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Abstract
Pre-trained language models (PLMs) have out-
performed other NLP models on a wide range
of tasks. Opting for a more thorough under-
standing of their capabilities and inner work-
ings, researchers have established the extend
to which they capture lower-level knowledge
like grammaticality, and mid-level semantic
knowledge like factual understanding. How-
ever, there is still little understanding of their
knowledge of higher-level aspects of language.
In particular, despite the importance of sociode-
mographic aspects in shaping our language, the
questions of whether, where, and how PLMs
encode these aspects, e.g., gender or age, is
still unexplored. We address this research
gap by probing the sociodemographic knowl-
edge of different single-GPU PLMs on multi-
ple English data sets via traditional classifier
probing and information-theoretic minimum
description length probing. Our results show
that PLMs do encode these sociodemographics,
and that this knowledge is sometimes spread
across the layers of some of the tested PLMs.
We further conduct a multilingual analysis and
investigate the effect of supplementary train-
ing to further explore to what extent, where,
and with what amount of pre-training data the
knowledge is encoded. Our overall results indi-
cate that sociodemographic knowledge is still
a major challenge for NLP. PLMs require large
amounts of pre-training data to acquire the
knowledge and models that excel in general
language understanding do not seem to own
more knowledge about these aspects.

1 Introduction
When talking to somebody, we consciously choose
how to represent ourselves, and we have a mental
model of who our conversational partner is. At
the same time, our language is littered with sub-
conscious clues about our sociodemographic back-
ground that we cannot control (e.g., our age, edu-
cation, regional origin, social class, etc). People
use this information as an integral part of language,

to better reach their audience, and to understand
what they are saying (e.g., Trudgill, 2000). In other
words, we use sociodemographic knowledge to
decide what to say (are we talking to a child or
an adult, do I want to sound smart or relatable?)
But do pre-trained language models (PLMs) have
knowledge about sociodemographics?

Over the last years, PLMs like BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) have
achieved superior performance on a wide range of
downstream tasks (e.g., Wang et al., 2018, 2019,
inter alia). Accordingly, they have become the
de facto standard for most NLP tasks. Conse-
quently, many researchers have tried to shed light
on PLMs’ inner workings (cf. “Bertology”; Ten-
ney et al., 2019; Rogers et al., 2020). They have
systematically probed the models’ capabilities to
unveil which language aspects their internal repre-
sentations capture. In particular, researchers have
probed lower-level structural knowledge (e.g., He-
witt and Manning, 2019; Sorodoc et al., 2020; Chi
et al., 2020; Pimentel et al., 2020, inter alia), as
well as mid-level knowledge, e.g., lexico-semantic
knowledge (e.g., Vulić et al., 2020; Beloucif and
Biemann, 2021), and PLMs’ factual understand-
ing (e.g., Petroni et al., 2019; Zhong et al., 2021).
While these aspects are relatively well explored, we
still know little about higher-level knowledge of
PLMs: only a few works have attempted to quantify
common sense knowledge in the models (Petroni
et al., 2019; Lin et al., 2020). Probing of other
higher-level aspects still remains underexplored –
hindering targeted progress in advancing human-
like natural language understanding.

As recently pointed out by Hovy and Yang
(2021), sociodemographic aspects play a central
role in language. However, they remain underex-
plored in NLP, despite promising initial findings
(e.g., Volkova et al., 2013; Hovy, 2015; Lynn et al.,
2017). Importantly, we are not aware of any re-
search assessing sociodemographic knowledge in
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PLMs. This lack is extremely surprising given the
availability of resources, and the importance of
these factors in truly understanding language.

Contributions. Acknowledging the importance
of sociodemographic factors in language, we ad-
dress a research gap by proposing SOCIOPROBE,
a novel perspective of probing PLMs for sociode-
mographic aspects. We demonstrate our approach
along two dimensions, (binary) gender and age,
using two established data sets, and with different
widely-used easily-downloadable PLMs that can
be run on a single GPU. To ensure validity of our
findings, we combine “traditional” classifier prob-
ing (Petroni et al., 2019) and information-theoretic
minimum distance length (MDL) probing (Voita
and Titov, 2020). Our experiments allow us to
answer a series of research questions. We find
that PLMs do represent sociodemographic knowl-
edge, but that it is acquired in the later stages.
This knowledge is also decoupled from overall
performance: some models that excel in general
language understanding do still not have more
knowledge about sociodemographics encoded. We
hope that this work inspires more research on
the social aspects of NLP. Our research code is
publicly available at https://github.com/
MilaNLProc/socio-probe.

