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Abstract
Keyphrase generation aims to generate a set
of condensed phrases given a source docu-
ment. Although maximum likelihood estima-
tion (MLE) based keyphrase generation meth-
ods have shown impressive performance, they
suffer from the bias on the source-prediction
pair and the bias on the prediction-target pair.
To tackle the above biases, we propose a novel
correction model CorrKG on top of the MLE
pipeline, where the biases are corrected via the
optimal transport (OT) and a frequency-based
filtering-and-sorting (FreqFS) strategy. Specif-
ically, OT is introduced as the soft correction
to facilitate the alignment of salient informa-
tion and rectify the semantic bias on the source
document and predicted keyphrases pair. An
adaptive semantic mass learning scheme is con-
ducted on the vanilla OT to achieve a proper
pair-wise optimal transport procedure, which
promotes the OT calculation brought by recti-
fying semantic masses dynamically. Besides,
the FreqFS strategy is designed as the hard cor-
rection to reduce the bias of predicted and tar-
get keyphrases, and thus generate accurate and
sufficient keyphrases. Extensive experiments
over multiple benchmark datasets show that our
model achieves superior keyphrase generation
as compared with the state-of-the-arts.

1 Introduction

Keyphrase generation is an important and mean-
ingful task that converts the main semantic infor-
mation of the document into multiple keyphrases.
Keyphrases can further be divided into present
keyphrases and absent keyphrases, with the for-
mer appearing in the document whereas the latter
do not. High-quality keyphrases are beneficial for
many downstream tasks, such as text summariza-
tion (Wang and Cardie, 2013), document clustering
(Hammouda et al., 2005), translation (Tang et al.,
2016), and so forth. Despite the promising suc-
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Figure 1: An example of keyphrase generation. The
cyan reflects the bias on the source-prediction pair while
the red is the bias on the prediction-target pair.

cess, there still exist two biases in current methods.
The first one is that plenty of generated keyphrases
do not match a consistent semantic description of
a source document. For instance, the generated
keyphrase “error” by catSeqD (Yuan et al., 2020)
in Figure 1 goes beyond the content of the source
document, which means there exists a bias, i.e.,
the semantic unfaithfulness between the source
document and generated keyphrases. The under-
lying reason may be that Maximum Likelihood
Estimation (MLE)-driven models ignore the cor-
respondences on the source-prediction sequence
pair. Meanwhile, the second bias is that there are
some discrepancies between the predicted and tar-
get keyphrases. Take an example from Figure 1,
the predicted keyphrase “learning weights” from
BART (Lewis et al., 2020) is semantically sim-
ilar to the target keyphrase “learning”, with the
redundant word “weights”. A possible explanation
for this phenomenon is that MLE based methods
leverage greedy search by choosing the one with
the maximum probability as the target, which ne-
glects the target keyphrases that may appear in sub-
optimal candidates. In contrast, beam search based
methods select top-k keyphrase sequences rather
than the maximum one and thus are more likely
to incorporate target keyphrases. However, this
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may result in a large amount of noisy keyphrases
being generated in the top-k predictions. Above
greedy or beam search based decoding imposes
its own limited aspect, causing the second bias in
keyphrase generation.

In order to alleviate the above biases, we pro-
pose a correction model on top of the MLE back-
bone, namely CorrKG, including a soft correction
mechanism based on the optimal transport (OT)
theory and a hard correction mechanism with a
Frequency-based Filtering and Sorting (FreqFS)
strategy. In the process of the soft correction, the
OT is adopted to transform the source semantic
distribution to the predicted target semantic distri-
bution with a minimum transport cost (i.e., OT dis-
tance). Hence, the OT distance can be utilized as a
correction term to measure the difference between
the two semantic distributions and supervise the
model to focus on salient semantic information con-
veying. Since not all source document tokens are
equally contributed to keyphrase generation, uni-
form distribution may hinder proper semantic mass
transport in the OT distance calculating. Therefore,
to reduce the negative pair-wise assignment proce-
dure, we equip the vanilla OT with cross-attention
weights to adaptively adjust the semantic distribu-
tions, instead of directly adopting the equal masses
generated from the uniform distribution like previ-
ous works (Chan et al., 2019; Kusner et al., 2015).
In addition, we introduce BERT-score to evaluate
semantic consistency in the soft correction proce-
dure. Furthermore, the FreqFS strategy is designed
to rectify the bias between the predicted and target
keyphrases. As shown in Figure 1, it can be found
that the more frequently a keyphrase appears, the
more possible it is to be a ground truth (e.g., “learn-
ing”, “quasi linear means”). Inspired by the above
observation, the FreqFS strategy first explores mul-
tiple keyphrase sequences through beam search.
Then the FreqFS strategy filters out keyphrases
depending on their frequencies and subsequently
sorts preserved keyphrases. In doing so, the FreqFS
strategy can act as a hard correction mechanism to
reduce the bias between the predicted and target
keyphrases. The main contributions are listed as
below:

(1) Building upon the MLE optimized BART
backbone, we propose to correct the supervised
model by the soft correction mechanism based on
optimal transport technique and the hard correction
mechanism with the FreqFS strategy.

