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Abstract
Reasoning about causal and temporal event re-
lations in videos is a new destination of Video
Question Answering (VideoQA). The major
stumbling block to achieve this purpose is
the semantic gap between language and video
since they are at different levels of abstrac-
tion. Existing efforts mainly focus on design-
ing sophisticated architectures while utilizing
frame- or object-level visual representations.
In this paper, we reconsider the multi-modal
alignment in VideoQA from feature and sam-
ple perspectives to achieve better performance.
From the view of feature, we break down the
video into trajectories and first leverage trajec-
tory feature in VideoQA to enhance the align-
ment between two modalities. Moreover, we
adopt a heterogeneous graph architecture and
design a hierarchical framework to align both
trajectory-level and frame-level visual feature
with language feature. In addition, we found
that VideoQA models are largely dependent
on language priors and always neglect visual-
language interactions. Thus, two effective yet
portable training augmentation strategies are
designed to strengthen the cross-modal corre-
spondence ability of our model from the view
of sample. Extensive results show that our
method outperforms all state-of-the-art mod-
els on the challenging NExT-QA benchmark.

1 Introduction

Given a video and a question about its content,
Video Question Answering (VideoQA) aims to an-
swer the question through multi-modal reasoning.
Since it can benefit numerous multi-modal appli-
cations such as video retrieval (Zhang et al., 2021;
Xiao et al., 2021c,b) and interaction with robot vi-
sion, VideoQA has received increasing attention
in recent years. Compared to Image Question An-
swering (ImageQA) (Antol et al., 2015), VideoQA
requires more complex reasoning. A naive exten-
sion of ImageQA methods (Chen et al., 2020, 2022)
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…objects

trajectories

Q: Why did the boy in orange hold a ball on his head?

A: want to throw the ball.

Figure 1: An illustration of VideoQA. Existing
VideoQA models utilize objects as finer clues. We fur-
ther track the objects with same classes across time and
first leverage video trajectory for better alignment.

may not apply to the problem of VideoQA due to
the extra information such as temporal object inter-
actions.

As computing systems are more frequently inter-
vening to improve people’s work and daily lives,
it is critical for machines to correctly comprehend
the complex relationships between events such as
causal and temporal relations. However, conven-
tional VideoQA benchmarks (Xu et al., 2017; Yu
et al., 2019) are constituted by descriptive ques-
tions, e.g., asking the number, color or single ac-
tion of the video elements. Recently, a benchmark
called NExT-QA (Xiao et al., 2021a) was elabo-
rately designed to challenge VideoQA models to
reason about causal and temporal actions and under-
stand the rich object interactions in daily activities.
Instead of a fixed answer set, NExT-QA requires
the models to pick the correct answer out of five
candidates. Since this multi-choice setting allows
concatenating question-answer pair to form a holis-
tic language query and aligning it with videos, it
can be easily generalized to any other multi-modal
tasks besides question answering.
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Multi-modal alignment, namely finding the cor-
respondences between two modalities, is the foun-
dation of multi-modal tasks. One of the major
challenges to align two modalities is to fill in the
semantic gap between language and video due to
different levels of abstraction. Intuitively, the key
to better alignment is to identify the direct rela-
tions between sub-elements (e.g., words, frames,
etc.) of instances from two different modalities.
As a highly abstract vehicle of expression, almost
every word in a natural language sentence can ex-
press a complete meaning, e.g., an entity, an ac-
tion or a time. In contrast, a video also contains
a number of visual concepts but they are naturally
indivisible unlike the word. Primitive VideoQA
models (Li et al., 2019; Jang et al., 2017) utilize
frame-level appearance feature as video representa-
tion and align it with language feature. These meth-
ods simply regard the video as a series of frames.
To better capture dynamic change in videos, oth-
ers (Gao et al., 2019; Fan et al., 2019; Jiang and
Han, 2020) incorporate frame-level motion feature
together with appearance feature. Recently, ob-
ject feature as more granular information has been
leveraged to strengthen the semantic correspon-
dence ability (Huang et al., 2020; Le et al., 2020;
Xiao et al., 2022). Although bringing in object in-
formation results in a better ability to reason about
complex interactions in videos, there are still two
unsolved problems: (1) Static object information is
hard to model temporal-related relations. (2) Same
object may take different actions during time and
different objects with the same label can cause a
mismatch. As shown in Figure 1, there are two
boys and two balls in the video and both boys hold
a ball. In this case, VideoQA models that only use
object-level information may end up with misalign-
ment, which leads to a wrong answer. Therefore,
tracking objects across time is of vital importance.

