
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 793–808
December 7-11, 2022 ©2022 Association for Computational Linguistics

Inducer-tuning: Connecting Prefix-tuning and Adapter-tuning

Yifan Chen1∗ Devamanyu Hazarika2∗ Mahdi Namazifar2
Yang Liu2 Di Jin2† Dilek Hakkani-Tur2

1University of Illinois Urbana-Champaign 2Amazon Alexa AI

Abstract

Prefix-tuning, or more generally continu-
ous prompt tuning, has become an essential
paradigm of parameter-efficient transfer learn-
ing. Using a large pre-trained language model
(PLM), prefix-tuning can obtain strong perfor-
mance by training only a small portion of pa-
rameters. In this paper, we propose to under-
stand and further develop prefix-tuning through
the kernel lens. Specifically, we make an anal-
ogy between prefixes and inducing variables in
kernel methods and hypothesize that prefixes
serving as inducing variables would improve
their overall mechanism. From the kernel esti-
mator perspective, we suggest a new variant of
prefix-tuning—inducer-tuning, which shares
the exact mechanism as prefix-tuning while
leveraging the residual form found in adapter-
tuning. This mitigates the initialization issue
in prefix-tuning. Through comprehensive em-
pirical experiments on natural language under-
standing and generation tasks, we demonstrate
that inducer-tuning can close the performance
gap between prefix-tuning and fine-tuning.

1 Introduction

Transfer learning from large pre-trained language
models (PLMs) has been the de-facto method to
tackle downstream natural language processing
(NLP) tasks with proven performance and scalabil-
ity (Peters et al., 2018). Among all the adaption
techniques, fine-tuning (Howard and Ruder, 2018;
Kale and Rastogi, 2020) is predominant for PLMs
and maintains the models’ architecture while up-
dating all the parameters within. Though power-
ful, fine-tuning is considered parameter-inefficient
since it results in separate copies of model parame-
ters for each task/client after training.

With the sizes of PLMs increasing to hundreds
of millions (Brown et al., 2020) or even up to tril-

∗Equal contribution. This work was performed while the
first author was interning at Amazon Alexa AI.

†Correspondence to: Di Jin <djinamzn@amazon.com>

lion (Fedus et al., 2021) parameters, the trend mo-
tivates a range of parameter-efficient adaptation
techniques, including adapter-tuning and prompt-
ing, as promising lightweight alternatives to fine-
tuning to reduce computational consumption and
storage space. Adapter-tuning inserts bottlenecked
Multi-layer Perception (MLP) modules between
the pre-trained layers of PLMs and tunes only these
new parameters for task adaptation (Houlsby et al.,
2019; Pfeiffer et al., 2020a). Prompting, instead,
aims to adapt the general-purpose PLMs through
prompts, whose effectiveness has been shown on a
frozen GPT-3 model (Brown et al., 2020).

An implicit drawback of the prompt-based adap-
tation is the difficulty of searching for the proper
prompt. To avoid manually designing the prompts,
Shin et al. (2020) propose a search algorithm to
find the effective prompt over discrete space of vo-
cabularies; prefix-tuning (Li and Liang, 2021) and
other concurrent methods (Lester et al., 2021; Liu
et al., 2021b,a) further extend the discrete search to
continuous prompts, attaining performance close
to fine-tuning in some tasks. Despite the effort,
there is still a performance gap between “prefix-
tuning” and “fine-tuning” in many tasks, especially
when the model size is small (Lester et al., 2021;
He et al., 2021a). In addition, the mechanism of
prefix-tuning is still poorly understood and under-
explored. Prefix-tuning is also similar to adapter-
tuning, since they both insert additional modules
into each transformer layer (classical prompt-based
methods (Lester et al., 2021; Liu et al., 2021b) only
add prompts to the embedding layer).