(2) We extend the vanilla OT technique with
an adaptive mass learning scheme that is capable
of rectifying semantic masses dynamically, and
introduce BERT-score to quantitatively evaluate
the gains of semantic consistency brought by the
improved OT.

(3) Extensive experiments on several popular
benchmarks show that CorrKG outperforms state-
of-the-art solutions and the results verify the effec-
tiveness of the proposed model.

2 Related Work

2.1 Keyphrase Extraction and Generation

Existing methods for keyphrase prediction can be
mainly categorized into extraction and generation
methods. The extraction methods concentrate on
selecting important words or phrases from a docu-
ment as keyphrases (Florescu and Caragea, 2017;
Alzaidy et al., 2019; Prasad and Kan, 2019). How-
ever, keyphrase extraction methods can only predict
present keyphrases.

In order to predict both present and absent
keyphrases, CopyRNN (Meng et al., 2017) is the
first to employ the attention-based sequence-to-
sequence (Seq2Seq) model to generate keyphrases
with copy mechanism (Gu et al., 2016). Then a
wide range of extensions of CopyRNN follows
(Chen et al., 2018, 2019). All of the above gen-
erative models are under One2One paradigm and
rely on beam search to select fixed top-k candidates
as the final keyphrases. However, it is unreason-
able to keep fixed top-k, since different documents
have different numbers of keyphrases. Yuan et al.
(2020) proposes the One2Seq paradigm and applies
orthogonal regularization, target encoding strate-
gies and semantic coverage mechanism to generate
diverse numbers of keyphrases. ExHiRD (Chen
et al., 2020) employs a complex exclusive hierar-
chical decoding framework to generate keyphrases.
Besides, under One2Seq paradigm, some meth-
ods (Yuan et al., 2020; Meng et al., 2021) try to
use beam search to over-generate keyphrases. The
most advanced paradigm is One2Set (Ye et al.,
2021) and it employs additional control codes for
keyphrase generation. However, these models ig-
nore the dense semantic correspondence between
the source and predictions as well as the discrepan-
cies between the predicted and target keyphrases.
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Figure 2: The overview of the CorrKG (Top). Soft correction on the source-prediction pair (Left-Bottom) and hard
correction on the prediction-target pair (Right-Bottom).

2.2 Optimal Transport

Recently, optimal transport is proved to be bene-
ficial for various NLP tasks, including document
distance calculation (Kusner et al., 2015), topic
modeling (Xu et al., 2018), and table-to-text gen-
eration (Wang et al., 2020). Kusner et al. (2015)
proposes WMD distance to measure the dissimilar-
ity between two documents via optimal transport.
Xu et al. (2018) proposes a novel optimal-based
method with a distillation mechanism for Wasser-
stein topic modeling. Wang et al. (2020) employs
OT to establish the content-matching constraints
between the text and table. To our best knowledge,
we are the first to introduce the optimal transport
into keyphrase generation.

3 Methodology

The proposed CorrKG consists of three compo-
nents: (1) a BART backbone; (2) the soft correction
mechanism; (3) the hard correction mechanism.
Figure 2 shows the architecture. We details these
components in the following subsections.

3.1 Problem Formulation

Given a source document X = (x1, x2, ..., xlx)
with lx words, the task of keyphrase genera-
tion aims to generate a set of keyphrases Y ={
y1,y2, . . . ,y|Y|}, where |Y| is the number of the

keyphrases. Each keyphrase yi =
(
yi1, . . . , y

i
lyi

)

is a sequence of keywords, where lyi denotes the
number of words in yi.

3.2 Backbone
BART (Lewis et al., 2020) is a transformer-based
(Vaswani et al., 2017) sequence-to-sequence pre-
trained model and has obtained numerous advanced
results on various generative tasks. Therefore,
we utilize BART as our backbone to generate
keyphrases in an end-to-end manner.