In this paper, we explore the multi-modal align-
ment in VideoQA from feature and sample perspec-
tives to better reason over videos’ causal/temporal
actions. From feature perspective, we decouple
trajectories as salient entities from video and first
leverage video trajectory feature in VideoQA. In
order to model the rich interactions between tra-
jectories, we propose a trajectory encoder using
multi-head self-attention with temporal and seman-
tic embeddings. Video trajectories are the essential
ingredient for video relation detection task (Qian
et al., 2019; Xie et al., 2020), which require track-

ing the same object from different frames along the
temporal axis. Specifically, we first apply a pre-
trained object detector to obtain bounding boxes.
Then, an association algorithm named improved
sequence NMS (Xie et al., 2020) is applied to ob-
tain video trajectories that contain spatial-temporal
information of the visual elements. We further
align trajectory-level and frame-level feature with
language feature by a cycle-attention module and
adopt a heterogeneous graph architecture for im-
plicit relation reasoning.

In addition, from sample perspective, we design
two training strategies in order to enhance multi-
modal alignment in feature space. To be specific,
we first increase negative candidate answers when
computing the matching score. This strategy forces
the model to focus on the discriminative regions
within a question-answer pair. We then add nega-
tive question-answer pairs that are attached to other
videos. By doing so, the video and its affiliated
language are drawn closer in feature space and the
mismatched pairs are pulled away. Moreover, we
found that these strategies can also solve the prob-
lem that VideoQA models are largely dependent
on language priors and neglect visual-language in-
teractions. Together with the proposed model, our
method achieved state-of-the-art performance.

In summary, the main contributions of our work
are listed as follows: (1) We first leverage video
trajectory features in VideoQA to capture richer
causal and temporal relations in the video. (2)
We design two training strategies to strengthen the
cross-modal correspondence ability of our model
and further boost the performance. (3) We con-
ducted extensive experiments on NExT-QA and the
results demonstrate the effectiveness of our model.

2 RELATED WORK

2.1 Video Question Answering

We roughly summarise three kinds of VideoQA
methods according to their utilized techniques,
namely attention-based, memory-based, and graph-
based models. Attention mechanism (Jang et al.,
2017; Ye et al., 2017; Gao et al., 2019; Li et al.,
2019; Jiang et al., 2020) is widely used in VideoQA.
Jang et al. (2017) propose a dual-layer LSTM with
spatial and temporal attention. Li et al. (2019)
use the self-attention mechanism to encode each
modality and utilize co-attention mechanism for
alignment. Jiang et al. (2020) divide the semantic
features generated from question into the spatial
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Figure 2: The overview of our model architecture for VideoQA. Firstly, the frame-level features, trajectory-level
features and text representations are extracted. Then, the visual and language features are aligned in pairs by a
cycle-attention module. At last, heterogeneous graphs are constructed and applied for reasoning.

part and the temporal part which guide the spatial
and temporal attention of video, respectively. Mem-
ory based approaches (Xu et al., 2017; Gao et al.,
2018; Fan et al., 2019) encode the input sources
multiple cycles and use attention mechanism allow-
ing the model to focus on different contents in each
cycle. Xu et al. (2017) gradually refine the atten-
tion over the appearance and motion features of the
video using the question as guidance. Gao et al.
(2018) propose a co-memory attention module to
extract useful cues from both appearance and mo-
tion memories to generate attention for motion and
appearance separately. Fan et al. (2019) propose a
read-write memory network that jointly encode the
movie appearance and caption content.

Graph based models (Hu et al., 2019; Huang
et al., 2020; Park et al., 2021; Jiang and Han, 2020;
Xiao et al., 2022) advance the field by exploit-
ing the ability of relation reasoning. Jiang and
Han (2020) propose a heterogeneous graph align-
ment network to align and interact the inter- and
intra-modality. Park et al. (2021) perform relation
reasoning between appearance and motion infor-
mation of the video with compositional semantics
of the question. Although these methods achieve
impressive performance using the graph structure,
they only utilize frame-level video feature for align-
ment and thus suffer from a lack of fine-grained
interaction. Some other methods leverage object
information to enhance the fine-grained alignment.
Hu et al. (2019) propose a graph network where
each node represents an object, and conduct iter-
ative message passing conditioned on the textual

input. Huang et al. (2020) propose to represent
video as a location aware graph and conduct graph
convolution. Xiao et al. (2022) model video as a
conditional hierarchical graph to align the video
facts and textual cues on different levels. Instead of
designing complicated models, we solve VideoQA
task by leveraging a new trajectory feature and fur-
ther boost performance from sample perspective.