Scrutinizing the evolution of prompt-based meth-
ods, we can observe they have gradually deviated
from the concept of “prompts”. Compared to the
manually designed prompts, the discrete search
usually results in counter-intuitive prompt tokens,
which vaguely match the topic but are not as sen-
sible as the manual one; for continuous prompt
tuning, it even breaks the limit of the existing vo-

793



cabulary. All these pieces imply that the mecha-
nism behind prompt-based tuning might be more
complicated than guiding the output through hint
prompts. To open the black box of “prompts”, in
this work, we propose to consider the prompts (ei-
ther hard or soft) as “inducing variables” in ker-
nel methods (Titsias, 2009). This analogy is justi-
fied due to the close connection between attention
modules in PLMs and kernel estimators (Choro-
manski et al., 2020; Chen et al., 2021; Tsai et al.,
2019). This kernel perspective explains the poten-
tial mechanism of prefix-tuning and motivates a
new method, inducer-tuning. Specifically, inducer-
tuning freezes all the original parameters in the
PLMs as other prompt-based methods; when com-
puting the attention output for a certain input to-
ken in each layer, inducer-tuning utilizes a point
close to the query vector as the “inducer”. This
unique “soft prompt” eases the search for appropri-
ate prompts and builds a new connection between
“prompting” and “adapter-tuning”.

In summary, the contribution of this work is
three-fold: 1 We explain the underlying mech-
anism of prefix-tuning as the inducing variables in
kernel learning. 2 We propose a new parameter-
efficient adaptation technique, inducer-tuning, to
further improve prefix-tuning. 3 Through compre-
hensive empirical studies, we verify our proposed
method can close the gap between “prefix-tuning”
and “fine-tuning” on relatively small PLMs, and
provide a tighter lower bound on the potential of
continuous prompt tuning.

2 Related Work

In this section, we briefly introduce the classical
form of adapter-tuning and mainly focus on the
different variants of prompting.

Adapter-tuning. Compared to fine-tuning all
the parameters in the PLMs, Houlsby et al. (2019),
Pfeiffer et al. (2020a) propose to modulate the out-
put of a transformer layer through inserting ad-
ditional small-bottleneck MLP layers (adapters)
(Houlsby et al., 2019)1:

Adapter(h) = h+ ReLU(hW1)W2, (1)

where h is the dimension-d hidden state in the
transformer and W1,W2 are d-by-r and r-by-d
projection matrices. Adapters have a residual form
similar to skip connection, while only W1,W2

1We ignored layer normalization and bias terms here for
brevity.

will be trained, greatly decreasing the size of tun-
able parameters. Up to now, the adapter-based
method has been widely used for multiple NLP
tasks (Stickland and Murray, 2019; Pfeiffer et al.,
2020a; Wang et al., 2020; Pfeiffer et al., 2020b;
Üstün et al., 2020; Vidoni et al., 2020; Pfeiffer et al.,
2021; He et al., 2021b; Xu et al., 2021; Rücklé
et al., 2020; Karimi Mahabadi et al., 2021), and
adapters are also intrinsically connected to many
other parameter-efficient adaptation techniques, as
detailed in He et al. (2021a).

Prompting. Prompting prepends task-specific
instructions to the task input and was originally
demonstrated in Brown et al. (2020). As manual
prompts rely on trial and error, Jiang et al. (2020),
Shin et al. (2020) suggests search algorithms to
specify the prompts among all the tokens in the
vocabulary. Prompt-tuning (Lester et al., 2021)
and P-tuning (Liu et al., 2021b) remove the vo-
cabulary restriction on prompts by using trainable
“soft prompts”. The prompts in the aforementioned
methods are only inserted into the bottom embed-
ding layer of PLMs, while Prefix-tuning (Li and
Liang, 2021; Liu et al., 2021a) adds soft prompts
to all the transformer layers to further increase the
capacity of prompting.

Though effective, proper initialization of the soft
prompts remains challenging. To mitigate the is-
sue, Li and Liang (2021) used an extra MLP to re-
parameterize the prompts in each layer, thus adding
more parameters that need training; SPoT (Vu et al.,
2021) suggests performing pre-training for soft
prompts using a wide range of NLP tasks, which
requires additional computational resources. In
contrast, though adapters have a similar expression
form to prefix-tuning (He et al., 2021a), adapter-
tuning only requires regular initialization. We spec-
ulate that the residual form of adapters mitigates the
initialization issue since the output of each layer
in the new model would be centered around the
output in the frozen PLMs, and the residual form
contributes to gradient back-propagation as in skip
connection. We rely on this intuition and utilize the
above-mentioned advantages of adapters to guide
the design of our proposed inducer-tuning.

