
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 8122–8132
December 7-11, 2022 ©2022 Association for Computational Linguistics

Structure-Unified M-Tree Coding Solver for Math Word Problem

Bin Wang, Jiangzhou Ju, Yang Fan, Xinyu Dai∗, Shujian Huang, Jiajun Chen
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing
{wangbin, jujiangzhou, fanyang}@smail.nju.edu.cn

{daixinyu, huangsj, chenjj}@nju.edu.cn

Abstract

As one of the challenging NLP tasks, design-
ing math word problem (MWP) solvers has
attracted increasing research attention for the
past few years. In previous work, models de-
signed by taking into account the properties
of the binary tree structure of mathematical
expressions at the output side have achieved
better performance. However, the expressions
corresponding to a MWP are often diverse (e.g.,
n1+n2×n3−n4, n3×n2−n4+n1, etc.), and
so are the corresponding binary trees, which
creates difficulties in model learning due to
the non-deterministic output space. In this pa-
per, we propose the Structure-Unified M-Tree
Coding Solver (SUMC-Solver), which applies
a tree with any M branches (M-tree) to unify
the output structures. To learn the M-tree, we
use a mapping to convert the M-tree into the
M-tree codes, where codes store the informa-
tion of the paths from tree root to leaf nodes
and the information of leaf nodes themselves,
and then devise a Sequence-to-Code (seq2code)
model to generate the codes. Experimental re-
sults on the widely used MAWPS and Math23K
datasets have demonstrated that SUMC-Solver
not only outperforms several state-of-the-art
models under similar experimental settings but
also performs much better under low-resource
conditions1.

1 Introduction

Given the description text of a MWP, an automatic
solver needs to output an expression for solving
the unknown variable asked in the problem that
consists of mathematical operands (numerical val-
ues) and operation symbols (+,−,×,÷), as shown
in Fig. 1. It requires that the solver not only un-
derstand the natural-language problem but also be
able to model the relationships between the numer-
ical values to perform arithmetic reasoning. These

*Corresponding author
1Code and data are available at https://github.com/

devWangBin/SUMC-Solver

Problem: Mike bought a new book. He read 3 pages every day
on the first 2 days. Then, on the third day, he read 4 pages in the
morning and 5 pages in the afternoon. How many pages has
Mike read so far?

Solution expressions: 2 × 3 + 4 + 5
3 × 2 + (5 + 4)
5 + 3 × 2 + 4
……

Post expression sequences: 2 3 × 4 + 5 +
3 2 × 5 4 + +
5 3 2 × + 4 +
……

Expression binary trees:

……

M-Tree of expressions:

Answer: 15

Figure 1: An example of math word problems, which
has multiple solution expressions and binary trees, but
only one M-tree output.

challenges mean MWP solvers are often broadly
considered good test beds for evaluating the intelli-
gence level of agents (Lin et al., 2021).

In recent years, the research on designing auto-
matic MWP solvers has also made great progress
due to the success of neural network models on
NLP. Wang et al. (2017) first apply a Sequence-to-
Sequence (seq2seq) model to solve the MWP, and
since then more methods (Wang et al., 2018; Chi-
ang and Chen, 2019; Wang et al., 2019) based on
seq2seq models have been proposed for further im-
provement. To use the structural information from
expressions more effectively, other methods (Liu

8122

https://github.com/devWangBin/SUMC-Solver
https://github.com/devWangBin/SUMC-Solver

et al., 2019a; Xie and Sun, 2019) use Sequence-
to-Tree (seq2tree) models with a well-designed
tree-structured decoder to generate the pre-order
sequence of a binary tree in a top-down manner
and have achieved better performance. Zhang et al.
(2020b) combines the merits of the graph-based en-
coder and tree-based decoder (graph2tree) to gen-
erate better solution expressions.

Promising results have been achieved in solving
MWP, but the existing methods learn to output only
one expression sequence or binary tree, ignoring
that there is likely to be far more than one that
can obtain the correct answer. For example, in Fig.
1, to answer the question “How many pages has
Mike read so far?”, we can add up the number of
pages that Mike read each day to get the expression
“2× 3 + 4+ 5”; we can also calculate the first two
days followed by the sum of pages read on the third
day to get the expression “3× 2 + (5 + 4)”; or we
could even calculate the problem in a less obvious
way with the expression “5 + 3 × 2 + 4”. The
number of different expression sequences or binary
trees can grow very large with different combina-
tions, which results in a large non-deterministic
output space and creates difficulties in model learn-
ing. Specifically, when a problem has multiple
correct outputs, but the solver only obtains one of
them, the knowledge learned by the model will be
incomplete, and the demand for data will also in-
crease, making most data-driven methods perform
poorly under low-resource conditions.

In previous work, to overcome these limitations,
Wang et al. (2018, 2019) used the equation nor-
malization method, which normalizes the output
sequence by restricting the order of operands and
has only a limited effect. Zhang et al. (2020a) pro-
posed to use multiple decoders to learn different ex-
pression sequences simultaneously. However, the
large and varying number of sequences for MWPS
makes the strategy less adaptable. For the mod-
els that learn the binary-tree output (Xie and Sun,
2019; Wu et al., 2020; Zhang et al., 2020b), they
generally use a tree decoder to perform top-down
and left-to-right generation that only generate one
binary tree at a time, which dose not propose a
solution to these limitations.