2.2 Video Trajectory Detection

Video trajectory detection, as an essential compo-
nent of video relation detection task (Qian et al.,
2019; Xie et al., 2020; Gao et al., 2022, 2021),
has attracted more and more attention. Detection
of objects in static image has gained a great im-
provement in last few years. However, video tra-
jectory detection is still a tough problem since it
needs to tracking same object in different frames
of a video clip. A popular scheme is tracking-by-
detection, namely applying detection algorithm to
each video frame and the detections are associated
across frames to form trajectories. Seq-NMS (Han
et al., 2016) takes detections from a state-of-the-
art object detection method and associates over
time by finding the highest scoring path. Improved
Seq-NMS (Xie et al., 2020) improves seq-NMS
by introducing a new linking mechanism to solve
the missing connection problem caused by violent
object movement. In this paper, we detect static
objects using a pre-trained detector and utilize im-
proved seq-NMS as trajectory tracking method to
generate trajectories.
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3 Approach

Formally, suppose we have a video V = {vt}Tt=1

which contains T frames and vt denotes the t-th
frame. Meanwhile, we have a natural language
question Q = {wl}Ll=1, where wl denotes the l-th
word in the sentence and L represents the question
length. VideoQA aims to predict the correct answer
Ap to the question according to the relevant video
content. In the multi-choice setting, the goal is
to choose the correct answer Ap from n candidate
answer set SA = {A1, A2, ..., An}.

In this section, we sequentially introduce each
component of our proposed model. The video and
language encoding procedures are presented in Sec-
tion 3.1. The alignment and reasoning modules are
introduced in Section 3.2. The answer predictor
is introduced in Section 3.3. In Section 3.4, we
introduce two sample augmentation strategies.

3.1 Feature Encoding

3.1.1 Video Representations
We utilize both frame-level and trajectory-level
video features for video representation since they
naturally share complementary information.
Frame-level Features. Following previous works,
we uniformly sample a fixed number N of clips for
each video. We use a 2D ConvNet to extract video
appearance feature Fa = {fa

i }Ni=1, where fa
i ∈ Rda

and use a 3D ConvNet to extract video motion
feature Fm = {fm

i }Ni=1, where fm
i ∈ Rdm .

Then, we apply a concatenation operation for
the appearance and the motion feature with a fully-
connected layer to obtain frame-level video feature,
Fv = ReLU(FC([Fa,Fm])), where Fv ∈ RN×d and
[·] represent the concatenation operation along the
feature dimension. Due to the temporal property
of videos, we adopt a Gated Recurrent Units (Cho
et al., 2014) to process the frame-level video fea-
ture, V = GRU(Fv), where V ∈ RN×d is the contex-
tualized frame-level video features.
Trajectory-level Features. As mentioned before,
we argue that the video and question are at differ-
ent abstract levels due to their sub-components, i.e.,
words and frames contain inconsistent semantic in-
formation. Thus, we utilize video trajectory feature
to supplement the frame-level feature in order to
enhance the feature alignment with language.

We take the tracking-by-detection strategy to
generate video trajectories. We first sample the
video and detect the objects from all the frames.
To generate trajectories, we use improved seq-

NMS (Xie et al., 2020) to associate bounding boxes
along the time that belong to same object based on
object detection results. Specifically, this algorithm
links the bounding boxes that likely belong to the
same object from consecutive frames to build a
graph and it applies dynamic programming to re-
peatedly pick the path with the highest score. Then,
we obtain a series of trajectories each of which
contains a set of boxes, a predicted label and the
start-end time points. For each trajectory, we apply
average pooling to the associated objects features
and normalize the start-end time with respect to
the video length. To take advantage of semantic
information, we project the trajectory label to se-
mantic space using GloVe embeddings (Penning-
ton et al., 2014). Thus, we obtain the visual feature
tv, semantic feature tl and temporal position em-
bedding tp for each trajectory. Then, we project
these three representations to the same space by
fully-connected layers and add them together to get
the final trajectory feature tri ∈ Rd, as showed in
Figure 3.

Given several trajectory features Ftr = {tri}Nt
i=1

in a video, where Nt is unequal for different videos,
we employ a trajectory encoder with multi-head
self-attention to model the rich trajectory-level in-
teraction, T = MHSA(Ftr), where T ∈ RNt×d is the
refined trajectory feature. As illustrated in Figure 3,
our trajectory encoder consists of several multi-
head self attention layers (Vaswani et al., 2017)
and feed-forward layers with skip connection.

3.1.2 Language Representations
As for language, we use both GloVe features (Pen-
nington et al., 2014) and fine-tuned BERT fea-
tures (Devlin et al., 2019) in different experimental
settings. A vocabulary set was pre-defined which
is composed of top K most frequent words. For
experiments with GloVe, each word in the set is
initialized with word-level pre-trained GloVe repre-
sentations. Following NExT-QA, we also use fine-
tuned BERT feature which fine-tunes regular BERT
on the dataset by maximizing the correct QA pairs’
probability in each multi-choice QA. We extract
token-wise sentence-level BERT features for each
question-answer pair. For multi-choice setting, we
concatenate the question Q with each candidate
answer Ai to form a holistic query. In order to ob-
tain well contextualized language representation,
we apply another GRU to the word embeddings in
the query feature Fq, Q,F global

q = GRU(Fq), where
Q ∈ RL×d and F global

q ∈ Rd is the global sentence
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Figure 3: The architecture of our trajectory encoder.
Right part is an illustration of dot-product attention.

feature from last hidden state.