3 Preliminaries: Transformer Layers

Before discussing the mechanism of prompt-tuning,
we introduce the structure of transformer layers and
necessary notations in this section.

A general transformer-based PLM is mainly

794



composed of L stacked layers. Each layer con-
tains a multi-headed self-attention and a fully con-
nected feed-forward network (FFN) sub-layer, both
followed by an “Add & Norm” module (Vaswani
et al., 2017). 2 Hereon, we shall focus on the struc-
ture of the attention sub-layer since prefix-tuning
directly works on this sub-layer.

Passing a length-n input sequence X ∈ Rn×Nhp

to an attention sub-layer (assuming Nh heads and
dimension size p for each head), we first perform
linear transforms to the input X and obtain the
query matrix (Q), the key matrix (K), and the
value matrix (V ) as:

Q/K/V = XW[q/k/v] + 1bT[q/k/v], (2)

where Q,K,V ∈ Rn×Nhp are the query/ key/
value matrix; W[q/k/v] ∈ RNhp×Nhp are the weight
matrices, and b[q/k/v] ∈ RNhp are the bias terms in
the corresponding transformations. 3

To increase the model capacity, the three com-
ponents Q,K,V are respectively divided into
Nh blocks, contributing to the attention output
in each head of the multi-headed self-attention
module. For instance, we represent Q as Q =(
Q(1), · · · ,Q(Nh)

)
, where each block Q(h) =

XW
(h)
q + 1(b

(h)
q )T is an n-by-p matrix, and

W
(h)
q , b

(h)
q are the corresponding parts in Wq, bq.

The attention output for the hth head is:

L(h)V (h) := softmax(Q(h)(K(h))T /
√
p)V (h)

= (D(h))−1M (h)V (h), (3)

where M (h) := exp
(
Q(h)(K(h))T /

√
p
)

and

D(h) is a diagonal matrix in which D
(h)
ii is the

sum of the i-th row in M (h), serving as the nor-
malization procedure in softmax. The attention
outputs in each head are then concatenated as
L := (L(1)V (1), . . . ,L(Nh)V (Nh)).

After concatenating the heads, there is a linear
transform following the output

LWo + 1bTo , (4)

where Wo and bo are similarly sized as the other
matrices in Equation (2). This is the overall output
of the attention sub-layer, which we shall revisit
in § 4.4.

2For simplicity, we omit the cross-attention module in
transformer-based encoder-decoder models.

3To ease the notations we adopt the practical setting where
X,Q,K,V have the same shape.

4 Parameter-Efficient Inducer-Tuning

We describe the motivation and the mechanism of
inducer-tuning in this section. We first revisit the
connection between self-attention and kernel es-
timators in § 4.1, which interprets attention from
another perspective by considering query, key, and
value matrices as three separate sets of vectors
rather than the related representations of the same
input sequence. This special perspective motivates
and justifies the inducer-tuning we propose in § 4.3.

4.1 Attention as Kernel Estimators

Traditionally, attention operation (Equation (3)) is
viewed as a transformation g(·) of the input se-
quence X . However, in prefix-tuning, parameters
within PLMs are frozen, which implies that given
the input X , the represenattions Q,K, and V
are invariant.4 This observation allows us to re-
interpret attention as a kernel estimator f(·) with
Q as its input. Specifically, we denote the i-th input
vector Xi’s attention operation as f(Qi) := g(Xi).
This attention representation can be seen as modi-
fying the input query vector Qi to f(Qi) via sup-
porting points {Kj}nj=1 (Choromanski et al., 2020;
Peng et al., 2020; Chen et al., 2021), which can be
considered as a Nadaraya–Watson kernel estimator
(Wasserman, 2006, Definition 5.39):

row-normalize (κ (Q,K))V ,

where κ(·, ·) is a kernel function. (Refer to Ap-
pendix C for more details on this claim.)

4.2 Prefix-Tuning and Inducing Variables

Prefix-tuning (Li and Liang, 2021) alters the atten-
tion output in each layer. Concretely, it prepends
length-l prefix vectors Pk,Pv ∈ Rl×p to K and
V , respectively; for a certain query token Qi (the
i-th row of the query matrix Q), its attention out-
put f(Qi) := Attn(Qi,K,V ) is updated as a
weighted sum of f(Qi) and Attn(Qi,Pk,Pv) (He
et al., 2021a, Equation (7)).