To address the challenge that the output diversity
in MWP increases the difficulty of model learning,
we analyzed the causes for the diversity, which can
be summarized as the following:

• Uncertainty of computation order of the math-

ematical operations: This is caused by 1) giv-
ing the same priority to the same or different
mathematical operations. For example, in the
expression n1 + n2 + n3 − n4, three operations
have the same priority. Consequently, the calcu-
lations in any order can obtain the correct answer,
which leads to many equivalent expressions and
binary trees. And 2) brackets can also lead to
many equivalent outputs with different forms.
For example, n1 + n2 − n3, n1 − (n3 − n2) and
(n1 + n2) − n3 are equivalent expressions and
can be represented as different binary trees.

• The uncertainty caused by the exchange of
operands or sub-expressions: Among the four
basic mathematical operations {+,−,×,÷}, ad-
dition “+” and multiplication “×” have the prop-
erty that the operands or sub-expressions of both
sides are allowed to be swapped. For example,
the expression n1 + n2 × n3 can be transformed
to get: n1 + n3 × n2, n2 × n3 + n1, etc.

In this paper, to account for the aforementioned
challenge, we propose SUMC-Solver for solving
math word problems. The following describes the
main contents of our work:

We designed the M-tree to unify the diverse out-
put. Existing work (Xie and Sun, 2019; Wu et al.,
2020, 2021b) has demonstrated through extensive
experiments that taking advantage of the tree struc-
ture information of MWP expressions can achieve
better performance. We retain the use of a tree
structure but further develop on top of the binary
tree with an M-tree which contains any M branches.
The ability of the M-tree to unify output structures
is reflected in both horizontal and vertical direc-
tions:

• To deal with the uncertainty of computation or-
ders for mathematical operations, we set the root
to a specific operation and allow any number
of branches for internal nodes in the M-tree, re-
ducing the diversity of the tree structure in the
vertical direction.

• To deal with the uncertainty caused by the ex-
change between the left and right sibling nodes
in original binary trees, we redefine the opera-
tions in the M-tree to make sure that the exchange
between any sibling nodes will not affect the cal-
culation process and treat M-trees that differ only
in the left-to-right order of their sibling nodes
as the same. Like the M-tree example shown in

8123

Fig. 1. The exchange between node “5”, “×”,
and “4” will neither affect the calculation process
nor form a new tree. With this method, the struc-
tural diversity in the horizontal direction is also
reduced.

We designed the M-tree codes and a seq2code
framework for the M-tree learning. We abandoned
the top-down and left-to-right autoregressive gen-
eration used for binary trees in previous methods.
The reason is that the generation can not avoid
the diversity caused by the generation order of sib-
ling nodes. Instead, we encode the M-tree into
M-tree codes that can be restored to the original
M-tree, where the codes store the information of
the paths from the root to leaf nodes and leaf nodes
themselves. And inspired by the sequence labeling
methods used in studies mentioned in 2.2, we inno-
vatively use a seq2code framework to generate the
M-tree codes in a non-autoregressive way, which
takes the problem text as the input sequence and
outputs the M-tree codes of the numbers (numer-
ical values) in the math word problem. Then we
restore the codes to a M-tree that can represent the
calculation logic between the numbers and finally
calculate the answer.

Our contributions can be summarized as follows:

• We analyze the causes of output diversity in
MWP and design a novel M-tree-based solu-
tion to unify the output.

• We design the M-tree codes to represent the M-
tree and propose a seq2code model to generate
the codes in a non-autoregressive fashion. To
the best of our knowledge, this is the first work
to analyze mathematical expressions with M-
tree codes and seq2code.

• Experimental results on MAWPS (Koncel-
Kedziorski et al., 2016) and Math23K datasets
(Wang et al., 2017) show that SUMC-Solver
outperforms previous methods with similar
settings. This is especially the case in low-
resource scenarios, where our solver achieves
superior performance.

2 Related Work

2.1 Math Word Problem Solver
With the success of deep learning (DL) in various
NLP tasks, designing a DL-Based MWP solver has
become a major research focus lately. Wang et al.
(2017) first addresses the MWP with a seq2seq

model, which implements the solver as a generative
model from problem text sequence to expression
sequence. By utilizing the semantic meanings of
operation symbols, Chiang and Chen (2019) ap-
ply a stack to help generate expressions. To bet-
ter utilize expression structure information, other
methods (Liu et al., 2019a; Xie and Sun, 2019; Li
et al., 2020) transform expressions into binary-tree-
structured representations and learn the tree out-
put. Zhang et al. (2020b) additionally introduces
a graph-based encoder to enrich the representation
of problems.