3.2 Feature Alignment and Reasoning

Alignment. For a better alignment among language
features, frame-level video features and trajectory
features, we propose a cycle-attention module that
aligns different features in a circular pattern. Firstly,
we align the trajectory with the language feature,
Qtq = Atten

q→t
(Q,T ,T ), Ttq = Atten

t→q
(T ,Q,Q), (1)

where “→” means “attend to”. The Atten operation
is introduced in Appendix A. Then, we align the
frame-level video feature with language feature,
Qvq = Atten

q→v
(Q,V ,V ), Vvq = Atten

v→q
(V ,Q,Q). (2)

We argue that the frame-level video feature and
trajectory feature are complementary, since the tra-
jectory feature decouples salient entities from the
whole video and the frame-level video feature con-
tains contextual information. In addition, there is a
natural correspondence relationship between them
that trajectory is made up of objects from frames.
Thus, we also align them together,
Tvt = Atten

t→v
(T ,V ,V ), Vvt = Atten

v→t
(V ,T ,T ). (3)

Reasoning. After obtaining the aligned features,
we conduct heterogeneous graphs, namely TQG,
VQG and VTG as shown in Figure 2, for further
reasoning. Taking the trajectory and question graph
TQG as an example, we describe the details of
our reasoning module. The nodes representations
Xtq of TQG are the concatenation of token-wise
language embeddings Qtq and trajectories features
Ttq. Thus, each node either represents a word or
a trajectory. We first calculate the value of graph

edges represented by an adjacency matrix,

Atq = softmax(fWp(Xtq)fWp(Xtq)
T ) + I, (4)

where fWp denotes non-linear projection with learn-
able parameters Wp and I is an identity matrix for
skip connection. Each element of Atq means the
correlation between the i-th and j-th node. Then,
we apply graph convolution to aggregate and pass
message over the nodes. Here we show a single-
layer graph convolution operation,

X
(l)
tq = σ(AtqX

(l−1)
tq W (l)), (5)

where l denotes the l-th layer of GCN and σ repre-
sents an activation function. To get the final multi-
modal representation, we aggregate all the nodes
in TQG by weighted pooling with a self-attention,

Xfinal
tq = σ(fWt(X

(L)
tq ))X

(L)
tq , (6)

where fWt denotes non-linear transformation with
learnable parameters Wt and X

(L)
tq is the output of

the last GCN layer. Similarly, we construct VQG
and VTG and conduct graph convolution opera-
tions on them to obtain Xfinal

vq and Xfinal
vt .

3.3 Answer Prediction

Following the multi-choice setting in NExT-QA,
we regard the VideoQA task as a multi-modal
matching problem, which can easily extend to other
multi-modal tasks. Specifically, the candidate an-
swers are concatenated to the corresponding ques-
tions and the model scores the concatenated sen-
tences based on the similarities to the video.

In order to bring in global semantic information,
we enhance the three multi-modal features by fu-
sion with the global query feature F global

q . Then,
we calculate a score for each candidate question-
answer pair using multi-modal compact bilinear
fusion (MCB) (Fukui et al., 2016),

s∗ = MCB(X∗,F
global
q ), (7)

where ∗ denotes tq, vq and vt. Next, we aggregate
scores from different brunches by addition,

s = svq + λ1stq + λ2svt, (8)

We adopt a Hinge loss that can maximize the mar-
gins between the correct and incorrect QA pairs,

L =

n−1∑

i=1

max(0, 1 + s−i − s+), (9)

where n is the number of candidate answers and s+

and s− represent the positive and negative samples.
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Methods Causal Temp. Descrip. Overall
Random 20.52 20.10 19.69 20.08
Text Only 42.62 45.53 43.89 43.76
Text+Viusal 42.46 46.34 45.82 44.24
HGA 49.53 50.74 59.33 49.74
Human 87.61 88.56 90.40 88.38

Table 1: Some VideoQA baselines on NextQA.