Remark. From the kernel estimator perspective,
the two categories of virtual tokens play different
roles. The virtual key vectors Pk apply to the em-
pirical kernel matrix part and can alter the attention
scores (and thus the weights for Attn(Qi,Pk,Pv));
whereas Pv takes effect in the value part. It might
not be optimal for prefix-tuning to model the two

4While our discussion is for a single attention head, we
omit the superscript (h) for brevity.

795



categories of virtual tokens similarly. In § 4.3 we
will show how inducer-tuning addresses the two
parts through different residual forms.

We suggest that the mechanism of prefix-tuning
can be further understood through the concept of
inducing variables in kernel learning literature (Tit-
sias, 2009). Many computational methods in kernel
learning utilize a small set of support points (in-
ducing variables) to improve the inference perfor-
mance (Musco and Musco, 2017; Chen and Yang,
2021). Snelson and Ghahramani (2005) specifi-
cally consider the inducing variables as auxiliary
pseudo-inputs and infer them using continuous op-
timization, which is similar to prefix-tuning. We
emphasize that from the first sight the main char-
acter of inducing-point methods is representing a
vast amount of training examples through a small
number of points, so as to reduce the computational
cost; however, here we instead aim to leverage the
mechanism of inducing variables to well-steer the
estimation: the goal we try to attain is to strengthen
prefix-tuning by making the prefixes better modu-
late the attention output. We introduce and analyze
the mechanism as follows.

Mechanism for well-steering inference out-
puts in inducing-point methods. Conceptually,
inducing variables help the inference because they
can represent the distribution of the query inputs
and steer the kernel methods without changing the
kernel in use. In particular, we consider the dis-
tribution pattern of unconstrained inducing points
XM (Snelson and Ghahramani, 2005, Figure 1).
We observe that most of them are close to the test-
ing examples X∗, and in the new estimation (Snel-
son and Ghahramani, 2005, Equation (8)) the in-
ducers XM will receive great weights through the
weights assignment mechanism in kernel methods
(we recall kernel methods can assign the weights
of samples as attention (Choromanski et al., 2020;
Chen et al., 2021; Tsai et al., 2019); for inducing
variables close to the query, they would automati-
cally receive more attention), and thus effectively
modulate the output.

From this mechanism, we draw an inductive bias
"the prefix should be close to the query" (which is
not enforced in the method of prefix-tuning) and
accordingly propose inducer-tuning. We remark
since we are not pursuing the original goal, reduc-
ing computational cost, of inducing variables, it is
ordinary that the concrete design in the next sub-
section is different from the usual form of inducing

points, a small number of samples.
We speculate prefix-tuning partially benefits

from the above mechanism as well. Furthermore,
some indirect evidence is stated as follows. As dis-
cussed in previous studies, to make the full poten-
tial of prompting, the manually designed prompts
are expected to be related to the topic of the input
sequence (Brown et al., 2020) (close to the query);
even for the soft prompts they are recommended to
be initialized with the token relevant to the specific
tasks (Li and Liang, 2021), which also requires
the prompts to be close to the query to provide
effective adaptation. With this belief, we propose
inducer-tuning to exploit further the mechanism of
inducing variables and improve upon prefix-tuning.

4.3 Method

Inducer-tuning follows the same design principle
as prefix-tuning, which modulates the attention out-
put through inserting virtual tokens (vectors). How-
ever, unlike prefix-tuning, our virtual tokens are
not shared among the input sequences. Inducer-
tuning also incorporates the benefits of residual
forms to ease the initialization and remove the re-
parametrization trick in prefix-tuning. Specifically,
we suggest the following modifications: 1 The
“inducers” are adaptive to and customized for each
input token to strengthen the expressiveness of the
new attention output. 2 We propose to model
the virtual vectors in a residual form as an adapter,
which makes the final attention output be in a resid-
ual form as well. We now dive into discussing the
intuitions behind the modifications in detail.