There are also approaches that explore the use of
more extensive networks and external knowledge to
help solve the MWP. Li et al. (2019) builds several
special attention mechanisms to extract the critical
information of the input sequence, and Zhang et al.
(2020a) propose using teacher-student networks
that combine two solvers to solve the MWP. Wu
et al. (2020) utilizes external knowledge through
the use of an entity graph extracted from the prob-
lem sequence and Lin et al. (2021) proposes a hier-
archical encoder with a dependency parsing mod-
ule and hierarchical attention mechanism to make
better use of the input information. Following the
previous work, Wu et al. (2021b) continues to use
external knowledge to enrich the problem represen-
tations and further explicitly incorporate numerical
value information encoded by an external network
into solving math word problems. Based on the
graph2tree framework, Wu et al. (2021a) uses exter-
nal knowledge to further enrich the input graph in-
formation. Yu et al. (2021) uses both a pre-trained
knowledge encoder and a hierarchical reasoning
encoder to encode the input problems. Qin et al.
(2021) constructed different auxiliary tasks using
supervised or self-supervised methods and external
knowledge (common sense and problem’s part-of-
speech) to help the model learn the solution of
MWPs.

Different from the above methods that mainly
focused on the input side and directly generated
expression sequences or binary trees, we designed
the structure-unified M-tree and the M-tree codes
on the output side. Also, we design a simple model
to test the advances of the M-tree and M-tree codes
by comparing with methods under similar experi-
mental settings, which means that methods using
additional knowledge or multiple encoders will not
become our baselines.

8124

2.2 Sequence Labeling Parsing

Our method of converting the M-tree into the M-
tree codes has similarities with that of sequence
labeling parsing, both of which convert complex
structural information into a collection of equiva-
lently expressed codes or labels. Constituent pars-
ing is an NLP task where the goal is to obtain
the syntactic structure of sentences expressed as
a phrase structure tree. As the tree can be repre-
sented by a sequence of labels of the input sen-
tence, Gómez-Rodríguez and Vilares (2018) pro-
pose transforming constituent parsing into a se-
quence labeling task and significantly reduce the
time required for constituent parsing. Vilares et al.
(2019) modify the labeling scheme to avoid cer-
tain types of errors. They predict three parts of the
label separately to reduce data sparsity and then
combine various strategies to alleviate the error
transmission problem in the original method. For
discontinuous constituent parsing, the experiments
(Vilares and Gómez-Rodríguez, 2020) show that
despite the architectural simplicity, under the suit-
able representation, the sequence labeling can also
be fast and accurate. Strzyz et al. (2019b) propose
using a similar sequence labeling method for de-
pendent parsing, and Strzyz et al. (2019a) combine
constituent parsing labeling and dependent parsing
labeling with training a multi-task learning model
that can perform both parsing tasks with higher
accuracy.

In the above work, the labels are used for the
classification task, where the output is a one-hot
vector, and each token in the input sequence cor-
responds to a single label. In contrast, our model
only learns the codes of the numbers in the input
sequence, where the codes are represented as non-
one-hot vectors because each number may have
multiple codes. Also, these codes cannot be ob-
tained directly from the problem definition, making
the design of the M-tree codes challenging.

3 The Design of SUMC-Solver

In this section, we present the design and imple-
mentation details regarding our proposed SUMC-
Solver, including the problem definition in Section
3.1, the design of the M-tree in Section 3.2, and
the detailed description of the M-tree codes and the
seq2code model in Section 3.3.

3.1 Problem Definition

A math word problem is represented by a sequence
of tokens, where each token can be either a word
(e.g., “Mike” and “candies” in Fig. 2) or a nu-
merical value (e.g., “9” and “8”). Some exter-
nal constants, including 1 and π, which are re-
quired to solve the math word problem, but not
mentioned in the problem text, are also added
to the sequence to get the final input sequence
X = (x1, x2, ..., xn). All the numerical values
(including added constants) that appear in X are
denoted as a set V = {v1, v2, ..., vm}, and our goal
is to generate a set C = {c1, c2, ..., cm}, where ci
is a target code vector for vi.

3.2 M-Tree

Data Pre-processing For the input sequence, we
add additional constants (e.g., 1 and π) that may be
used to the front of the input sequence and replace
each numerical value vi with a special symbol. For
the given expression in dataset, we try to remove all
the brackets of the expression by using the SymPy2

Python package to prepare for the conversion of
expression to the M-tree. For example, n1 + (n2±
n3) is converted to n1+n2±n3 and n1×(n2±n3)
is converted to n1×n2±n1×n3. For mathematical
operations other than {+,−,×, /}, such as ab, we
convert it to a product of multiple operands, which
allows the M-tree to be extended to solve more
complex mathematical problems.

The Design of M-Tree We define the M-tree as
follows: M-tree is a tree with only two kinds of
nodes: internal nodes and leaf nodes, and each in-
ternal node has any M branches, where M is an
integer greater than or equal to 1. There are four
types of leaf nodes, corresponding to four forms
of the numerical value: {v,−v, 1v ,− 1

v}, which de-
note the original value v in the problem X , the
opposite of v, the reciprocal of v, and the oppo-
site of the reciprocal of v, respectively. There are
four types of internal nodes, corresponding to four
redefined operations {+,×,×−,+/} that ensure
sibling nodes are structurally equivalent in the M-
tree and two M-trees that differ only in the order
of their sibling nodes will be treated as the same.
The root of the M-tree is set as a “+” node to unify
the structure (operators can have only 1 operand,
so n1 × n2 will be represented as a unique subtree
of the root node). For an internal node that has

2https://www.sympy.org/

8125

https://www.sympy.org/

Mike had 9 candies before.
He ate 8 yesterday. Today his
dad bought 2 more packs of
candies, each with 6 candies.
After giving them to him and
his 3 brothers on average,
how many candies does Mike
have?