We first split the source document X and target
keyphrases Y using the BART tokenizer (Lewis
et al., 2020). Each X and Y are tokenized into two
sequences of tokens Xb = {xb1, xb2, ..., xbm} and
Yb = {yb1, yb2, ..., ybn} respectively, where m and
n are the numbers of tokens, xb1 and yb1 indicate
the start special token <s>, and xbm and ybn are the
end token </s>. Then the BART encoder trans-
forms Xb to H = BARTenc(Xb) ∈ Rm×d, where
d is the hidden dimension. After obtaining the
source document representation H and previous
decoder outputs ŷb:t−1, the BART decoder gener-
ates the probability distribution pt ∈ R|V| over
the predefined vocabulary V1, the cross-attention
weights at = {a1t , ..., aZt } and the t-th output token
ŷbt = argmax

|V|
(pt):

pt, at = BARTdec(H, ŷb:t−1), (1)

where Z is the number of heads. The widely
used Maximum Likelihood Estimation loss LMLE
is adopted to train the backbone model:

LMLE = −
n∑

t=1

log pθ

(
ybt | yb

:t−1,Xb
)
. (2)

1V contains special tokens <s> and </s>.
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3.3 Soft and Hard Correction Mechanisms
3.3.1 Soft Correction Mechanism based on

Optimal Transport
Optimal Transport To correct the semantic in-
consistency between the source document and gen-
erated keyphrases, we formulate the keyphrase gen-
eration as an optimal transport problem. Given a
source distribution µ and the corresponding target
distribution ν, optimal transport attempts to gain
minimal transportation cost between the both. In
particular, µ and ν are sampled from probability
space X,Y ∈ Ω, respectively. When the cost func-
tion c(x, y) : X × Y 7→ R+ is constructed, Kan-
torovich (2006) addresses optimal transport prob-
lem with a probabilistic coupling π ∈ P(X× Y):

π∗ = argmin
π∈Π(µ,ν)

∫

X×Y
c(x,y)π(x,y)dxdy, (3)

where π is the joint probability mea-
sure given margins µ and ν, Π(µ, ν) ={∫

Y π(x, y)dy = µ,
∫
X π(x, y)dx = ν,π ≥ 0

}
.

In this paper, since the OT is applied on the textual
data, we only utilize OT between the discrete
source distribution µ =

∑m
i=1 p

s
i δ(xi) and the

discrete target distribution ν =
∑n

j=1 p
t
jδ(yj).

δ(xi) is the Dirac function centered on xi, m
and n are the number of samples. psi and ptj
denote the corresponding probability mass, which
respectively belong to the m and n-dimensional
probability simplex, i.e.,

∑m
i=1 p

s
i =

∑n
i=1 p

t
j = 1.

A cost matrix C is defined with Cij denoting the
transport cost from sample i to sample j. Under
such a setting, the optimal transport problem can
be formulated as:

T ∗ = argmin
T∈Rm×n

+

∑

ij

TijCij

s.t. T1n = µ, T⊤1m = ν,

(4)

where T ∗ is the transport matrix or optimal trans-
port plan so as to gain an overall minimum cost∑

ij TijCij , i.e., the OT distance. Tij is the mass
transported from xi to yj .

However, it is intractable to compute the ex-
act T ∗ (Arjovsky et al., 2017; Salimans et al.,
2018). Hence the recently proposed Inexact Proxi-
mal point method for Optimal Transport (IPOT)2

(Xie et al., 2019) is adopted to approximate the
optimal transport plan and OT distance.

2Details of the IPOT are described in the Appendix A.1.

Adaptive Mass Learning Scheme When the OT
distance is introduced into the keyphrase genera-
tion, we denote µ and ν as the semantic distribution
of source document Xb and predicted keyphrases
Ŷ

b
, respectively. The OT distance can be regarded

as a metric to evaluate the strength of semantic
correlation between Xb and Ŷ

b
. If there is no any

prior knowledge, µ and ν are usually set to uni-
form distributions (Kusner et al., 2015; Chan et al.,
2019), indicating the same importance of each to-
ken in the source document. However, assigning
the same mass to each token in the source document
is unreasonable in keyphrase generation, since it
ignores the apparent semantic discrepancy of dif-
ferent tokens and aggravates the semantic bias on
the source-prediction pair.