Adaptive inducers. There is an important dif-
ference between language models and kernel meth-
ods, making fixed prefixes less effective than in-
ducing variables in kernel methods. In language
models, the distribution of the input queries keeps
changing, and for some inputs, the fixed prefixes
fail to be qualified as “inducing variables”. Even
worse, for a long input, there probably exists some
query vectors away (regarding ℓ2 distance) from all
the virtual vectors in the fixed prefixes, which are
thus unable to modulate the attention output well.
The phenomenon that prefix-tuning has a relatively
poorer performance on tasks with longer inputs can
be observed in our experiments (§ 6).

To alleviate the above issue, we propose adaptive
modeling of the virtual key vectors. For a query
Qi, we suggest taking a vector close to Qi itself as
the corresponding virtual key vector (the length of

796



the new prefix is thus 1), in the hope of leading to
better inference.

As for the virtual value vectors, we relate them
to the corresponding virtual key vectors. The moti-
vation comes from traditional (non-self-)attention,
whose mechanism coincides with a kernel estima-
tor: the value V is independent of the query se-
quence Q and related to the supporting points K.
Specifically, considering our design above that the
virtual key vectors are close to Qi (we take the
virtual key vectors as transforms of the input query
vectors Qi’s), we propose to accordingly model the
virtual value vectors as a map of Qi as well, which
implies the virtual value vectors are also adaptive
to the input query vectors.

Adapter Structures. To stabilize the training
procedure, we propose incorporating the adapter
structures into modeling the virtual key/value vec-
tors. Specifically, for the i-th token Qi (in a cer-
tain head), we represent the corresponding virtual
key/value vectors respectively as

Pk,i = Qi + MLPk(Qi) (5)

Pv,i = f(Qi) + MLPv(Qi), (6)

where MLPk/v will both return a vector of the same
dimension as the input Qi. 5

It is natural to model Pk,i in a residual form as
in Equation (1), considering Pk,i is expected to
center around Qi; as for Pv,i, we claim the specific
form in Equation (6) allows the complete expres-
sion of inducer-tuning to be adapter-like, and the
justification is stated as the following derivation.

To derive the expression for inducer-tuning, we
denote the new key matrix and value matrix (spe-
cific to the input query vector Qi) as

K̃(i) =

[
P T
k,i

K

]
, Ṽ (i) =

[
P T
v,i

V T

]
.

The new attention output f̃(Qi) for the query Qi

is thus (omitting the factor 1/
√
p for clarity)

Attn(Qi, K̃
(i), Ṽ (i))

=
exp(⟨Qi,Pk,i⟩)Pv,i +

∑
j exp(⟨Qi,Kj⟩)Vj

exp(⟨Qi,Pk,i⟩) +
∑

j exp(⟨Qi,Kj⟩)
=λiPv,i + (1− λi)f(Qi) (7)

5Note that these virtual vectors can be applied to causal
attention in auto-regressive decoders since they do not utilize
any future token information.

where we define the weight λi as,

exp(⟨Qi,Pk,i⟩)
exp(⟨Qi,Pk,i⟩) +

∑
j exp(⟨Qi,Kj⟩)

.

Combining the pieces, we state the complete
equation for the new attention output f̃(Qi) as,

λiPv,i + (1− λi)f(Qi)

=λi (f(Qi) + MLPv(Qi)) + (1− λi)f(Qi)

=f(Qi) + λiMLPv(Qi). (8)

We observe inducer-tuning now perturbs the output
f(Qi) in a residual form, which therefore connects
prefix-tuning and adapter-tuning.

The procedure of inducer-tuning is summarized
in Figure 1, and § 6.2 shows the residual form
greatly impacts the model performance.

4.4 Extending the Scope of Value
Besides the representation of the virtual vectors, we
propose another improvement via the self-attention
decomposition proposed by Hou et al. (2020).

Considering the linear transform right after the
attention module, we can accordingly rewrite the
attention sub-layer as (ignoring the bias term in the
linear transform)

Nh∑

h=1

softmax(Q(h)(K(h))T /
√
p)V (h)W (h)

o ,

where W
(h)
o is the h-th row block in Wo. No-

tably, W (h)
o is attached to the value matrix V (h),

suggesting that W (h)
o ’s should be counted into the

complete kernel structure of a head. We therefore
define the complete attention output f̄(Q(h)) as

softmax
(
Q(h)(K(h))T /

√
p
)
V (h)W (h)

o , (9)

and align the prefix vectors Pv,i’s with the rows
in V (h)W

(h)
o , instead of solely V (h) as in prefix-

tuning. The detailed implementation of the ex-
tended Pv,i is provided in Appendix B.3. We can
verify the improvement by this extension through
the ablation studies in § 6.2.