Expression:
𝟗𝟗 − 𝟖𝟖 + 𝟐𝟐 × 𝟔𝟔 ÷ (𝟏𝟏 + 𝟑𝟑)

1, 𝝅𝝅. Mike had 𝒏𝒏𝟏𝟏 candies before. He ate 𝒏𝒏𝟐𝟐
yesterday. Today his dad bought 𝒏𝒏𝟑𝟑 more
packs of candies, each with 𝒏𝒏𝟒𝟒 candies. After
giving them to him and his 𝒏𝒏𝟓𝟓 brothers on
average, how many candies does Mike have?

Number Symbol Position

1 1 0

3.14 𝜋𝜋 2

9 𝒏𝒏𝟏𝟏 6

8 𝒏𝒏𝟐𝟐 12

…… …… ……

M-tree

M-tree codes:

1 ['0_0_+_×_+/']

𝝅𝝅 ['None']

𝒏𝒏𝟏𝟏 ['0_0_+']

𝒏𝒏𝟐𝟐 ['1_0_+']

…… ……

Code Vector of 𝒏𝒏𝟐𝟐Data preprocessing steps

……

…… Word embedding

RNN or PLM encoder

Context vector

Number embedding

[CLS]

Concatenate

For RNN encoder

Attention layer
For PLM encoder Code Generator

Figure 2: The left half is an example of MWP with the M-tree and M-tree codes, and the right half is the main
architecture of our seq2code model (see Section 3.2 and Section 3.3 for more details).

k children {v1, v2, ..., vk}, where k is an integer
greater than or equal to 1:

• The node of “+” (“×”) means to sum (mul-
tiply) the values of all its child nodes: v1 +
v2+, ...,+vk (v1 × v2×, ...,×vk).

• The node of “×−”(“+/”) means to get the op-
posite (reciprocal) of the product (sum) value
of all its child nodes: −v1 × v2×, ...,×vk
(1
v1+v2+,...,+vk

).

The implementation details of the M-tree are pro-
vided in Section A in the Appendix.

3.3 M-Tree Codes and Seq2code Model
3.3.1 The Design of M-Tree Codes
Since the nodes in the M-tree can have any num-
ber of branches and sibling nodes are structurally
equivalent, autoregressive-based generation cannot
avoid the diversity caused by the sequential order
of sibling nodes at the output side. To address this
challenge, we encode the structure information of
the M-tree into each leaf node, forming a mapping
between the M-tree and the codes set of leaf nodes
so that the model can generate the codes in a non-
autoregressive way. Details about M-tree codes are
as follows:

Components of M-tree Codes The M-tree code
of each leaf node consists of two parts: one part
describes the numerical value, and the other part
is formed by the path from the root node to the
current leaf node. A specific example is shown in
Fig. 2. The first part of the code uses two binary

bits to distinguish the four forms (mentioned in
3.2) of numerical values. Specifically, for a leaf
node in the M-tree represented as v

′
i, where vi is

the numerical value in the input sequence, the first
part of the M-tree code of v

′
i will be set according

to the following rules:
• If v

′
i = vi, the code is set as “0_0”;

• If v
′
i = −vi, the code is set as “1_0”;

• If v
′
i =

1
vi

, the code is set as “0_1”;

• If v
′
i = − 1

vi
, the code is set as “1_1”;

The second part is set as the sequential operation
symbols of all internal nodes on the path from the
root to the current leaf node v

′
i, so leaf nodes with

the same parent node will share the same second
part code. For example, the second part of the M-
tree code of “−8” in the example showing in Fig. 2
is “+”, and the code of "1" or “3” is “+_× _ + /”.
In some special cases, if the internal nodes that are
siblings have the same type (e.g., all “×” nodes),
they need to be marked with a special symbol added
to the end to distinguish them from each other in
order to restore the correct M-tree from the codes.

After converting all M-trees in the training
dataset to M-tree codes, a set of M-tree codes will
be obtained. The final set of M-tree codes is de-
noted as B = {b1, b2, ..., bl}, which has l different
codes in total. For example, in the example of Fig.
2, the M-tree code “1_0_+” of “−8” is an element
of B.

Vector Representation of M-tree Codes The
final code vector ci for model learning will be ob-
tained based on B. Considering that the value vi

8126

that appears only once in the input problem text
may appear multiple times in the M-tree. For
example, in “vi × vj ± vi × vk”, vi will appear
in two leaf nodes and have two identical or dif-
ferent M-tree codes. Consequently, the set of
numerical values V = {v1, v2, ..., vm} is map-
ping to a set of l-dimensional non-one-hot vectors:
C = {c1, c2, ..., cm}, where ci is the code vector
of the corresponding vi and the value of ci in the k-
th dimension indicates how many codes of bk that
vi has. For example, the final code vector of the
value “π” in the example showing in Fig. 2 will be
set as [1, 0, ..., 0]⊤, where only the first dimension
has the value of 1 indicating that “π” has only one
M-tree code “None”, which means that it does not
appear in the M-tree.