To adaptively compute the mass of semantic in-
formation within each token between the source
document and generated keyphrases, we introduce
an importance-aware semantic matrix A, which can
be obtained by gathering all steps’ weight vectors
of cross-attention between the encoder and last de-
coder layer A = {ā1, ..., ān} ∈ Rn×m. Note that
āi = 1

Z

∑Z
z=1 a

z
i ,

∑n
i=1

∑m
j=1Aij = n, and azi

is obtained from Eq.1. For simplicity, we denote
A⊤ ∈ Rm×n as the transpose of A. Then, we can
obtain the semantic distributions µ and ν via the
importance-aware matrix A:

µi =
1

n

n∑

j=1

A⊤
ij , ∀i ∈ {1, ...,m}, (5)

νj =
1

n

m∑

i=1

A⊤
ij , ∀j ∈ {1, ..., n}. (6)

Note that the semantic distribution µ of source
token sequence Xb is adaptively updated in training.
In contrary, the semantic distribution ν of generated
keyphrase token sequence Ŷ

b
is fixed as { 1n , ..., 1

n},
since each keyphrase token is equally important.
We treat the solution of replacing the uniform dis-
tribution with learnable cross-attention weights as
the adaptive mass learning scheme, which results
in more reasonable calculation of OT distance.

Transport Cost between Tokens We use se-
mantic similarity to measure the unit transport
cost between the source document and predicted
keyphrases. Intuitively, the higher the semantic
similarity between the two tokens is, the lower the
unit transportation cost between them becomes. We
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adopt cosine similarity as the semantic similarity:

Sim(ei, ej) =
ei

⊤ej
∥ei∥2∥ej∥2

, (7)

where ei denotes the embedding vector of the
source document token xbi , ej = E⊤pj denotes
the mean token embedding vectors of the j-th pre-
dicted keyphrase token3, E ∈ R|V|×d indicates the
token embedding matrix, and pj ∈ R|V|×1 is the
probability distribution of the j-th output shown in
Eq.1. Finally, we can yield the transport cost matrix
C = {cij |i = 1, ...m; j = 1, ..., n} as Eq.8:

cij = 1− Sim(ei, ej). (8)

With the obtained OT distance, a soft correction
loss is defined to correct the semantic bias between
the source document and its generated keyphrases:

LOT = OT (µ, ν) =
m∑

i=1

n∑

j=1

T ∗
ijCij . (9)

The overall training objective can be optimized as
follows:

L = LMLE + λLOT, (10)

where the hyper-parameter λ balances the losses
in the objective. LMLE and LOT complement each
other to achieve better keyphrase generation.

3.3.2 Hard Correction Mechanism with
Frequency-based Filtering and Sorting
Strategy

To release the bias between the noisy predicted and
target keyphrases, we propose a novel Frequency-
based Filtering and Sorting (FreqFS) strategy to
generate accurate keyphrases ŷ = {ŷb1, ŷb2, ..., ŷb|ŷ|}.
Specifically, FreqFS first explores multiple candi-
date keyphrases with beam search. Starting from
the initial token4 ⟨bos⟩, the proposed model pre-
dicts the subsequent Yt relying on the following
recursion for t ∈ {1, ..., n}:

Y0 ← ⟨bos⟩,
Yt ← argmax

Y ′
t⊆Bt,|Y ′

t |=k

log pθ

(
Y ′
t | Xb

)
,

(11)

where k indicates the beam size, Bt denotes the
candidate beam set at step t > 0. Since the vast ma-
jority of duplicate keyphrases are generated consec-
utively in each beam, the FreqFS strategy enforces

3The soft-argmax (Zhang et al., 2017) is employed to avoid
the non-differentiable operation of sampling the j-th predicted
output.

4We omit the beam search scores for brevity.

the decoder to produce no repetition of tri-grams,
causing almost no duplication in each beam. The
beam set Bt is formulated as:

Bt ={y:t−1 ◦ ŷbt | ŷbt ∈ V and y:t−1 ∈ Yt−1

and yt−2 ◦ yt−1 ◦ ŷbt /∈ tri-gram(y:t−1)},
(12)

where |Bt| ≤ |V| · k, ◦ denotes token concatena-
tions, and tri-gram(y:t−1) means any tri-gram to-
kens that appeared in y:t−1 when t > 2. After that,
the FreqFS strategy splits the generated keyphrase
token sequences y with delimiter “;” to yield multi-
ple keyphrases. Kp

q is defined as the q-th keyphrase
in the p-th beam.

Different from vanilla beam search that concate-
nates all beam sequences or keeps the fixed number
of keyphrasesas as the final output, FreqFS filters
out the candidate keyphrases whose frequencies are
lower than thresholds. The frequency distribution
freq(Kp

q) is counted by the number of occurrences
for each candidate keyphrase:

freq(Kp
q) =

∑

{p1,q1|p1 ̸=p∩q1 ̸=q}
I(Kp

q ∩ Kp1
q1 ) + 1,

(13)
where I(·) indicates an indicator function. Then
the cleaned keyphrase K can be obtained with the
filter operation:

K =

{
Kp

q | freq(Kp
q) ≥ ξ, if Kp

q ∈ Xb

Kp
q | freq(Kp

q) ≥ ζ, otherwise,
(14)

with the threshold ξ for present keyphrases and ζ
for absent keyphrases. Finally, the FreqFS strat-
egy sorts the cleaned keyphrases to yield the final
keyphrases. The details of FreqFS are described in
Alg. 1.