4.5 A Potential Limitation of Prompting
A potential limitation of prompt-based methods
comes from the frozen weight matrices Wq and
Wk. For all the n(n + l) pairs of query / key
vectors in a head, most of the pairs (correspond-
ing to the elements within QKT ) have invariant

797



. .

MLPk

+

MLPv +

Pk K

V

PV

Qi Qi

Pk,i K

Pv,i

V

f(Qi)

Prefix-Tuning Inducer-Tuning

Attention Scores Attention Scores

Figure 1: The mechanisms of prefix-tuning (left) and inducer-tuning (right) in inference (the MLP module for
reparameterization in prefix-tuning is dropped). For prefix-tuning, the virtual tokens (Pk,Pv) are shared among all
the query vectors; inducer-tuning instead prepends customized inducers (Pk,i,Pv,i) for a certain vector Qi.

pairwise positional interactions due to the frozen
weight matrices Wq and Wk. However, on down-
stream tasks, there can be a mismatch between Wq

and Wk maintained from pre-training: the distri-
bution of Q,K will substantially change due to
the distinct task-specific datasets as well as the vir-
tual tokens added in the previous layers. There
is no adaptation to ensure the positional interac-
tions between Q,K still contribute to the proper
representation f(Qi).

To resolve the potential issue of prefix-
tuning, we suggest applying low-rank adaptation
(LoRA) (Hu et al., 2021) to Wq as a complement to
prompt-based methods, including inducer-tuning.
Specifically, before we compute the attention out-
put in each layer, Wq will be updated as

Wq ←Wq +BA, (10)

where Wq is kept frozen and B ∈ RNhp×r,A ∈
Rr×Nhp will be tunable in training. We report in § 6
that combining both inducer-tuning and LoRA out-
performs their individual counterparts.

Final Model. Our final proposed model does
the inferencex as follows: 1 in each layer, we first
apply Equation (10) to update Wq before obtain-
ing Q,K,V ; 2 construct the inducer matrices
Pk = Q + MLPk(Q), and compute the vector a
with the i-th component ai = ⟨Qi,Pk,i⟩; 3 com-
pute the matrix product [a;QKT ]/

√
p and then

perform softmax over the product—the first col-
umn (denoted as p) is the weights λi’s in Equa-
tion (7); 4 obtain f̄(Q) as in Equation (9), and
return f̄(Q) + diag(p)MLPv(Q) (corresponding
to Equation (8)) as the complete attention output.

5 Experiments

While prefix-tuning has been shown comparable to
fine-tuning on some natural language understand-
ing (NLU) tasks (Liu et al., 2021a), there is still a
performance gap between prefix-tuning and fine-
tuning on natural language generation (NLG) tasks,
especially for those tasks with long input sequences.
Complete settings of the experiments below can
be found in Appendix A and Appendix B. The
code for our algorithms is publicly available at
https://github.com/ychen-stat-ml/kernel-
adapters.

5.1 Sketch of the Tasks

We test the performance of our methods on both
NLU and NLG tasks. For NLU tasks, we fol-
low (He et al., 2021a) to use RoBERTaBASE (Liu
et al., 2019) on MNLI (Williams et al., 2018) and
SST2 (Socher et al., 2013) from the GLUE bench-
mark (Wang et al., 2019); in SST2, the models
predict the two-way sentiment (positive/negative)
of a given sentence, and the MNLI task is to de-
cide, given a premise and a hypothesis, whether
there is entailment, contradiction, or neither. We
use GPT-2SMALL (Radford et al., 2019) for NLG
tasks: WebNLG-challenge (Gardent et al., 2017)
focuses on table-to-text tasks, in which the lan-
guage models generate some relatively long and
sensible sentences based on the triples with solely a
few words; in contrast, CoQA (Reddy et al., 2019)
provides the data for conversational question an-
swering 6, which requires the language model to
return short answers to questions based on long

6The official validation set is taken as the test set in our
experiments, while we randomly choose 500 instances from
the training set as the new validation set.