Reducing M-tree codes to M-tree The process
of converting M-tree to M-tree codes is reversible.
Briefly, a code vector is generated for each number
in the text and mapped to one or more M-tree codes
at first. Then, the number is formatted according
to the first part of the M-tree code. Finally, all the
numbers are merged by scanning the second part
of the M-tree code from back to front, while the
M-tree is generated bottom-up.

3.3.2 Sequence-to-Code Model
To verify the advances of the M-tree and M-tree
codes, we design a simple seq2code model to tackle
the MWP task, which takes the problem sequence
as its input and then outputs the corresponding
codes (represented as vectors) for numerical values
in the problem. After combining all the codes to
restore the M-tree, we can calculate the final answer
for the problem. Next, we introduce the two core
parts of the model: the problem encoder and the
code generator.

Problem Encoder We use an encoder to trans-
form the words of a MWP into vector representa-
tions. There are two kinds of encoders used in our
experiments: a Recurrent Neural Network (RNN)
encoder or a pre-trained language model (PLM)
encoder.

For the RNN encoder, we use a bidirectional
LSTM (BiLSTM) (Hochreiter and Schmidhuber,
1997) network. Formally, given the input sequence
X = (x1, x2, ..., xn) and the numerical values set
V = {v1, v2, ..., vm}, we denote the positions of
the numerical values as Q = {q1, q2, ..., qm}, in
which qi is the position of vi in X . The encoder en-
codes the input sequence into a sequence of hidden

states H = {hx
1 ,h

x
2 , ...,h

x
n} ∈ Rn×2d as follows:

hx
t =

[−→
hx
t ,
←−
hx
t

]
,

−→
hx
t ,
−→
cxt = BiLSTM

(
ext ,
−−→
cxt−1,

−−→
hx
t−1

)
,

←−
hx
t ,
←−
cxt = BiLSTM

(
ext ,
←−−
cxt−1,

←−−
hx
t−1

)
.

(1)

Where ext is the word embedding vector for xt, n
is the size of input sequence X , d is the size of the
LSTM hidden state, and hx

t is the concatenation of
the forward and backward hidden states.

And then for the numerical value vi in the prob-
lem X , its semantic representation eci is modeled
by the corresponding BiLSTM output vector:

eci = hx
qi . (2)

In order to better capture the relationship between
different numerical values and the relationship be-
tween vi and the unknown value to be solved (an-
swer of the problem), we use an attention layer to
derive a context vector Ei for vi, which is expected
to summarize the key information of the input prob-
lem and help generate the final target code for vi.
The context vector Ei is calculated as a weighted
representation of the source tokens:

Ei =
∑

t

αith
x
t , (3)

where

αit =
exp (score (eci ,h

x
t))∑

t exp (score (e
c
i ,h

x
t))

and

score (eci ,h
x
t) = U⊤ tanh (W [eci ,h

x
t]) .

where U and W are trainable parameters. Finally,
we concatenate context vector Ei and eci to obtain
zci as the input of the generator:

zci = [Ei, e
c
i] . (4)

For the PLM encoder, we use RoBERTa-base
(Liu et al., 2019b) or BERT-base (Devlin et al.,
2019) to encode the input sequence X to get the
token embeddings Ems = {emx

t }nt=1 and get the
semantic representation eci in the same way as the
RNN encoder, but for the context vector eci we use

8127

the output embedding of the special token [CLS]
in RoBERTa.

eci = emx
qi , (5)

Ei = emx
cls. (6)

Code Generator We use a simple three-layer
Feedforward Neural Network (FFNN) to imple-
ment the generator. With the input zci , the final
code vector c

′
i is generated as follows:

zci1 = σ
(
zci

⊤W1 +B1

)
,

zci2 = σ
(
zci1

⊤W2 +B2

)
,

c
′
i = zci2

⊤W3 +B3.

(7)

Where σ is an activation function, Wi and Bi are
the parameters of the FFNN.

Training Objective Given the training dataset
D = {

(
Xi, Ci

)
: 1 ≤ i ≤ N}, where Ci is the

set of all the code vectors corresponding to the
numerical values appearing in Xi, we minimize
the following loss function:

L =
∑

(Xi,Ci)∈D

∑

ci∈Ci

LMSE(ci, c
′
i), (8)

where

LMSE(ci, c
′
i) =

1

l

l∑

j=1

(
cij − c

′
ij

)2
. (9)

where l is the dimensionality of code vectors.

4 Experiments

4.1 Datasets
We evaluate our SUMC-Solver on two commonly
used MWP datasets, MAWPS (Koncel-Kedziorski
et al., 2016) with 2,373 problems and Math23K3

with 23,162 problems. For Math23K, we use the
public test set. For MAWPS, we evaluate the perfor-
mance via five-fold cross-validation and improved
the pre-processing method in the previous work
(Xie and Sun, 2019; Zhang et al., 2020b) to avoid
coarsely filtering out too much data, and the final
amount of available data was 2,373 (previously
1,921). We use answer accuracy as the evaluation
metric: if the value predicted by the solver equals
the true answer, it is thought of as correct.