4 Experiment Setup

4.1 Datasets
We experiment over multiple benchmark datasets,
including KP20k (Meng et al., 2017), SemEval
(Kim et al., 2010), NUS (Nguyen and Kan, 2007),
and Inspec (Hulth, 2003). The KP20k dataset con-
tains 509,820 training samples, 20,000 validation
samples and 20,000 testing samples. Following
previous works (Yuan et al., 2020; Chen et al.,
2020; Ye et al., 2021), we employ the training set
of KP20k to train and utilize the testing sets from
the four benchmarks to gauge all the models.5

5Statistics of the datasets are described in the Appendix
A.2.

7761



Algorithm 1 The Frequency-based Filtering and
Sorting strategy
Input: Source document X , beam size k, max-

imum generated length n, and scoring function
score(X,Y ) = log pθ (Y | X).
Output: The cleaned keyphrases K.
1: Y0 ← {0, ⟨bos⟩}
2: for t ∈ {1, ..., n} do
3: Bt ← ∅
4: for {s,y} ∈ Yt−1 do
5: if y.last() == ⟨/s⟩ then
6: Bt.add({s,y})
7: continue
8: for yt ∈ V do
9: if yt−2 ◦ yt−1 ◦ yt ∈ tri-gram(y)

then
10: s← −inf // enforce no repeti-

tion of tri-grams
11: else
12: s ← score(X,y ◦ y) // calcu-

late the beam score
13: Bt.add({s,y ◦ yt})
14: Yt ← Bt.top(k) // select the top k accord-

ing to their scores
15: Y← Split(Yn)
16: M ← ∅, F ← ∅
17: for Kp

q ∈ Y do
18: if Kp

q ∈M then
19: continue
20: else
21: freq(Kp

q) =∑
{p1,q1|p1 ̸=p∩q1 ̸=q} I(K

p
q ∩ Kp1

q1 ) + 1

22: M.add(Kp
q)

23: if (Kp
q ∈ X and freq(Kp

q) ≥ ξ) or
(Kp

q /∈ x and freq(Kp
q) ≥ ζ) then

24: F.add({Kp
q , freq(Kp

q)})
25: else
26: continue // filter the noisy

keyphrases
27: R ← F.sort() // sort the keyphrases by their

frequencies
28: K ← R.join(“;”) // concatenate the sorted

keyphrases with “;”
29: return K

4.2 Baselines

We compare the performance of CorrKG against
the following advanced generative baselines. cat-
Seq (Yuan et al., 2020) integrates copy mechanism
to an attentional encoder-decoder model. catSeqD

(Yuan et al., 2020) extends the catSeq with orthog-
onal regularization. catSeqTG- 2RF1(Chan et al.,
2019) finetunes catSeqTG (Chen et al., 2019) with
reinforcement learning, where F1 and Recall met-
rics are regarded as rewards. ExHiRD-h (Chen
et al., 2020) performs hierarchical decoding with an
exclusion mechanism under the encoder-decoder
framework. SETTRANS (Ye et al., 2021) pro-
poses a Transformer-based model trained under the
ONE2SET paradigm with copy mechanism and
additional control codes. Prompt-KG (Wu et al.,
2022) utilizes the prefix language model as the
backbone to accomplish prompt-based generation6.

4.3 Evaluation Metrics

We follow the evaluation metrics of previous works
(Chen et al., 2020; Ye et al., 2021) and engage the
macro-average F1@5 and F1@M for evaluation.
F1@5 is calculated through comparing the top five
predicted keyphrases with the target keyphrases. If
the number of generated keyphrase is less than five,
incorrect keyphrases are randomly appended until
it reaches five predictions. F1@M concerns all the
predicted keyphrases to globally access the validity
of generation. Besides, we also consider BERT-
score (Zhang et al., 2020) to evaluate semantic
consistency in keyphrase generation.

4.4 Implementation Details

Our model is implemented on the top of Hugging-
face’s transformers (Wolf et al., 2019) and based on
BART-base model7. During training, the model is
fine-tuned with the AdamW optimizer (Loshchilov
and Hutter, 2019) on two 32G Tesla V100 GPUs
for 20 epochs. The batch size is 24 for each GPU.
The learning rate linearly warms up to 3 × 10−5

during the first 2K steps, and then decays with the
cosine schedule. The hyper-parameter λ in Eq. 10
is 0.1. During testing, we set the beam size, the
threshold ξ, and the threshold ζ as 50, 13, and 2.
We repeat all of the experiments with three different
random seeds and the average results are reported.