3.4 Sample Augmentation

Although fine-tuned BERT features achieve re-
markable results, it brings new problem that models
answer the question excessively rely on the prior of
the question-answer pairs without considering the
video content. It is mainly because the fine-tuning
goal is to maximize the probability of the correct
QA pair in all the multi-choice QA pair candidates.
A blind version of VideoQA model was studied by
NExT-QA (Xiao et al., 2021a) which only consid-
ers the question-answer pairs and totally ignores the
video inputs. As shown in Table 1, the performance
of the Text-Only model is surprisingly comparable
to the model incorporating the video information.
We argue that the model devotes to estimating the
rationality of question-answer combination or just
memorizing the frequency of combinations. Re-
cent state-of-the-art model HGA (Jiang and Han,
2020) achieved considerable improvement com-
pared to both Text-Only and Text+Visual models
in Table 1, but there is still a huge gap between
the state-of-the-art model and human. Thus, al-
though the elaborately designed architectures and
features have the capacity of reasoning complex
interactions, the models always get inferior results.

Based on this consideration, in order to capital-
ize on the full potential of the feature and model,
we design two effective yet simple sample augmen-
tation ways for better multi-modal alignment and
further boost the VideoQA performance. To be
specific, we first increase negative candidate an-
swers (a−) when computing matching score. This
strategy forces the model to focus more on the mi-
nor difference between the correct question-answer
pair and others. Meanwhile, the model can corre-
spondingly focus on the discriminative video con-
tent. We then add negative question-answer pairs
that are attached to other videos (qa−). By coop-
erating with the hinge loss, the video and its affil-
iated language are drawn closer in feature space
and the mismatched pairs are pulled away. In this
way, we enhance the multi-modal alignment from
a sample perspective. In addition, bringing in new

negative samples break the models’ excessive de-
pendence on language prior, which partially solved
the problem caused by the feature. In practice, we
randomly sample M answers/QA pairs affiliated to
other videos in the training set as negative samples.

4 EXPERIMENTS

4.1 Experimental Details

Dataset. NExT-QA (Xiao et al., 2021a) is a re-
cently designed challenging VideoQA benchmark
which advances video question answering from de-
scribing to reasoning. The dataset contains 5,440
videos where 3870 for training, 570 for validation
and 1,000 for testing. The videos are selected from
the relation dataset VidOR (Shang et al., 2019)
which contains natural videos of daily life such as
outdoor activities and social scenes. Thus they are
richer in objects and interactions. It consists of
47,692 questions where 34,132, 4,996 and 8,564
for training, validation and testing, respectively.
Almost half of the questions are causal questions
which contain questions starting with “why” and
“how”, which is a great challenge for VideoQA
models to reason about causality. Temporal ques-
tions of inferring temporal actions compose 29% of
the dataset. Apart from causal and temporal ques-
tions, others are descriptive questions that focus
on describing attributes, location and main events
in videos. For multi-choice task that is to select
one out of the five candidate answers, NExT-QA
sampled four qualified candidates as distracting an-
swers for each question to enhance the hard nega-
tives. In a word, NExT-QA goes beyond descriptive
QA to benchmark causal and temporal action rea-
soning in realistic videos and is also rich in object
interactions. In addition, several recent state-of-the-
art methods are examined on it.
Evaluation Metric. We report the accuracy of
our model in all experiments which represents the
percentage of correctly answered questions.
Implementation Details. For the training process,
we set the number of hidden units d to 256. The
batch size is set to 64 and Adam optimizer is used
for optimization. The learning rate is set to 0.00005
for GloVe setting and 0.0001 for BERT-FT setting,
respectively. For better performance, we reduce the
learning rate when a metric has stopped improving.
The dropout rate is set to 0.3. We set balance factors
λ1 and λ2 to 0.5 for all the experiments.

We randomly sample 5 negative samples from
the training set for each strategy. We utilize both
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Methods Text Rep. AccC AccT AccD ACCWhy How All P&N Present All Count Loc. Other All
EVQA GloVe 28.38 29.58 28.69 29.82 33.33 31.27 43.50 43.39 38.36 41.44 31.51
PSAC† GloVe 35.03 29.87 33.68 30.77 35.44 32.69 38.42 71.53 38.03 50.84 36.03
Co-Mem GloVe 36.12 32.21 35.10 34.04 41.93 37.28 39.55 67.12 40.66 50.45 38.19
ST-VQA GloVe 37.58 32.50 36.25 33.09 40.87 36.29 45.76 71.53 44.92 55.21 39.21
HGA GloVe 36.38 33.82 35.71 35.83 42.08 38.40 46.33 70.51 46.56 55.60 39.67
HME GloVe 39.14 34.70 37.97 34.35 40.57 36.91 41.81 71.86 38.36 51.87 39.79
HCRN GloVe 39.86 36.90 39.09 37.30 43.89 40.01 42.37 62.03 40.66 49.16 40.95
Ours GloVe 43.14 39.82 42.27 40.25 47.21 43.11 46.89 74.58 52.46 59.59 45.24
EVQA BERT-FT 42.31 42.90 42.46 46.68 45.85 46.34 44.07 46.44 46.23 45.82 44.24
ST-VQA BERT-FT 45.37 43.05 44.76 44.52 51.73 49.26 43.50 65.42 53.77 55.86 47.94
Co-Mem BERT-FT 46.15 42.61 45.22 48.16 50.38 49.07 41.81 67.12 51.80 55.34 48.04
HCRN* BERT-FT 46.99 42.90 45.91 48.16 50.83 49.26 40.68 65.42 49.84 53.67 48.20
HME BERT-FT 46.52 45.24 46.18 47.52 49.17 48.20 45.20 73.56 51.15 58.30 48.72
HGA BERT-FT 46.99 44.22 46.26 49.53 52.49 50.74 44.07 72.54 55.41 59.33 49.74
Ours BERT-FT 52.81 47.44 51.40 51.11 53.70 52.17 46.89 75.25 58.03 62.03 53.30