3Available from https://ai.tencent.com/ailab/nlp/
dialogue/#Dataset/

4.2 Implementation Details

The parameter settings are as follows: 1) For the
RNN encoder, the dimensionality of word embed-
ding and hidden states are 128 and 512, respec-
tively. We select nearly 2500 words that appear
most frequently in the training set as the vocabu-
lary and replace the remaining words with a unique
token UNK. The global learning rates are initial-
ized to 0.002 for Math23K and 0.008 for MAWPS.
2) For the PLM encoder, we use RoBERTa-base
and BERT-base for Math23K and MAWPS, respec-
tively. The initial global learning rate for both
datasets is 2× 10−5. 3) For the code generator, the
dimension of the FFNN is (2048, 1024, |ci|), where
ci is the code vector and its dimensionality is 153
for Math23K and 28 for MAWPS, respectively.

4.3 Compared Methods

Considering SUMC-Solver with one traditional se-
quence encoder without any other external knowl-
edge as input and one simple generator, we only
compare methods with similar settings: T-RNN
Wang et al. (2019) applied a seq2seq model to
predict a tree-structure template, which includes
inferred numbers and unknown operators. Then,
They used a RNN to obtain unknown operator
nodes in a bottom-up manner. StackDecoder Chi-
ang and Chen (2019) used the RNN to understand
the semantics of problems, and a stack was applied
to generate post expressions. GTS Xie and Sun
(2019) utilized a RNN to encode the input and an-
other RNN to generate the expression based on
top-down decomposition and bottom-up subtree
embedding. GTS-PLM replaces the encoder with
a pre-trained language model compared to the orig-
inal GTS. SAU-Solver Qin et al. (2020) devised
Universal Expression Trees to handle MWPs with
multiple unknowns and equations. Then a RNN
encodes the input and a well-designed decoder
considering the semantic transformation between
equations obtains the expression. Graph2Tree
(Zhang et al., 2020b) is a graph-to-tree model
that leverages an external graph-based encoder to
enrich the quantity representations in the prob-
lem. UniLM-Solver UNIfied Pre-trained Lan-
guage Model (UniLM) (Dong et al., 2019) have
achieved superior performance on natural language
understanding and generation tasks, which can be
used to model the generation process from the input
text to the output expression.

8128

https://ai.tencent.com/ailab/nlp/dialogue/##Dataset/
https://ai.tencent.com/ailab/nlp/dialogue/##Dataset/

40

45

50

55

60

65

70

75

2000 4000 6000 8000 10000 12000

A
ns

w
er

 A
cc

ur
ac

y
(%

)

Training Set Size

GTS

SAU-Solver

Graph2Tree

SUMC-Solver

Figure 3: Answer accuracy in different low-resource
conditions

4.4 Results and Analyses

Answer Accuracy The experiment results are
shown in Table 1. We observe that SUMC-Solver
outperforms all baselines in the two MWP datasets.
When using an RNN as the encoder, SUMC-Solver
surpasses StackDecoder and T-RNN that learn the
sequence output by 9-10 percent. For methods that
learn the binary-tree output, SUMC-Solver also
achieves better results than GTS, SAU-Solver and
Graph2Tree, although these methods used a well-
designed tree decoder or an external graph-based
encoder to enrich the representations. When using
a PLM as the encoder, SUMC-Solver achieves an
accuracy of 82.5%, a significant improvement (3
and 5 percent, respectively) over GTS-PLM and
UniLM-Solver. In conclusion, the two different
encoder settings above both show that the design
of the M-tree and M-tree codes is reasonable and
advanced, which allows us to achieve better perfor-
mance using only a simple seq2code model.

Comparison in Low-resource Situations The
annotation cost for MWPs is high, so it is desirable
for the model to perform well in lower resource
settings. Therefore, we evaluate our model perfor-
mance with GTS, SAU-Solver and Graph2Tree on
training sets of different sizes. The test set con-
tains 2,312 randomly sampled instances. Detailed
results can be found in Fig. 3. Tt can be observed
that SUMC-Solver consistently outperforms other
models irrespective of the size of the training set.
Firstly, when the size of the training set is less
than 6000, the performance of SAU-Slover is bet-
ter than that of GTS; when the number exceeds
6000, these two models perform similarly. In terms
of overall performance, the results of SAU-Solver

12

598

929

192

24 1814

634

962

191

24 1214

630

996

217

30 2017

738

1189

293

49 26

0

200

400

600

800

1000

1200

1 2 3 4 5 ≥6

A
ns

w
er

 C
or

re
ct

 C
ou

nt

Number of Operands

UniLM-Slover
GTS-PLM
SUMC-Solver
Total number

True*

Emnlp

final

Figure 4: Comparison of the number of problems an-
swered correctly by different models on test data, where
the test data are classified according to the number of
operands they require.