5 Results and Analysis

5.1 Present and Absent Keyphrase
Predictions

Table 1 and Table 2 depict the results of the present
and absent predictions, respectively. From them,

6We refer to this model as Prompt-KG.
7https://huggingface.co/facebook/bart-base
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Model Inspec NUS SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

catSeq (Yuan et al., 2020) 0.235 0.273 0.309 0.376 0.247 0.292 0.288 0.365
catSeqD (Yuan et al., 2020) 0.223 0.264 0.318 0.393 0.230 0.279 0.280 0.359
catSeqTG-2RF1 (Chan et al., 2019) 0.253 0.301 0.375 0.433 0.287 0.329 0.321 0.386
ExHiRD-h (Chen et al., 2020) 0.253 0.291 - - 0.284 0.335 0.311 0.374
SETTRANS (Ye et al., 2021) 0.285 0.324 0.406 0.450 0.331 0.357 0.358 0.392
Prompt-KG (Wu et al., 2022) 0.260 0.294 0.412 0.439 0.329 0.356 0.351 0.355
CorrKG 0.3304 0.3656 0.4056 0.4496 0.3338 0.3593 0.3720 0.4041

Table 1: Present keyphrase prediction results. The best results are bold, and the second-best baseline is underlined.
The subscript represents the corresponding standard deviation (e.g., 0.3304 indicates 0.330 ± 0.004)

Model Inspec NUS SemEval KP20k
F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

catSeq (Yuan et al., 2020) 0.003 0.004 0.020 0.036 0.015 0.021 0.015 0.032
catSeqD (Yuan et al., 2020) 0.007 0.013 0.013 0.022 0.018 0.025 0.014 0.030
catSeqTG-2RF1 (Chan et al., 2019) 0.012 0.021 0.019 0.031 0.021 0.030 0.027 0.050
ExHiRD-h (Chen et al., 2020) 0.011 0.022 - - 0.017 0.025 0.016 0.032
SETTRANS (Ye et al., 2021) 0.021 0.034 0.042 0.060 0.026 0.034 0.036 0.058
Prompt-KG (Wu et al., 2022) 0.017 0.022 0.036 0.042 0.028 0.032 0.032 0.042
CorrKG 0.0322 0.0452 0.0612 0.0796 0.0391 0.0442 0.0531 0.0710

Table 2: Absent keyphrase prediction results. The best results are bold, and the second-best baseline is underlined.

we can observe that CorrKG yields optimal per-
formances on the majority of metrics, surpass-
ing SETTRANS and Prompt-KG by a substan-
tial margin. For instance, CorrKG promotes the
best rank-1 score of current works on KP20k
dataset, i.e., 1.4%/1.2% present F1@5/F1@M and
1.7%/1.3% absent F1@5/F1@M higher than the
highest method SETTRANS, which demonstrates
the prominent capability of CorrKG to correct the
biases in the keyphrase generation task. Besides,
we conduct paired t-test on the experiment results
and find our method outperform all comparisons
with p-value<0.01 on overall present and absent
metrics. The promising performance is largely at-
tributed to the improved optimal transport in faith-
ful semantic correction and the FreqFS strategy in
accurate generation.

5.2 Number of Predicted Keyphrases

The proposed CorrKG also reveals superior diver-
sity which can be reflected by the average numbers
of unique present and absent keyphrases as illus-
trated in Table 3. Specifically, we can observe that
accurately predicting the number of keyphrases
is not trivial since none of the compared meth-
ods has an absolute advantage. However, CorrKG
could outperform these baselines to some extent.
We infer that, FreqFS mainly contributes to cor-

Model
Inspec NUS SemEval KP20k

#PK #AK #PK #AK #PK #AK #PK #AK
Oracle 7.20 2.57 5.65 5.15 6.12 8.31 3.31 1.95
catSeq 4.22 0.77 3.69 0.97 4.08 0.99 3.69 0.69
catSeqD 3.94 0.69 3.46 0.75 3.54 0.88 3.64 0.58
catSeqTG-2RF1 3.35 2.84 3.87 2.66 3.69 2.59 3.86 2.75
ExhiRD-h 4.00 1.50 - - 3.65 0.99 3.97 0.81
SETTRANS 4.36 2.08 4.80 2.27 4.62 2.18 5.10 2.01
CorrKG 5.57 4.28 8.70 3.68 7.42 3.62 6.14 3.52

Table 3: Comparisons on the number of predicted
keyphrases. #PK and #AK are the average number
of unique present and absent keyphrases, respectively.
Oracle is the ground truth average keyphrase number.
#PK and #AK closest to the Oracle are bold.

recting the bias between the predicted and target
keyphrases, which can generate more sufficient and
effective keyphrases with the filtering and sorting
operations. Besides, the soft correction based on
OT maintains the semantic consistency between
the source document and predicted keyphrases, en-
abling the average number of predicted keyphrases
relatively stable. In summary, the OT and Fre-
qFS cooperatively guide the model towards the
direction of generating both diverse and accurate
keyphrases.