2 Research Questions
We pose five research questions (RQs):

RQ1: To what extend do current PLMs encode
sociodemographic knowledge? Do these models
“know” about the existence and impact of sociode-
mographic aspects like age or gender on down-
stream tasks, as repeatedly shown (e.g., Volkova
et al., 2013; Hovy, 2015; Benton et al., 2017)?
We probe different versions of the RoBERTa (Liu
et al., 2019) and DeBERTa (He et al., 2021b,a)
model families. Our findings reveal the varying
extent to which sociodemographic knowledge is
encoded in different textual domains. Surprisingly,
the superior performance of the DeBERTa model
on general NLU tasks is not reflected in the encod-
ing of sociodemographic knowledge.

RQ2: How much pre-training data is needed to
acquire sociodemographic knowledge? Are so-
ciodemographic aspects present in any data sample,
or are they only learned with sufficient amounts of
data? Inspired by Zhang et al. (2021b), we use a
suite of MiniBERTas (Warstadt et al., 2020) and
RoBERTa base trained on different amounts of

data (1M to 30B). Our results show that sociode-
mographic knowledge is learned much more slowly
than syntactic knowledge and the gains do not seem
to flatten with more training data. This indicates
that large data portions are needed to acquire so-
ciodemographic knowledge.

RQ3: Where is sociodemographic knowledge lo-
cated in the models? Sociodemographic aspects
influence a wide range of NLP tasks, both at a
grammatical level (e.g., part-of-speech tagging
Garimella et al. (2019)) and at a pragmatic level
(e.g., machine translation Hovy et al. (2020); Saun-
ders and Byrne (2020)). But where do these factors
reside themselves in the model? By probing differ-
ent layers of the PLM with SOCIOPROBE, we find
that sociodemographic knowledge is located in the
higher layers of most PLMs. This finding is in-line
with the intuition that higher-level semantic knowl-
edge is encoded in higher layers of the models (e.g.,
Tenney et al., 2019). However, on some data sets,
some of the models show an opposite trend and
the differences across the layers seem much less
pronounced than for a lower-level control task, in
which we predict linguistic acceptability.

RQ4: Does the localization of sociodemographic
knowledge in multilingual models differ? Differ-
ent languages provide different linguistic ways of
expressing sociodemographic (and other) aspects:
some lexically, some syntactically (Johannsen et al.,
2015). Do PLMs that have been exposed to multi-
ple languages store sociodemographic knowledge
differently than monolingual models? We probe
multilingual models and demonstrate that the re-
sults are in-line with the findings from RQ3. Thus,
the localization of the sociodemographic knowl-
edge in the multilingual versions does not seem to
differ from their monolingual counterparts.

RQ5: What is the effect of different supplemen-
tary training tasks on the knowledge encoded in
the PLMs’ features? Phang et al. (2018) demon-
strated that through supplementary training on
intermediate-labeled tasks (STILTs), the perfor-
mance for downstream tasks can be improved. We
hypothesize that such sequential knowledge trans-
fer can activate sociodemographics in PLMs, as
these aspects can act as useful signals, e.g., for
sentiment analysis (Hovy, 2015). However, our
experiments show that specifically the sociodemo-
graphic knowledge in the last layers of the models
is overwritten through our STILTs procedures.
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Overall, the encoding of sociodemographic
knowledge is still a major challenge for NLP: mod-
els that excel in NLU do not have more knowl-
edge about sociodemographics, learning curves
do not flatten with more pretraining data, the
knowledge is much less located than for other
tasks, and learning from other tasks is difficult.

3 Related Work

Probing PLMs. The success of large PLMs has
led to researchers developing a range of meth-
ods (e.g., Hewitt and Liang, 2019; Torroba Henni-
gen et al., 2020) and data sets (e.g., Warstadt et al.,
2020; Hartmann et al., 2021) for obtaining a better
understanding of PLMs. In turn, those approaches
also challenge these paradigms (e.g., Pimentel
et al., 2020; Ravichander et al., 2021). The most
straightforward probing approach relies on training
classifiers (e.g., Petroni et al., 2019) to probe mod-
els’ knowledge. In contrast, other probing mech-
anisms are substractive (Cao et al., 2021), intrin-
sic (Torroba Hennigen et al., 2020), or rely on con-
trol tasks (Hewitt and Liang, 2019). A popular fam-
ily is information theoretic probing (e.g., Pimentel
et al., 2020; Pimentel and Cotterell, 2021), like
minimum description length (MDL) probing (Voita
and Titov, 2020). We use MDL complementarily
to traditional probing to further substantiate our
claims. Most authors have focused on probing En-
glish language models (e.g., Conneau et al., 2018;
Liu et al., 2021; Wu and Xiong, 2020; Koto et al.,
2021, inter alia), but some have moved into the
multilingual space (e.g., Ravishankar et al., 2019;
Kurfalı and Östling, 2021; Shapiro et al., 2021), or
probed multimodal models (e.g., Prasad and Jyothi,
2020; Hendricks and Nematzadeh, 2021).