Model Math23K MAWPS*

RNN

T-RNN 66.9 66.8
StackDecoder 67.8 -
GTS 75.6 75.2†

SAU-Solver 76.2† 75.5†

Graph2Tree 76.6† 78.1†

SUMC-Solver 77.4 79.9

PLM
UniLM-Solver 77.5† 78.0†

GTS-PLM 79.5† 79.8†

SUMC-Solver 82.5 82.0

Table 1: Answer accuracy of SUMC-Solver and various
baselines. Math23K denotes results on the public test
set, MAWPS* denotes 5-fold cross-validation and the
results with † are obtained by our reproduction. We
reproduced the results for: 1) Getting new results, such
as the results of SAU-Solver on the public test set of
Math23K and the results of GTS-PLM; 2) Using im-
proved data preprocessing method for MAWPS.

and Graph2Tree are better than those of the GTS
when resources are constrained. Secondly, with
a 6000-sample training set, the most significant
performance gap between SUMC-Solver and other
models occurs, where our model approximately ob-
tains an additional 5% on accuracy. This shows that
SUMC-Solver has the most prominent advantages
in low-resource situations.

Performance on Different Numbers of Operands
We divide the test set (2,312 randomly sampled in-
stances) into different levels according to the num-
ber of operands (numerical values in problems)
required to calculate the answer and evaluate the
model performance on these different data. The

8129

Codes Code set size
Test set

coverage (%)

M-tree 153 100.0
Binary-tree 1290 93.5

Table 2: Comparison of Binary-Tree and M-Tree Codes.

details are shown in Fig. 4. From the results, we
can see that most of the MWPs require between 2
and 4 operands, and SUMC-Slover performs better
than the baseline models on data requiring more
operands, which shows that our solver has the po-
tential to solve more complex problems.

Comparison of Binary-Tree and M-Tree Codes
The seq2code framework can also be applied to the
binary-tree structure if choosing one binary tree for
each MWP and converting it to the codes in the
same way. We transformed the data of Math23K’s
training set and compared the binary-tree codes and
M-tree codes, which is shown in the Table 2. It can
be observed that applying the M-tree structure can
greatly reduce the size of the code set and ensure
that the obtained codes can cover the data in the
test set, which shows the effect of the M-tree on
unifying the output structure is very significant.

5 Conclusion

In this paper, we proposed SUMC-Slover to solve
math word problems, which applies the M-tree to
unify the diverse output and the seq2code model
to learn the M-tree. The experimental results on
the widely used MAWPS and Math23K datasets
demonstrated that SUMC-Solver outperforms sev-
eral state-of-the-art models under similar settings
and performs much better under low-resource con-
ditions.

Limitations

Some discussions on the limitations of SUMC-
Solver are as follows: 1) The M-tree corresponding
to the output of each MWP is unique. However,
as mentioned in Section 3.3.1, some special M-
trees need to be distinguished by introducing spe-
cial symbols randomly when converting them into
M-tree codes, which makes the M-tree codes cor-
respond to the MWP may not be unique. Through
the statistics of the datasets, we found that about
90% of the data do not belong to this particular
case. At the same time, for the remaining 10%,

despite the increased difficulty, they are still learn-
able based on previous work experience, which
makes SUMC-Solver still achieve a significant per-
formance improvement. 2) The network structure
is relatively simple for the seq2code framework
used in SUMC-Solver. In previous work, the use of
graph-based encoders and the introduction of exter-
nal knowledge to enrich the representation of the
input problem text have been shown to further im-
prove the performance of the solver, and seq2code
can be naturally integrated with these improved
approaches to try to achieve better results.

Acknowledgements

We would like to thank the anonymous reviewers
for their constructive comments. This work was
supported by the National Natural Science Founda-
tion of China (No. 61936012 and 61976114).

References
Ting-Rui Chiang and Yun-Nung Chen. 2019.

Semantically-aligned equation generation for
solving and reasoning math word problems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers),
pages 2656–2668. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
13042–13054.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 1314–1324.
Association for Computational Linguistics.

8130

https://doi.org/10.18653/v1/n19-1272
https://doi.org/10.18653/v1/n19-1272
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://doi.org/10.18653/v1/d18-1162

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In NAACL HLT
2016, The 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016, pages 1152–1157.
The Association for Computational Linguistics.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the
57th Conference of the Association for Computa-
tional Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
6162–6167. Association for Computational Linguis-
tics.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-
tree neural networks for learning structured input-
output translation with applications to semantic pars-
ing and math word problem. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, volume
EMNLP 2020 of Findings of ACL, pages 2841–2852.
Association for Computational Linguistics.

Xin Lin, Zhenya Huang, Hongke Zhao, Enhong Chen,
Qi Liu, Hao Wang, and Shijin Wang. 2021. HMS: A
hierarchical solver with dependency-enhanced under-
standing for math word problem. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, Febru-
ary 2-9, 2021, pages 4232–4240. AAAI Press.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2370–2379. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng
Tang, and Liang Lin. 2021. Neural-symbolic solver
for math word problems with auxiliary tasks. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th

International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 5870–
5881. Association for Computational Linguistics.

Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang,
and Liang Lin. 2020. Semantically-aligned universal
tree-structured solver for math word problems. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 3780–
3789. Association for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodríguez. 2019a. Sequence labeling parsing by
learning across representations. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
5350–5357. Association for Computational Linguis-
tics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodríguez. 2019b. Viable dependency parsing as
sequence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 717–723. Association for Computa-
tional Linguistics.

David Vilares, Mostafa Abdou, and Anders Søgaard.
2019. Better, faster, stronger sequence tagging con-
stituent parsers. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 3372–3383. Association for Compu-
tational Linguistics.