5.3 Semantic Consistency Evaluation

To facilitate a more intuitive understanding of
the effort of semantic correction, BERT-score is
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Model Inspec NUS SemEval KP20k
catSeqTG-2RF1 0.726 0.714 0.735 0.736
ExHiRD-h 0.727 - 0.701 0.725
SETTRAN 0.737 0.746 0.744 0.754
CorrKG 0.762 0.759 0.758 0.766

Table 4: Comparisons of the BERT-score on four meth-
ods. The best BERT-scores are bold.

(a)  Uniform distribution mass assignment (b)  Adaptive  mass learning scheme 

Figure 3: Semantic matching with uniform distribution
and adaptive mass learning scheme.

first employed to evaluate the semantic consis-
tency between the source document and generated
keyphrases. BERT-score (Zhang et al., 2020) calcu-
lates the semantic similarity between word embed-
dings through BERT. As shown in Table 4, the Cor-
rKG beats several baselines by a significant margin,
indicating that the improved optimal transport solu-
tion can best fit the source document semantically.
Furthermore, the consistent superior metric scores
in Table 2 also agree with our motivation that the
improved OT enables the generated keyphrases and
source document being in the similar space. As for
the hard correction between the predicted and target
keyphrases, we straightforward utilize the metrics
of F1@5 and F1@M to access the semantic con-
sistency. The ablation study in Table 5 sufficiently
manifests the superiority of the hard correction,
which will be discussed in section 5.6.2.

5.4 Optimal Transport Analysis

To further investigate how the OT contributes to
the soft correction, we randomly select a training
example and visualize the heat map of the optimal
transport plan under the uniform distribution and
the adaptive mass learning scheme settings, respec-
tively. We have some observations from Figure
3. Compared to uniform distribution, the trans-

port plan of the adaptive mass learning scheme has
less noise, indicating its superiority in assigning
importance-aware masses for OT calculating. In
addition, under the regularization of OT, present
keyphrases (e.g., “multimodal”, “quasi random
numbers”) match the source document well in Fig-
ure 3 (b). As for the absent keyphrase “global opti-
mization”, the source document has not assigned
reasonable weight for “global” with uniform dis-
tribution. On the contrary, “global” is focused by
two “multimodal” tokens with the adaptive mass
learning scheme. These suggest that the improved
OT is crucial to capture pair-wise information and
thus to generate keyphrases that are faithful to the
source document.

5.5 Selection of Thresholds in FreqFS

(c)  Thresholds for absent F1@5 (d)  Thresholds for absent F1@M 

(a)  Thresholds for present F1@5 (b)  Thresholds for present F1@M

Figure 4: Results of different ξ and ζ on the KP20k
validation set.

We study the filter threshold ξ for present
keyphrases and ζ for absent keyphrases in Fre-
qFS strategy for determining the numbers of pre-
dicted present and absent keyphrases, respectively.
The KP20k validation dataset is utilized to se-
lect appropriate ξ and ζ. We vary the threshold
ξ ∈ {1, ..., 20}, ζ ∈ {1, ..., 5}, and employ Cor-
rKG w/o FreqFS as the baseline. As shown in Fig-
ure 4, for the present case, performances on F1@5
are lower than that of the baseline when ξ exceeds
11. If ξ is greater than 13, both F1@5 and F1@M
scores begin to decrease. For absent keyphrases,
F1@5 and F1@M both start to degrade when ζ is
greater than 2. We find that F1@5 score is always
lower than that of the baseline, which makes sense
because the number of absent keyphrases is less
than 5 when ζ is greater than 1. Hence we keep the
thresholds ξ = 13 and ζ = 2.
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Model Present Absent
F1@5 F1@M F1@5 F1@M

BART-beams 0.367 0.306 0.052 0.061
Soft correction
CorrKG 0.372 0.404 0.053 0.071
CorrKG w/o OT 0.368 0.398 0.048 0.067
CorrKG-uniOT 0.370 0.396 0.047 0.065
Hard correction
CorrKG 0.372 0.404 0.053 0.071
CorrKG w/o Sorting 0.368 0.404 0.051 0.071
CorrKG w/o Filtering 0.383 0.308 0.060 0.064
CorrKG w/o FreqFS 0.370 0.308 0.059 0.064

Table 5: Ablation results on KP20k. “BART-beams”
is the BART model using beam search for predictions.
“CorrKG-uniOT” means we replace the adaptive mass
learning scheme with uniform distribution to calculate
OT distance. “CorrKG w/o FreqFS” denotes the filtering
and sorting operations are removed.