Researchers have used probing to understand
whether PLMs encode knowledge about several as-
pects of language, and to which extent: researchers
have probed PLMs for syntactic knowledge (e.g.,
Hewitt and Manning, 2019; Sorodoc et al., 2020),
lexical semantics (Vulić et al., 2020; Beloucif and
Biemann, 2021), factual knowledge (Heinzerling
and Inui, 2021; Petroni et al., 2019; Zhong et al.,
2021), and common sense aspects (Lin et al., 2020)
or domain-specific knowledge (Jin et al., 2019; Pan-
dit and Hou, 2021; Wu and Xiong, 2020). De-
spite this plethora of works, the sociodemographic
knowledge remains underexplored.

NLP and Sociodemographic Aspects. Our lan-
guage use varies depending on the characteristics

of the sender and receiver(s), e.g., their age and gen-
der (Eckert and McConnell-Ginet, 2013; Hovy and
Yang, 2021). Accordingly, researchers in NLP have
explored these variations (Rosenthal and McKe-
own, 2011; Blodgett et al., 2016) and showed that
sociodemographic factors influence model perfor-
mance (e.g., Volkova et al., 2013; Hovy, 2015).
Since then, many researchers have argued that such
factors should be taken into account for human-
centered NLP (Flek, 2020), and showed gains from
sociodemographic adaptation (e.g., Lynn et al.,
2017; Yang and Eisenstein, 2017; Li et al., 2018).

Other researchers have exploited the tie between
language and demographics to profile authors from
their texts (Burger et al., 2011; Nguyen et al., 2014;
Ljubešić et al., 2017; Martinc and Pollak, 2018).
In this work, we do not develop methods to predict
demographic aspects, but use this task as a proxy to
how well sociodemographic knowledge is encoded
in our models. Another line of research has worked
on detecting and removing unfair stereotypical bias
towards demographic groups from PLMs (Blod-
gett et al., 2020; Shah et al., 2020), e.g., gen-
der bias (May et al., 2019; Lauscher and Glavaš,
2019; Webster et al., 2020; Lauscher et al., 2021).
Most recently and closest to our work, Zhang et al.
(2021a)1 investigate the sociodemographic bias of
PLMs. They compare the PLMs cloze predictions
with answers given by crowd workers belonging to
different sociodemographic groups. However, they
do not provide further insights of the nature of this
knowledge nor how when and where it is encoded.
Our work unequivocally establishes that PLMs con-
tain sociodemographic knowledge, and shows how
it is likely acquired, and where it resides.

4 SocioProbe
We describe SOCIOPROBE, which we employ to
explore the sociodemographic knowledge PLMs
contain. Guided by the availability of data sets,
we focus on the dimensions of gender and age.
Note, however, that our overall methodology can be
easily extended to other sociodemographic aspects.

4.1 Data

We probe sociodemographic aspects on two data
sets. They vary in terms of text length and domain.

1Note that their interest is in linguistically determined
language varieties of social groups, i.e., sociolects, whereas
we focus on the interplay between individual demographic
aspects that go across language varieties: we can express
gender independent of whether we speak in dialect or standard
language.
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Dataset Name Textual Domain Dimension Label # Instances % Instances

Trustpilot Product Reviews
Gender Man 5349 49.97

Woman 50.03

Age Young 5269 52.19
Old 47.80

RTGender

Facebook Posts (Congress Members) Gender Man 510135 75.16
Woman 24.84

Facebook Posts (Public Figures) Gender Man 133,017 33.38
Woman 66.62

Fitocracy Posts Gender Man 318,535 54.54
Woman 45.46

Reddit Posts Gender Man 1,453,512 79.02
Woman 20,98

Table 1: Datasets with dimensions, number of instances (# Instances), and label distributions (% Instances).

Trustpilot (Hovy, 2015). Trustpilot2 is an inter-
national user review platform. The data consists of
the review texts (including the rating, which we do
not use in this work), as well as the self-identified
gender and age of the author. Following the origi-
nal paper, we do not consider users from 35 to 45
to reduce possible errors due to noisy boundaries.
We use the split introduced by Hovy et al. (2020),
and focus on the English portion of the data set.
For age, we use Young for users under the age of
35, and Old for people above the age of 45.