798

https://github.com/ychen-stat-ml/kernel-adapters
https://github.com/ychen-stat-ml/kernel-adapters


WebNLG CoQA
Parameters to BLEU MET TER ↓ EM F1

train store S U A S U A S U A
Fine-tuning 100.00% 100.00% 59.8 28.7 46.1 0.43 0.29 0.36 0.38 0.68 0.51 59.0 67.4
Adapter-108 1.62% 1.62% 59.5 34.1 48.2 0.42 0.32 0.38 0.38 0.61 0.49 57.7 66.4
LoRA-54 1.61% 1.61% 54.8 36.9 46.7 0.40 0.33 0.37 0.41 0.55 0.47 57.2 65.7
Prefix-tuning-108 7.98% 1.60% 56.1 37.2 47.6 0.40 0.33 0.37 0.40 0.55 0.47 51.8 60.3
MAM-adapter 1.61% 1.61% 58.9 36.2 48.7 0.42 0.33 0.38 0.38 0.59 0.47 56.4 65.0
Inducer-tuning 1.61% 1.61% 59.4 36.8 49.2 0.42 0.33 0.38 0.38 0.59 0.47 57.7 66.1

+ LoRA 1.61% 1.61% 59.8 37.5 49.7* 0.43 0.34* 0.38 0.37* 0.57 0.46* 58.7 67.1
MAM inducer-tuning 1.61% 1.61% 59.9* 36.8 49.5 0.43 0.33 0.38 0.37* 0.57 0.47 59.9* 68.4*

Table 1: Performance (%) on WebNLG a and CoQA. All the parameter-efficient methods have similar sizes of
parameters to store. The best scores (among parameter-efficient methods) under different metrics are boldfaced (for
TER, the lower the metric is, the better the performance is). Significance tests are performed between our methods
and the other baselines for each metric (5 runs for WebNLG and 3 runs for the others), and a superscript * is added
if the test p-value < 0.05.

a For the metrics on WebNLG, the notations are same as in prefix-tuning (Li and Liang, 2021, Table 1) that S, U, and A denote
SEEN, UNSEEN, and ALL respectively; in training only the examples from the SEEN categories are used; the examples from
the UNSEEN categories only appear in the test set; and ALL consists of all the categories.

Method (# params) MNLI SST2
Fine-tuning (100%) 87.6±.4 94.6±.4

Bitfit (0.1%) 84.7 93.7
Prefix-tuning (0.5%) 86.3±.4 94.0±.1

LoRA (0.5%) 87.2±.4 94.2±.2

Adapter (0.5%) 87.2±.2 94.2±.1

MAM-Adapter (0.5%) 87.4±.3 94.2±.3

Inducer-tuning (0.5%) 86.6±.2 94.1±.3

Inducer-tuning + LoRA (0.5%) 86.8±.5 94.7±.3

MAM inducer-tuning (0.5%) 87.4±.04 94.8±.3

Table 2: Accuracy (%) on MNLI and SST2. Baseline
numbers and settings are from He et al. (2021a).

conversational materials. More details about the
datasets (including the average sequence length)
and the evaluation metrics used are provided in
Appendix A.

5.2 Baselines

We compare our method with other representa-
tive methods: Fine-Tuning (Howard and Ruder,
2018), Adapters (Houlsby et al., 2019) used by Lin
et al. (2020), Prefix-Tuning (Li and Liang, 2021),
and LoRA (Hu et al., 2021) 7; we also follow the
strategy in Mix-And-Match (MAM) adapters (He
et al., 2021a) to combine inducer-tuning (in self-
attention) with adapters in FFN sub-layers, and
study how the combination compares to the original
MAM adapter (prefix-tuning + adapters in FFN).
In Table 1 the suffixes after adapters / prefix-tuning

7LoRA in our experiments follows the recommended set-
ting by Hu et al. (2021), adjusting both Wq and Wv .

/ LoRA indicate the corresponding bottleneck size
/ prefix length / rank of updates, respectively.