5.6 Ablation Study

To validate the effect of each component for Cor-
rKG, we ablate the model and depict the results on
the KP20k test dataset in Table 5.

5.6.1 Effect of OT
Ablation study on the soft correction clearly indi-
cates the advantage of OT contribution. First, when
the soft correction based on OT is removed, the
decline of CorrKG w/o OT indicates that building
the salient constraint between the source document
and predictions is beneficial to keyphrase genera-
tion. Second, CorrKG-uniOT reveals obvious per-
formance drops when the adaptive mass learning
scheme is replaced with uniform distribution. This
suggests that uniform distribution can hardly learn
the optimal semantic masses. Moreover, CorrKG-
uniOT performs the worst compared with CorrKG
and CorrKG w/o OT, which further implies that un-
reasonable setting of semantic mass would hinder
OT.

5.6.2 Effect of FreqFS
From Table 5, the removal of the sorting operation
leads to the degradation of the F1@5 score, show-
ing its effectiveness. The results further confirm
that the higher the frequency of a phrase, the more
likely it is to be a keyphrase. It is worth noticing
that the F1@M score remains invariant whether
or not the sorting operation is used, as the sorting
operation does not affect the number of keyphrases.
The apparent deficits of the F1@M score for Cor-
rKG w/o Filtering show that the filtering operation
can eliminate a lot of noisy keyphrases. However,
the filtering operation results in the F1@5 score

slightly decreasing, which is consistent with Figure
4 (a) and (c). The reason may be that the filtering
operation would inevitably filter out a small num-
ber of correct keyphrases and make the number of
predictions sometimes less than 5, resulting in the
deterioration of the F1@5 score.

6 Conclusion

Towards the semantic biases that existed in
keyphrase generation, this paper presents a soft-
hard correction mechanism oriented model Cor-
rKG. The novelty in our model is twofold. First,
Optimal transport theory is introduced to correct
the semantic bias between the source document
and predictions. Furthermore, an adaptive mass
learning scheme is designed to better fit OT. Sec-
ond, the FreqFS strategy is proposed to exploit
the consistencies between the predicted and tar-
get keyphrases. Extensive experiments show that
CorrKG is capable of generating high-quality and
diverse keyphrases.

Limitations

The proposed CorrKG model has some limitations.
First, the computation cost is relatively expensive
due to the complicated OT calculation. Although
the larger version of BART could provide more
power to boost metric scores, we have to select
the base version of BART in CorrKG for efficient
computation. Second, we note that the soft cor-
rection based on OT works better if the semantic
mass distribution is reasonably well assigned, as
the adaptive mass learning scheme is more suitable
than the uniform distribution in keyphrase genera-
tion. We expect this correction mechanism can be
further investigated and we leave this question to
future work.
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A Appendix

A.1 Inexact Proximal point method for
Optimal Transport(IPOT)

The details of Inexact Proximal point method for
Optimal Transport (IPOT) are shown in Alg. 2.

Algorithm 2 IPOT algorithm
Input: Probabilities {µ, ν} on support points
{xi}mi=1, {yj}nj=1, cost matrix C and generalized
stepsize 1/β
Output: ⟨T,C⟩

1: b← 1
m1m

2: Gij ← e
−Cij

β

3: T (1) ← 11⊤

4: for t = 1, 2, 3, ... do
5: Q← G

⊙
T (t) //

⊙
is Hadamard product

6: for l = 1, ...L // Usually set L=1 do
7: a← µ

Qb , b← ν
Q⊤a

8: T (t+1) ← diag(a)Qdiag(b)

9: return ⟨T,C⟩

A.2 Statistics of the Testing Set
We conduct experiments over multiple public
datasets, including KP20k (Meng et al., 2017),
SemEval (Kim et al., 2010), NUS (Nguyen and
Kan, 2007), and Inspec (Hulth, 2003). The testing
dataset statistics are presented in Table 6.

Dataset #Samples #PK #AK
KP20k 20,000 3.31 1.95
Inspec 500 7.20 2.57
NUS 211 5.65 5.15

SemEval 100 6.12 8.31

Table 6: Statistics of the testing set on four datasets.
#PK: average number of present keyphrases. #AK: av-
erage number of absent keyphrases.
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