry 66.2% 27.4% 3.2%
shak.→switch 73.6% 24% 2.4%
switch.→bible 73% 24% 3%
switch.→poetry 73.6% 23.4% 3%
switch.→shak. 79.4% 18.6% 4%

Table 16: Comparitive analysis of TSTAR and STRAP
model to understand which model generates more
meaning preserving outputs

Direction TSTAR=STRAP TSTAR < STRAP TSTAR > STRAP
bible→switch. 1.8 31.6 66.6
poetry→switch. 2 15.6 82.4
shak.→switch. 4 20.6 75.4
switch.→bible 1.4 19.4 79.2
switch.→poetry 2.2 16.2 81.6
switch.→shak. 0.8 13 86.2
bible→poetry 1.8 27.8 70.4
bible→shak. 0.8 28.8 70.4
poetry→bible 2 20.2 77.8
poetry→shak. 2.8 12.2 85
shak.→bible 2.4 19.6 78

Table 17: Comparison on content preservation using
human evaluations on Iterative T-STAR and STRAP
across all 12 direction

that number significantly. Note that all the models
are giving high error in Semantic Drift, and im-
proving the model for this type of errors can be
explored in future works.

F.3 Qualitative Analysis for Incompleteness
and Semantic Drift

As we are using interpretable intermediate repre-
sentations, it is easily possible to understand the
intuition behind these errors, and broadly under-
stand which modules (encoder or decoder) needs
to be improved further. Therefore, we study few
instances and analyze the generated Intermediate
AMRs to understand the reason for high number
in Semantic Drift and Incomplete errors. We list
down some intstances in Table 20 and Table 19

Across the various instances that we analyzed,
we observe that the generated AMRs were not en-
coding the complete information themselves. For
instance, either missing some entities (example 1,
4, 5 and 6 in Table 19), if the clauses were sepa-
rated using ”:”, ”;”, only one of those were parsed
in the intermediate graph (example 2 and 3 in Ta-
ble 19. For semantic drift, we observed that the
errors was arising due to the shortcomings in both
the modules, i.e., it was leading to meaning change
if the Encoder didn’t generate an efficient AMR
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STRAP TSTAR Itr-TSTAR STRAP TSTAR Itr-TSTAR STRAP TSTAR Itr-TSTAR STRAP TSTAR Itr-TSTARDirection No Error ↑ Hallucination ↓ Incomplete ↓ Semantic Drift
bible→poetry 42 43 62 98 68 70 239 270 228 121 119 140
bible→shakespeare 45 72 93 224 76 87 55 190 149 176 162 171
bible→switchboard 54 98 106 203 65 87 59 189 132 184 148 175
poetry→bible 46 85 110 257 232 175 22 27 15 175 156 200
poetry→shakespeare 43 134 166 224 89 79 50 53 47 183 224 208
poetry→switchboard 80 142 160 171 63 39 63 82 65 186 213 236
shakespeare→bible 44 69 120 253 203 186 19 43 14 184 185 180
shakespeare→poetry 44 55 85 187 190 161 77 89 69 192 166 187
shakespeare→switchboard 70 132 161 151 69 62 42 98 47 237 201 230
switchboard→bible 50 85 129 241 213 221 42 54 14 167 148 135
switchboard→poetry 49 98 114 165 113 97 140 165 123 146 124 166
switchboard→shakespeare 62 149 186 189 87 92 77 87 31 172 177 191

Table 18: Type of Error Analysis across three models STRAP, TSTAR, Iterative-TSTAR across all the four styles.

graph, or if the decoder was not able to interpret
AMR correctly. We have listed the modules that
could be the potential reason for the error in the
last column in Table 20.

It is important to note that, the source of errors
is very easy to identify now because we are using
robust, interpretable and symbolic representation
as pivot to transfer from style A to style B. We
have also provided a case study of performance of
various baselines and proposed model in Table 7
on the CDS dataset.
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S.No Input Stylized Sentence Output Stylized Sentence TSTAR-Encoder AMR

1. And she answered and said unto him,
Yes, Lord: yet the dogs under the table
eat of the children’s crumbs.

Yet the dogs under the table Eat chil-
dren’s crumbs.