David Vilares and Carlos Gómez-Rodríguez. 2020. Dis-
continuous constituent parsing as sequence labeling.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 2771–
2785. Association for Computational Linguistics.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang, and
Xiaojiang Liu. 2018. Translating a math word prob-
lem to an expression tree. CoRR, abs/1811.05632.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen. 2019.
Template-based math word problem solvers with re-
cursive neural networks. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 7144–7151.
AAAI Press.

8131

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/n16-1136
https://doi.org/10.18653/v1/n16-1136
https://doi.org/10.18653/v1/p19-1619
https://doi.org/10.18653/v1/p19-1619
https://doi.org/10.18653/v1/p19-1619
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://ojs.aaai.org/index.php/AAAI/article/view/16547
https://ojs.aaai.org/index.php/AAAI/article/view/16547
https://ojs.aaai.org/index.php/AAAI/article/view/16547
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.18653/v1/p19-1531
https://doi.org/10.18653/v1/p19-1531
https://doi.org/10.18653/v1/n19-1077
https://doi.org/10.18653/v1/n19-1077
https://doi.org/10.18653/v1/n19-1341
https://doi.org/10.18653/v1/n19-1341
https://doi.org/10.18653/v1/2020.emnlp-main.221
https://doi.org/10.18653/v1/2020.emnlp-main.221
http://arxiv.org/abs/1811.05632
http://arxiv.org/abs/1811.05632
https://doi.org/10.1609/aaai.v33i01.33017144
https://doi.org/10.1609/aaai.v33i01.33017144

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, pages
845–854. Association for Computational Linguistics.

Qinzhuo Wu, Qi Zhang, Jinlan Fu, and Xuanjing Huang.
2020. A knowledge-aware sequence-to-tree network
for math word problem solving. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 7137–7146. Associa-
tion for Computational Linguistics.

Qinzhuo Wu, Qi Zhang, and Zhongyu Wei. 2021a. An
edge-enhanced hierarchical graph-to-tree network for
math word problem solving. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 16-
20 November, 2021, pages 1473–1482. Association
for Computational Linguistics.

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuanjing
Huang. 2021b. Math word problem solving with ex-
plicit numerical values. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 5859–5869. Association for
Computational Linguistics.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pages
5299–5305. ijcai.org.

Weijiang Yu, Yingpeng Wen, Fudan Zheng, and Nong
Xiao. 2021. Improving math word problems with
pre-trained knowledge and hierarchical reasoning. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 3384–3394. Associ-
ation for Computational Linguistics.

Jipeng Zhang, Roy Ka-Wei Lee, Ee-Peng Lim, Wei Qin,
Lei Wang, Jie Shao, and Qianru Sun. 2020a. Teacher-
student networks with multiple decoders for solving
math word problem. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 4011–4017. ijcai.org.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-
to-tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 3928–3937. Associa-
tion for Computational Linguistics.

A Implementation Details of the M-tree

After the data pre-processing for expression men-
tioned in 3.2, We can easily convert it into a M-tree
based on the following steps:

(1) By following the order of priority for oper-
ations: (operations in brackets) > (× = ÷) >
(+ = −), Converting the operations one-by-one in
the expression as follows:

1. For v1 ÷ v2, it is converted to v1 × v
′
2, where

v
′
2 is the reciprocal of v2.

2. For v1 − v2, it is converted to v1 + v
′
2, where

v
′
2 is the opposite of v2.

3. For v1 − v2 × v3, it is converted to v1 +
v2(×−)v3, where v2(×−)v3 means the op-
posite of v2 × v3.

4. For v1 ÷ (v2 + v3), it is converted to v1 ×
v2(+/)v3, where v2(+/)v3 means the recip-
rocal of v2 + v3.

After the conversion, only four operations we de-
fined in the M-tree will be left in the new expres-
sion, and they all have the property that the compu-
tation is not affected by the left-right order between
child nodes, which can be used to reduce the struc-
tural diversity in the horizontal direction.

(2) After obtaining the new expression, we con-
vert it to a binary tree and then reduce it from top
to bottom to get the final M-tree. Let the parent
node be vp and the child node be vc, and the details
are as follows:

1. If it is one of the 4 cases: 1) “vp = vc = +”,
2) “vp = vc = ×”, 3) “vp = +/ and vc =
+”, 4) “vp = ×− and vc = ×”, then merge
directly, delete the child node vc and assign its
children (if has) to vp and continue checking
down.

2. If “vp = × and vc = ×−”, then make “vp =
×−” and do the same as 1.

3. If “vp = ×− and vc = ×−”, then make
“vp = ×” and do the same as 1.

After merging the nodes from top to bottom, the
height of the tree will be minimized, and the tree
structure will be unified in the vertical direction.
And we obtain a structure-unified M-Tree for the
origin solution expression.

8132

https://doi.org/10.18653/v1/d17-1088
https://doi.org/10.18653/v1/2020.emnlp-main.579
https://doi.org/10.18653/v1/2020.emnlp-main.579
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/2021.findings-emnlp.127
https://doi.org/10.18653/v1/2021.acl-long.455
https://doi.org/10.18653/v1/2021.acl-long.455
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.24963/ijcai.2020/555
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362