RTGender (Voigt et al., 2018). We use all texts
of the data set from three different social media
platforms: Reddit,3 Facebook (posts from politi-
cians and public figures),4 and Fitocracy.5 Our true
label corresponds to the gender of the author. In to-
tal, the data set consists of 2,415,199 instances. For
our experiments, we subsample 20,000 samples for
each domain to start from equally-sized portions.

4.2 Probing Methodology

We combine two probing methodologies: tradi-
tional classifier probing and MDL probing.

Traditional Classifier Probing. The traditional
approach to PLM probing is to place a simple classi-
fier – the probe – on top of the frozen features (e.g.,
Ettinger et al., 2016; Adi et al., 2016, inter alia).
In our case, following Tenney et al. (2019) and
Zhang et al. (2021b), we use a simple two-layer
feed-forward network (with rectified linear unit as
the activation function) with a softmax output layer.
We feed it the average hidden representations of

2https://www.trustpilot.com
3https://www.reddit.com
4https://www.facebook.com
5https://www.fitocracy.com

the PLM’s Transformer. We take care to only aver-
age over the representations of the text and ignore
special tokens. We report the F1 measure.

Minimum Description Length Probing. Tradi-
tional classifier probing has been criticized for its
reliance on the complexity of the probe (Hewitt
and Liang, 2019; Voita and Titov, 2020). To ensure
validity of our results, we thus combine classifier
probing with an information theoretic approach.
Concretely, we use MDL (Voita and Titov, 2020).
The intuition behind MDL is that the more informa-
tion is encoded, the less data is needed to describe
the labels given the representations. As in the im-
plementation of the online code estimation setting,
we partition the data into 11 non-overlapping por-
tions representing 0%, 0.1%, 0.2%, 0.4%, 0.8%,
1.6%, 3.2%, 6.25%, 12.5%, 25%, 50%, and 100%
of the full data sets with t numbers of examples
each: {(xj , yj)}tij=ti−1+1 for 1 ≤ i ≤ 11. Next, we
train a classifier on each portion i and compute the
Loss L on the next portion i+ 1. The codelength
corresponds to the sum of the resulting 10 losses
plus the codelength of the first data portion:

MDL = t1 log2 2−
10∑

i=1

Li+1 , (1)

with t1 as the number of training examples in the
first portion of the data set. A lower MDL value
indicates more expressive features.

5 Experiments
We describe our experiments.

5.1 General Experimental Setup

All our experiments follow roughly the same ex-
perimental setup: For the Trustpilot data, we use
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(a) Classic probing

(b) MDL probing

Figure 1: Results for RQ1. We compare differ-
ent RoBERTa and DeBERTa models (RoBERTa base,
RoBERTa large, DeBERTa base, DeBERTa large, De-
BERTa v3 xsmall, small, base, and large) for (a) classic
and (b) MDL probing. We report average and standard
deviation of the F1-scores for 5 runs across 7 tasks.

the standard splits provided in Hovy (2015). On
all other data sets, described in Section 4.1 we
apply a standard split, with 80% of the data for
training, 10% for validation, and 10% for testing
the models. We train all our models in batches of
32 with a learning rate of 1e-3 using the Adam
optimizer (Kingma and Ba, 2015) (using default
parameters from pytorch). We apply early stopping
based on the validation set loss with a patience of 5
epochs. If the loss does not improve for an epoch,
we reduce the learning rate by 50 %. We conduct
all experiments 5 times with different random ini-
tializations of the probes and report the mean and
the standard deviation of the performance scores.
For all models, we use versions available on Hug-
gingface and we provide links to all models and
code bases used in the Supplementary Materials.

5.2 RQ1: To what extend do PLMs encode
sociodemographic knowledge?

As initial base experiment, we want to establish
how well sociodemographic knowledge can be pre-
dicted from the features of different PLMs.

Approach. We test the features extracted from
RoBERTa (Liu et al., 2019) in base and large con-
figuration in comparison to DeBERTa (He et al.,
2021b) in xsmall, small, base, and large configura-
tion. For DeBERTa, different versions are available
in the Huggingface repository. We use the original
model as well as the v3 version (He et al., 2021a) of
base and large. The v3 employs ELECTRA-style
pre-training with gradient disentangled embedding
sharing (Clark et al., 2020) leading to improve-
ments across all GLUE tasks.6