Table 2: Performance (%) comparisons of state-of-the-art methods on NExT-QA validation set. The best and the
second results are bold and underlined respectively. † means to add motion feature and * means concatenation of
question and answer to adapt to BERT representation.

Models Causal Temp. Descrip. Overall
ST-VQA 45.51 47.57 54.59 47.64
Co-Mem 45.85 50.02 54.38 48.54
HME 46.76 48.89 57.37 49.16
L-GCN 47.82 48.74 56.51 49.54
HGA 48.13 49.08 57.79 50.01
HCRN 47.07 49.27 54.02 48.89
HQ-GAU 49.04 52.28 59.43 51.75
Ours 50.38 50.88 61.78 52.41

Table 3: Performance(%) of on NExT-QA test set.

sample strategies for experiments using GloVe em-
bedding and only use the second strategy for BERT-
FT. Other details of implementation are given in
Appendix B.

4.2 Compared Methods

In Table 2 and Table 3, we compared our model
with other state-of-the-art methods on NExT-QA
dataset. Among these methods, STVQA (Jang
et al., 2017), PSAC (Li et al., 2019) are attention-
based methods. Co-Mem (Gao et al., 2019) and
HME (Fan et al., 2019) are memory-based meth-
ods. L-GCN (Huang et al., 2020), HGA (Jiang and
Han, 2020) and HQ-GAU (Xiao et al., 2022) are
graph-based methods.

Different from recent elaborately designed com-
plex architectures for VideoQA, we consider the
multi-modal alignment from feature and sample
perspectives. We simply adopt a heterogeneous
graph as the reasoning module and first leverage
trajectory feature in VideoQA. We then design two
effective yet easy-to-implement sample augmenta-
tion methods. Combining both of them, our model
achieves the best performance.

Results. The results on NExT-QA validation set
and test set are reported in Table 2 and Table 3,
respectively. We can observe that our proposed
method achieves new state-of-art performance over
all kinds of questions. In particular, we observe
that our method works well even on causal and
temporal questions which require more compli-
cated reasoning, e.g., our method achieves a signif-
icant 5.14% absolute improvement on validation
set compared to the second result on causal ques-
tions and 1.43% on temporal questions. It should
be noticed that HGA also utilizes a heterogeneous
graph model for alignment and reasoning which in-
dicates that our trajectory-aware graph model with
sample augmentation has the advantage to reason
causal and temporal questions over others. L-GCN
also utilizes a graph network with object feature
and our model outperforms it by a large margin on
test set as shown in Table 3. Recently proposed
HQ-GAU also adopt a powerful hierarchical archi-
tecture with multi-granularity video features that
leverages finer object interaction. Table 3 shows
that our method outperforms HQ-GAU on causal
and descriptive questions by 1.34% and 2.53%. For
temporal questions, our method gets comparable
result with HQ-GAU but is 1.4% lower than it. It
is probably because HQ-GAU has a complicated
structure with more parameters and adopts a more
effective temporal position embedding.

4.3 Ablation Study

In this section, we report the results of ablative
experiments with different variants to better inves-
tigate our approach. We first analyze the effect of
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What does the girl in white do after bending down in the middle?
0. grab her
1. feed horse with grass
2. run towards the camera
3. umbrella
4. put her arms up

Why are there high chairs on the stage?
0. to place the microphones
1. for guitarists to sit comfortably
2. for audience to sit
3. to act as displays
4. to take up stage spaces

Where is this video taken?
0. swimming pool
1. outdoor
2. field
3. desert
4. bedroom

Why did the man in white hold tightly to the boy in white?
0. forcing boy to look straight
1. dancing with boy
2. posing for camera
3. prevent falling off
4. boy keeps moving around

GT: feed horse with grass
Base: umbrella ×
Base+T: feed horse with grass √
Full: feed horse with grass √