(e / eat-01
:ARG0 (d / dog

:location (u / under
:op1 (t / table)))

:ARG1 (c / crumb
:poss (c2 / child))

:mod (s / still))

2. And the priest said unto them, Go in
peace: before the LORD is your way
wherein ye go.

Before the Lord go in peace on high;

(g / go-02
:mode imperative
:ARG0 (y / you)
:manner (p / peace)
:time (b / before

:op1 (p2 / person
:name (n / name

:op1 ”Lord”))))

3. And there were made on them, on the
doors of the temple, cherubims and palm
trees, like as were made upon the walls;
and there were thick planks upon the
face of the porch without.

The cherubims and palm-trees are at the
temple doors, And the thick planks on
the porch face.

(a / and
:op1 (b / be-located-at-91

:ARG1 (a2 / and
:op1 (c / cherubim)
:op2 (t / tree

:mod (p / palm)))
:ARG2 (d / door

:part-of (t2 / temple)))
:op2 (b2 / be-located-at-91

:ARG1 (p2 / plank
:ARG1-of (t3 / thick-03))

:ARG2 (f / face
:part-of (p3 / porch))))

4. and uh they’ve had catalytic con- you
know catalytic converters on those on
uh i think they’re required in California
and Oregon and and Washington

In Caledonia, Oregon, and Washington
catalytic conversion required.

(r / require-01
:ARG1 (t / thing

:ARG0-of (c / convert-01
:mod (c2 / catalytic)))

:location (a / and
:op1 (s / state

:name (n / name
:op1 ”California”))

:op2 (s2 / state
:name (n2 / name

:op1 ”Oregon”))
:op3 (s3 / state

:name (n3 / name
:op1 ”Washington”))))

5. That crowns a lofty clift, which proudly
towers

crowns the lofty towers

(c / crown-01
:ARG0 (ii / it)
:ARG1 (t / tower

:mod (l / lofty)))

6. And the rough goat is the king of Grecia:
and the great horn that is between his
eyes is the first king.

The rough goat o’er the king of Greece

(h / have-org-role-91
:ARG0 (g / goat

:ARG1-of (r / rough-04))
:ARG1 (c / country

:name (n / name
:op1 ”Greece”))

:ARG2 (k / king))

Table 19: Samples from Human Evaluations where the T-STAR output was marked incomplete. We observe that
entities and relations missing in the sentence, were not present in their corresponding intermediate AMRs.
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Input Stylized Sentence Output Stylized Sentence Input generated AMR Potential Error

Ay, mine own fortune in my misery. my fortune is my misery

(m / misery
:poss (ii / i)
:domain (f / fortune

:poss ii))

T-STAR Decoder

yeah it makes you wonder um had the
jury been a different group of people

It maketh you to wonder at the diversi-
ties of the jury.

(m / make-02
:ARG0 (ii / it)
:ARG1 (w / wonder-01

:ARG0 (y / you)
:ARG1 (d / differ-02

:ARG1 (j / jury))))

T-STAR Decoder

Tis not Maria’s whispering call; It is not whispered by Maria.

(w / whisper-01
:polarity -
:ARG0 (p / person

:name (n / name
:op1 ”Maria”))

:ARG1 (ii / it))

T-STAR Encoder

Yea,” quoth he, “Dost thou fall upon thy
face?

Quoth he, ”Dost thou fall thy face,

(q / quote-01
:ARG1 (f / fall-01

:ARG1 (y / you
:part (f2 / face))

:ARG4 f2
:polarity (a / amr-unknown))

:ARG2 (h / he))

T-STAR Encoder

Around my grave they’ll wither. They will wither about my grave.

(w / wither-01
:ARG1 (t / they)
:location (a / around

:op1 (g / grave
:poss (ii / i))))

T-STAR Decoder

Justice is sworn ’gainst tears, and hers
would crave

uh Justice has sworn to cried and cried

(s / swear-01
:ARG0 (p / person

:name (n / name
:op1 ”Justice”))

:ARG1 (a / and
:op1 (c / cry-02

:ARG0 p)
:op2 (c2 / cry-02

:ARG0 p)))

T-STAR Encoder

Table 20: Various Instances that had Semantic Drift as a type of error. We manually analyze the same, and
hypothesize that the potential error in the listed module.
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