Results. Figure 1 shows the results. Generally,
the trends in the different models are consistent
across the two different probing approaches (clas-
sic probing and MDL probing). Therefore, we
conclude the validity of our approach. The diffi-
culty of the different data sets varies: the “easiest”
task is our control task CoLA, in which we probe
lower-level syntactic knowledge. The next-easiest
task is to predict the gender in Facebook posts of
public figures (fb_wiki, e.g., 80.68 % average F1
score for RoBERTa large). In contrast, predicting
the gender of Facebook posts of congress members
is relatively difficult for the models (fb_congress,
e.g., 57.32 % average F1 score). This is in line with
the findings of Voigt et al. (2018): depending on
the domain of text, the sociodemographic aspects
of authors are reflected to varying degrees (here:
less so in more formal settings). Interestingly, we
can not confirm the overall superiority of the De-
BERTa models. While the DeBERTa v3 base and
large models outperform RoBERTa on CoLA by
a large margin (6.93 percentage points difference
between RoBERTa large and DeBERTa large, as
per He et al., 2021a), RoBERTa large seems to en-
code sociodemographic knowledge similarly well
as DeBERTa large, or to an even larger extent. The
same observation holds when comparing DeBERTa
versions. This finding warrants further investiga-
tion into how different training regimes affect the
encoding of higher-level knowledge.

6https://github.com/microsoft/DeBERTa#
fine-tuning-on-nlu-tasks
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# Tokens Costs ($) CO2 (lbs) µGain
1M 50 5.825 –

10M 500 58.250 +2.61
100M 5,075 582.500 +1.98

1B 20,320 2,330.000 +0.30
30B 609,600 69,900.000 +8.56

Table 2: Results of our cost-benefit analysis. We show
financial costs (Costs ($)) and CO2 emissions (CO2

(lbs)), gain is average F1-measure increase over the ext
smaller model across all data sets and models (µGain).

5.3 RQ2: How much pre-training data is
needed to acquire sociodemographic
knowledge?

We test models trained on varying amounts of data.

Approach. We use the suite of MiniBER-
Tas (Warstadt et al., 2020), 12 RoBERTa-like mod-
els, which have been trained on 1M, 10M, 100M,
and 1B words, respectively.7 The data was ran-
domly sampled from a corpus similar to the original
BERT (Devlin et al., 2019). Pretraining data con-
sisted of the English Wikipedia and Smashwords,
which is similar to the BookCorpus (Zhu et al.,
2015). The size of the model trained on the smallest
portion (1M) is medium small (6 layers, 8 attention
heads, hidden size of 512). The other models were
trained with the base configuration (12 layers, 12
attention heads, hidden size of 768). For each size,
3 checkpoints are available (the ones which yielded
lowest validation perplexity), trained with differ-
ent hyperparameters. In comparison, we probe the
original RoBERTa in base configuration (Liu et al.,
2019), trained on approximately 30B words.

Results. The results for the classic and MDL
probing are depicted in Figures 2a and 2b, respec-
tively. Across all data sets, the sociodemographic
classification improves with more pretraining data.
The learning curves in the classic probing do not
flatten out, which indicates the potential for more
research on the topic. We conclude that with more
pretraining data, more sociodemographic knowl-
edge is present in the features. This finding con-
trasts with other lower-level tasks, such as syntac-
tic knowledge (Zhang et al., 2021b; Pérez-Mayos
et al., 2021). As we hypothesized, though, it is simi-
lar to other higher-level language aspects, like com-
mon sense knowledge. Our control task, CoLA,
exactly reflects this trend: the learning curve of

7Publicly available at https://huggingface.co/
nyu-mll/roberta-med-small-1M-1

(a) Classic probing

(b) MDL probing

Figure 2: Classic and MDL probing results for
RoBERTa models trained on varying amounts (1M–30B
words) of pre-training data (RQ2).

predicting linguistic acceptability is much steeper.

Cost-benefit Analysis. Inspired by Pérez-Mayos
et al. (2021), we conduct a cost-benefit analysis.
The authors base their estimate on the costs pro-
vided in Strubell et al. (2019). We follow their
approach,8 and approximate the financial costs
of training a model with $60,948 / 30B words *
#TrainingWords for each of the MiniBERTas, and
the CO2 emissions of each MiniBERTa model as
6,990 lbs / 30B * #TrainingWords. The final cost
needs to be scaled with the number of pre-training
procedures needed for model optimization reported
by Warstadt et al. (2020) (10 times for the 1B
MiniBERTa, 25 times for the other MiniBERTa
models). In contrast to Pérez-Mayos et al. (2021),
we also include RoBERTa base in our analysis
and scale the costs accordingly. Table 2 shows the

8Note, that these are presumably a overestimates, as hard-
ware has been getting cheaper and more power efficient.
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(a) Trustpilot (Age) (b) Trustpilot (Gender) (c) Facebook Congress

(d) Facebook Wiki (e) Fitocracy (f) Reddit (g) CoLA

Figure 3: Layer-wise F1-scores (average and standard deviation) for DeBERTa original and v3 large and base and
RoBERTa large and base across 5 runs and 7 tasks ((a) Trustpilot Age to (g) CoLA).