GT: prevent falling off
Base: prevent falling off √
Base+T: boy keeps moving around ×
Full: prevent falling off √

GT: for guitarists to sit comfortably
Base: to take up stage spaces ×
Base+T: to take up stage spaces ×
Full: for guitarists to sit comfortably √

GT: bedroom
Base: bedroom √
Base+T: bedroom √
Full: bedroom √

Figure 4: Some qualitative results of our model on NExT-QA validation set. Base: our model without trajectory and
sample augmentation. Base+T: Base model with trajectory feature. Full: Base model with trajectory feature and
sample augmentation.

frame. traj. aug. Causal Temp. Discrip. Overall
✓ 46.18 48.08 57.27 48.52

✓ 46.49 48.76 58.94 49.16
✓ ✓ 47.18 51.18 59.33 50.36
✓ ✓ 50.44 51.30 59.85 52.18
✓ ✓ ✓ 51.40 52.17 62.03 53.30

Table 4: Performance (%) on validation set in ablative
experiments of trajectory and sample augmentation.

Aug. Ablation Causal Temp. Descrip. Overall

No

w/o cyatten. 46.91 48.70 59.33 49.42
w/o VQG 46.18 48.08 57.27 48.52
w/o TQG 46.49 48.76 58.94 49.16
w/o VTG 46.30 50.74 57.27 49.44

Full 47.18 51.18 59.33 50.36

Yes traj. GRU 50.63 53.54 60.36 53.08
traj. MHSA 51.40 52.17 62.03 53.30

Table 5: Performance (%) on validation set in ablative
experiments of model components.

trajectory feature and sample augmentation method.
Then, we introduce an ablation study conducted on
components of our model. All the variants in this
section are evaluated on NExT-QA validation set.
Ablation on trajectory. To exploit the effect of
the trajectory, we compared the performance of
the models with and without trajectory feature in
Table 4. By comparing the second line with the
third line, we notice that utilizing trajectory feature
improves the accuracy by 1.20%. Comparing the
last two lines in Table 4, the model using trajec-
tory feature outperforms the other by 1.12% overall
accuracy even though the score has already been
improved a lot by sample augmentation. These

results demonstrate the necessity of employing the
trajectory feature. In addition, we give the results
of the model only using trajectory feature as visual
representation on line 1 in Table 4. The results
indicate that the frame-level feature also plays an
important role in multi-modal reasoning. The main
reason is that frame-level features provide contex-
tual information which some questions heavily rely
on.

Strategy Text Rep. Causal Temp. Descrip. Overall
none

GloVe

36.86 37.59 54.70 39.87
a− 41.66 43.61 57.01 44.68
qa− 40.20 41.07 58.43 43.31
both 42.27 43.11 59.59 45.24
none

BERT-FT
47.18 51.18 59.33 50.36

a−∗ 47.22 49.88 59.33 49.96
qa− 51.40 52.17 62.03 53.30

Table 6: Comparisons of different sample augmentation
strategies.

Ablation on sample augmentation. We analyzed
the effectiveness of sample augmentation methods
in Table 4. By comparison of line 2 and line 4
(line 3 vs. line 5), we notice an almost 3% abso-
lute overall improvement, which indicates that our
augmentation methods can boost the performance.
Considering that it’s harder to improve in a higher
score range, this indicates the trajectory feature and
sample augmentation method could promote each
other for better multi-modal alignment.

We also explore the different augmentation
strategies in Table 6. The a− represents that
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we sample negative answers from other questions
and concatenate them with the original question.
The qa− means that we sample negative question-
answer pairs attached to other videos. For exper-
iments with GloVe embedding as text representa-
tion, we can find that each strategy improved the ac-
curacy by a large margin and using both strategies
can further boost the performance. With regards
to BERT-FT as text representation, we cannot di-
rectly apply strategy a− because BERT features are
sentence-level holistic feature for question-answer
pairs where the question parts vary across differ-
ent pairs. So we averaged the question features
as a unified question representation and concate-
nated randomly sampled answers (a−∗ in Table 6).
However, we can observe that the accuracy barely
changed. This may be because the average opera-
tion harms the integrity of sentence representation
especially the sentence matching information that
[CLS] embedding contains. Thus we only used the
second strategy qa− for BERT-FT and the perfor-
mance is improved a lot even so. We also analyzed
the effect of the number of negative samples. The
performance grows when the number of negative
samples increases. When the number is more than
15, the performance would barely change.
Ablation on trajectory encoder. On the bottom
section of table 5, we studied the effect of trajec-
tory encoder MHSA. By replacing our MHSA with
a GRU with temporal and semantic embedding,
the performance drops by 0.77% on causal ques-
tions and 1.67% on descriptive questions making
a overall 0.22% decline, which demonstrates the
global interactions modeling ability of MHSA. For
temporal questions, there is a 1.37% improvement
which indicates that the RNN architecture is better
to capture sequential information.
Ablation on model components. We analyzed
the model components on the top part of Table 5.
By removing each graph and cycle-attention, per-
formance of the model all dropped. The results
demonstrate that all parts of the architecture play
an important role in alignment and reasoning.