(a) Trustpilot (Age) (b) Trustpilot (Gender) (c) Facebook Congress

(d) Facebook Wiki (e) Fitocracy (f) Reddit (g) CoLA

Figure 4: Results for our analysis of multilingual models (RQ4). We show F1-scores (average and standard
deviation) across 5 runs on 7 tasks ((a) Trustpilot (Age) to (g) CoLA). The features we probe are extracted from
different layers of XLM-RoBERTa large, XLM-RoBERTa base, and mDeBERTa base.

cost estimates and expected performance improve-
ments. Between 1M and 1B tokens the expected
gains flatten (see previous analysis), while the gains
are lower than the ones reported by Pérez-Mayos
et al. (2021) for syntactic tasks. However, with
30B we can expect a large performance improve-
ment indicating that higher performance can only
be expected at even higher financial and environ-
mental costs. Given that the already high baseline
costs, such a development is ethically problematic.
Our results support the need for more research on

sustainable NLP, especially when tasks require in-
depth language understanding.

5.4 RQ3: Where is sociodemographic
knowledge located?

We test embeddings extracted from different layers.

Approach. In the previous experiments, we fol-
lowed the standard approach and pooled represen-
tations from the last layer of the Transformer. In
contrast, here we test the average pooled representa-
tions from each layer n ∈ [1 : num_layers], where
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(a) Trustpilot (Age) (b) Trustpilot (Gender) (c) Facebook Congress

(d) Facebook Wiki (e) Fitocracy (f) Reddit (g) CoLA

Figure 5: Results of our STILTs analysis (RQ5) in terms of F1 scores (average and standard deviation) for 5 runs
across 7 tasks ((a) Trustpilot Age to (g) CoLA). The features we probe are extracted from the original RoBERTa
large, and RoBERTa large models, which we obtain from fine-tuning RoBERTa on 6 tasks: Part-of-Speech Tagging
(POS Tagging), Named Entity Recognition (NER), Linguistic Acceptability Prediction (Ling. Acc.), Natural
Language Inference (NLI), Question Answering (QA), and Sentiment Analysis (SA).

num_layers corresponds to the number of layers in
the model. We test RoBERTa and DeBERTa (origi-
nal and v3) in the large and base configurations.

Results. We show the results in Figures 3a–3g.
Note the relatively high standard deviations com-
pared to the overall performance range. The ex-
ception to this observation is again CoLA, our
control task (Figure 3g). The tendency seems to
be that higher layers offer better representations
for sociodemographic classification (e.g., Trustpi-
lot (Age) in Figure 3a, Reddit (Gender) in Fig-
ure 3f), but performance improvement across lay-
ers is much more skewed for CoLA than for the
sociodemographic probing tasks. Especially for
DeBERTa v3 base, the probing results are often
better for lower model layers (e.g., Figure 3c). This
runs counter to Tenney et al. (2019), who showed
higher-level semantic knowledge to be encoded in
the higher layers of BERT. We conclude that so-
ciodemographic knowledge is much less localized
in PLMs than lower-level knowledge. This finding
corresponds to the observation that different so-
ciodemographic factors are expressed in different
ways (Johannsen et al., 2015). As in our experi-
ments for answering RQ1, DeBERTa large v3 has
superior knowledge about lower-level linguistic as-
pects, but not sociodemographic knowledge.

5.5 RQ4: Does the sociodemographic
knowledge in multilingual models differ?

Hung et al. (2022) recently showed that straight-
forward attempts to (socio)demographic adaptation
of multilingual Transformers can lead to a better
separation of representation areas according to in-
put text languages and not according to author de-
mographics. This leads us to question whether the
multilingual signal significantly affects the encod-
ing of sociodemographic knowledge in the models.
We probe multilingual PLMs for their encoding of
sociodemographics in English and further validate
our previous findings.

Approach. We use multilingual versions of
RoBERTa and DeBERTa available on Huggingface:
XLM-RoBERTa in large and base configuration
and mDeBERTa v3 in base configuration.9

Result. We only show the classic probing re-
sults (Figure 4, see Appendix for MDL). While
the scores are slightly lower than for monolingual
PLMs, they are generally in-line with our findings
from RQ2: sociodemographic knowledge is less
localized than that for CoLA. While for XLM-
RoBERTa large and base higher layers encode
the sociodemographics, the results of DeBERTa
v3 base show an opposite trend. We conclude
that the localization of sociodemographic knowl-

9No large configuration of mDeBERTa was available
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edge in multilingual models follows their mono-
lingual counterparts. The layer-wise behavior of
DeBERTa v3 base is an additional pointer to the
effect of the training regimes on the sociodemo-
graphic knowledge encoded in PLMs.

5.6 RQ5: What is the effect of STILTs on the
encoding of the knowledge?

We explore the effect of STILTs on the sociodemo-
graphic knowledge encoded in the layers.

Approach. We use the encoders of readily fine-
tuned RoBERTa large models from the Hugging-
face repository trained on the following tasks and
data sets: POS tagging and dependency parsing on
UPOS, named entity recognition, natural language
inference on MNLI, question answering on SQuaD
v.2., sentiment analysis on SST2, and linguistic
acceptability prediction on our control task CoLA.

Results. See Figure 5 for the classic probing re-
sults (MDL probing results in the Appendix). Un-
surprisingly, supplementary training on Linguistic
Acceptability Prediction (=our control task CoLA),
leads to superior representations for CoLA prob-
ing (Figure 5g). This effect is clearly visible from
layer 5 onwards, indicating that the top 19 layers
become specialized during the STILTs fine-tuning.
In contrast, the selected STILTs tasks do not im-
prove the sociodemographic knowledge in the rep-
resentations (e.g., QA STILTs for gender predic-
tion in Trustpilot) or even reduce that knowledge
(e.g., NLI and SA STILTs for gender prediction
in FB Wiki (Figure 5d)). The results suggest that
sociodemographic knowledge is overwritten dur-
ing STILTs. Interestingly, this effect mostly occurs
on the last 5 to 10 layers (e.g., Trustpilot Age pre-
diction from layer 10 (Figure 5a), and much more
gently than the CoLA improvement.

6 Conclusion

Sociodemographic aspects shape our language and
are thus important factors to model in language
technology. However, despite a plethora of works
probing PLMs for various types of knowledge, we
know little about these higher-level aspects of lan-
guage. We present SOCIOPROBE to understand
whether, when, and where PLMs encode sociode-
mographic knowledge in their representations. We
find that sociodemograophic knowledge is located
in PLMs, but much more diffuse than lower-level
aspects. In the future, we will extend our analysis
to languages other than English. We hope that our

findings will fuel further research towards human-
like language understanding.
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Limitations
Our work deals with predicting sociodemographic
aspects from text, which should be considered sen-
sitive information. Predictive methods can result in
potentially harmful applications, e.g., in the context
of user profiling. We acknowledge this potential
for dual use (Jonas, 1984) of the data sets we use.
However, in this work, we are interested in advanc-
ing NLP research towards a better understanding
of such fine-grained aspects of language and how
they are already captured by our technology. We
believe that these insights will lead us toward fairer
and more inclusive language technology. In con-
trast, we explicitly discourage the prediction of
sensitive attributes from text for harmful purposes.

Further, we acknowledge that our work is limited
in that the data sets available to us model gender as
a binary variable, which does not reflect the wide
variety of possible identites along the gender spec-
trum and beyond (Lauscher et al., 2022). However,
we are not aware of other suitable data sets without
this limitation. We have reason to believe, though,
that even the findings derived from a binary view
on gender (as well as for age) can provide an ini-
tial understanding of how language varies, and that
any results will hold under a more sophisticated
modeling of the problem.

An additional limitation of our work comes from
the pre-trained models we used. All the models
tested are easily-downloadable single-GPU models
that have been pre-trained on general-purpose data.
We acknowledge that results might differ for mod-
els that were of bigger capacity and pre-trained on
data from other and more specific domains, e.g.,
social media. The same argument can be made
about the architectures used. We mainly focused
on BERT-like models trained via MLM, which are
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only a subset of the language models proposed in
the literature. We leave the exploration of these ef-
fects (e.g., pre-training objective) for future work.
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A Models Used
We provide an overview on all models we have
used in this study. They are available on the Hug-
gingface Hub: https://huggingface.co.

A.1 Models Used for RQ1

For our base experiment we have used the follow-
ing models.

• roberta-base: 12 layers, 12 attention
heads, hidden size of 768

• roberta-large: 24 layers, 16 attention
heads, hidden size of 1024

• microsoft/deberta-v3-base: 12
layers, 12 attention heads, hidden size of 768

• microsoft/deberta-v3-large: 24
layers, 16 attention heads, hidden size of 1024

• microsoft/deberta-v3-xsmall: 12
layers, 6 attention heads, hidden size of 384

• microsoft/deberta-v3-small: 6
layers, 12 attention heads, hidden size of 768

• microsoft/deberta-base: 12 layers,
12 attention heads, hidden size of 768

• microsoft/deberta-large: 24 layers,
16 attention heads, hidden size of 1024

A.2 Models Used for RQ2

For investigating the amount of pre-training data
needed, we have used the suite of MiniBERTas,
and RoBERTa base.