4.4 Qualitative Analysis

We show some qualitative results on NExT-QA val-
idation set in Figure 4. The results of three models
with different configurations are visualized, i.e.,
Base: the baseline without trajectory feature and
sample augmentation, Base+T: add trajectory fea-
ture to Base, and Full: our full model with both

trajectory and sample augmentation. We notice that
Base+T and Full model perform better than Base
in most cases, which demonstrates that both fea-
ture and strategies are helpful. In the bottom-left
case, we surprisingly found that Base+T predicted
a wrong answer whereas Base answered correctly.
However, the candidate answer 4 “boy keeps mov-
ing around” seems hardly to be a wrong answer to
the question.

5 CONCLUSION

In this paper, we explored multi-modal alignment
in VideoQA from feature and sample perspectives.
From the view of feature, we first leverage video
trajectory features in VideoQA to bridge the se-
mantic gap between the sub-components of the
video and the language. Moreover, in order to
better utilize the trajectory feature, we propose a
graph-based model which is capable of alignment
and reasoning over heterogeneous representations.
From the view of sample, we propose two sam-
ple augmentation strategies to further enhance the
cross-modal correspondence ability of our model.
The promising results on challenging NExT-QA
dataset have exhibited the causal and temporal rea-
soning ability of our method. In the future, we will
further explore a better way to take advantage of
trajectory information considering its significant
potential.

Limitations

Although video trajectories are effective on
VideoQA and other video understanding tasks, the
model is sensitive to the quality of trajectories. The
object detection and tracking methods are of vital
important to the quality of trajectories. Using a
weak tracking method may introduce noises which
can be harmful to the performance. The training
augmentation strategies are naturally suitable for
multi-choice setting, however for open-ended set-
ting, further work needs to be done to adapt.
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Appendix

A Attention Operation

Attention can be generalised to compute a weighted
sum of the values dependent on the query and the

corresponding keys. Since the query determines
which values to focus on, we can say that the query
attends to the values. Given a query Q̃ and a set
of key-value pairs (K̃, Ṽ ), dot-product attention
adopted by Transformer (Vaswani et al., 2017) com-
putes the alignment weights using dot-production
of Q̃ and K̃ as shown in the right part of Figure 3,

Atten(Q̃, K̃, Ṽ ) = softmax(
(Q̃W Q̃

h )(K̃W K̃
h )T√

dh
)Ṽ W Ṽ

h ,

(10)

where W Q̃
h , W K̃

h and W Ṽ
h are trainable projection

matrices and
√
dh is a scaling factor that prevents

softmax function from excessively large with keys
of higher dimensions.

B Implementation Details

Frame-level feature details. We uniformly
split each video into 16 segments and each seg-
ment has 16 consecutive frames. We utilize a
ResNet-101 (He et al., 2016) pre-trained on Im-
ageNet (Deng et al., 2009) to extract per-frame ap-
pearance feature of 2048-D. As for the 2048-D mo-
tion feature, we utilize an I3D ResNeXt-101 (Hara
et al., 2018) pre-trained on Kinetic (Kay et al.,
2017) as mainstream framework.
Trajectory-level feature details. We sample video
at a rate of 1fps. We adopt Faster-RCNN (Ren
et al., 2015) trained on open-Images as the object
detector, which uses Inception Resnet V2 as the
image feature extractor, containing 600 classes. We
use a dynamic programming algorithm improved
from sequence NMS to associate bounding boxes
that belong to the same object and generate trajec-
tories. This tracking method consists of two steps:
graph building and trajectory selection and we refer
readers to (Xie et al., 2020) for more details.
Language representation details. We first ex-
tract tokens from sentences. Then we employ the
GloVe (Pennington et al., 2014) pre-trained on
Wikipedia to obtain 300-D embedding for each
word token. The maximum length of question-
answer pairs is set to 37. We truncated the sen-
tences longer than the max length and padded the
shorter ones with zeros. For the BERT-FT setting,
we directly utilized finetuned BERT feature pro-
vided by NExT-QA (Xiao et al., 2021a). Each
answer is appended to the question as a global sen-
tence. A BERT build-in tokenizer is used to obtain
the tokenized representation of the sentence. Then
the tokens are organized by the format: [CLS] ques-
tion [SEP] candidate answer [SEP].
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