• roberta-base: 12 layers, 12 attention
heads, hidden size of 768

• nyu-mll/roberta-base-1B-1: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-1B-2: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-1B-3: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-100M-1: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-100M-2: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-100M-3: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-10M-1: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-10M-2: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-base-10M-3: 12
layers, 12 attention heads, hidden size of 768

• nyu-mll/roberta-med-small-1M-1:
6 layers, 8 attention heads, hidden size of 512

• nyu-mll/roberta-med-small-1M-2:
6 layers, 8 attention heads, hidden size of 512

• nyu-mll/roberta-med-small-1M-3:
6 layers, 8 attention heads, hidden size of 512

A.3 Models Used for RQ3

We investigated the layer-wise knowledge of the
following models.

• roberta-base: 12 layers, 12 attention
heads, hidden size of 768

• roberta-large: 24 layers, 16 attention
heads, hidden size of 1024

• microsoft/deberta-v3-base: 12
layers, 12 attention heads, hidden size of 768

• microsoft/deberta-v3-large: 24
layers, 16 attention heads, hidden size of 1024

• microsoft/deberta-base: 12 layers,
12 attention heads, hidden size of 768

• microsoft/deberta-large: 24 layers,
16 attention heads, hidden size of 1024

A.4 Models Used for RQ4

As multilingual counter-parts, we employed the
following models.

• xlm-roberta-base: 12 layers, 12 atten-
tion heads, hidden size of 768

• xlm-roberta-large: 24 layers, 16
heads, hidden size of 1024

• microsoft/mdeberta-v3-base: 12
layers, 12 attention heads, hidden size of 768

7915

https://huggingface.co


A.5 Models Used for RQ5

Finally, we ran the STILT experiment with the fol-
lowing models.

• roberta-large: 24 layers, 16 heads, hid-
den size of 1024

• KoichiYasuoka/roberta-large
-english-upos: 24 layers, 16 heads,
hidden size of 1024

• Jean-Baptiste/roberta-large
-ner-english: 24 layers, 16 heads,
hidden size of 1024

• cointegrated/roberta-large
-cola-krishna2020: 24 layers, 16
heads, hidden size of 1024

• roberta-large-mnli: 24 layers, 16
heads, hidden size of 1024

• navteca/roberta-large-squad2:
24 layers, 16 heads, hidden size of 1024

• howey/roberta-large-sst2: 24 lay-
ers, 16 heads, hidden size of 1024

B Additional Results
We provide the additional results for MDL probing.

B.1 Additional Results for RQ3

The layer-wise analysis for MDL probing is pro-
vided in Figure 6.

B.2 Additional Results for RQ4

We show the MDL results for the multilingual anal-
ysis in Figure 7.

B.3 Additional Results for RQ5

We provide the MDL probing results for our STILT
analysis in Figure 8.
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(a) Trustpilot (Age) (b) Trustpilot (Gender) (c) FB Congress (Gender)

(d) FB Public (Gender) (e) Fitocracy (Gender) (f) Reddit (Gender) (g) CoLA

Figure 6: Results showing our layer-wise analysis of DeBERTa original and v3 large and base and RoBERTa large
and base in terms of average and standard deviation of the MDL for 5 runs across 7 tasks ((a) Trustpilot Age to (g)
CoLA)

(a) Trustpilot (Age) (b) Trustpilot (Gender) (c) FB Congress (Gender)

(d) FB Public (Gender) (e) Fitocracy (Gender) (f) Reddit (Gender) (g) CoLA

Figure 7: Results for our analysis of multilingual models in terms of average and standard deviation of the MDL
scores for 5 runs across 7 tasks ((a) Trustpilot (Age) to (g) CoLA) for features extracted from different layers of
XLM-RoBERTa large and base and mDeBERTa base.
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(a) Trustpilot (Age) (b) Trustpilot (Gender) (c) FB Congress (Gender)

(d) FB Public (Gender) (e) Fitocracy (Gender) (f) Reddit (Gender) (g) CoLA

Figure 8: Results for our Supplementary Training on Intermediate Labeled Tasks (STILT) analysis. We show the
probing results in terms of average and standard deviation of the MDL scores for 5 runs across 7 tasks ((a) Trustpilot
Age to (g) CoLA) for features extracted from the original RoBERTa large, and RoBERTa large fine-tuned on 6 tasks:
Part-of-Speech Tagging (POS Tagging), Named Entity Recognition (NER), Linguistic Acceptability Prediction
(Ling. Acc.), Natural Language Inference (NLI), Question Answering (QA), and Sentiment Analysis (SA).
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