We differentiate the number of parameters to
store and tune, as for prefix-tuning, the two num-
bers are inconsistent due to a re-parametrization
trick (Li and Liang, 2021) to mitigate the initializa-
tion issue. Instead of directly setting up an embed-
ding matrix for virtual tokens, an additional MLP
module in each layer is used in prefix-tuning to
model the representation for those virtual tokens;
after the fine-tuning stage, the additional MLP mod-
ules are dropped and only the output embedding
for virtual tokens needs storing, which leads to a
regular number of parameters to store. For the pro-
posed inducer-tuning, we adopt the residual form
to address the initialization issue and avoid the us-
age of the extra MLP, which makes inducer-tuning
have the same number of parameters to store as to
train and behave more like a regular adapter.

To make a fair comparison, we intentionally
choose the number of parameters to store in prefix-
tuning roughly the same as its adapter counterpart
by adjusting the prefix length. Detailed settings are
available in Appendix B.4.

6 Results

6.1 Main Results

We conclude our experimental results in Ta-
bles 1 and 2, comparing the proposed inducer-
tuning (§ 4.3), or inducer-tuning with LoRA (§ 4.5),
against other baselines. The benefit of using Mix-
And-Match (MAM) techniques (He et al., 2021a)

799



WebNLG CoQA
Parameters to BLEU MET TER ↓ EM F1
train store S U A S U A S U A

Prefix-tuning-108 7.98% 1.60% 56.1 37.2 47.6 0.40 0.33 0.37 0.40 0.55 0.47 51.8 60.3
Adaptive 1.62% 1.62% 57.5 36.9 48.2 0.41 0.33 0.37 0.39 0.57 0.47 55.4 63.9
Extension 1.55% 1.55% 59.1 36.7 49.0 0.42 0.33 0.38 0.38 0.58 0.47 57.2 65.7
Gating 1.61% 1.61% 57.1 29.2 44.6 0.41 0.286 0.35 0.40 0.65 0.51 49.1 58.5
Inducer-tuning 1.61% 1.61% 59.4 36.8 49.2 0.42 0.33 0.38 0.38 0.59 0.47 57.7 66.1

+ LoRA 1.61% 1.61% 59.8 37.5 49.7 0.43 0.34 0.38 0.37 0.57 0.46 58.7 67.1

Table 3: Compare several variants of inducer-tuning against Prefix-tuning-108 and our proposed methods (copied
from Table 1). The exact settings of the methods listed are illustrated in § 6.2 and Appendix B.4.

is also explored and stated as follows.

Performance of our proposed methods. Our
proposed methods generally improve the perfor-
mance of prompt-based methods. The average
accuracy of MAM inducer-tuning on MNLI and
SST2 is increased by 0.8% compared to Prefix-
tuning. The benefits are clearer on NLG tasks: on
WebNLG, inducer-tuning with LoRA provides a
1.5% increase in BLEU score compared to Adapter-
108 and a 2%+ increase compared to LoRA-54
and Prefix-tuning-108; on CoQA, all the previ-
ous parameter-efficient methods cannot attain a
close performance to fine-tuning on this harder task,
while inducer-tuning with LoRA closes this gap,
which shrinks to 0.3% with solely 1.61% tunable
parameters of GPT-2.

The MAM technique benefits inducer-tuning.
As remarked by He et al. (2021a), the “Mix-And-
Match” of adapters in both self-attention and FFN
sub-layers can better exploit parameter-efficient
transfer learning than only modulating a single sub-
layer. We obtain a similar conclusion by replac-
ing prefix-tuning with inducer-tuning (+ LoRA) in
self-attention sub-layers. The combination (MAM
inducer-tuning) performs well on most of the tasks;
especially on the tasks with relatively longer se-
quences, MNLI and CoQA, MAM inducer-tuning
attains respectively 0.6% and 1.2% performance
improvement over vanilla inducer-tuning + LoRA.

Long inputs deteriorate prefix-tuning. Notably,
the performance of prefix-tuning is sensitive to the
input length (c.f. § 4.3). For WebNLG with short in-
puts, prefix-tuning attains comparable performance
with fine-tuning and other parameter-efficient meth-
ods. On CoQA, however, prefix-tuning has a sub-
stantially lower exact-match / F1 score than others
(e.g., over 7% decrease in F1 score compared with

fine-tuning). The similar pattern can be observed
on the two NLU tasks as well: the performance gap
between prefix-tuning and other candidate methods
is much smaller on SST2, whose mean sequence
length is shorter than MNLI. We remark our pro-
posed adaptive inducers somewhat resolve the is-
sue: both variants of inducer-tuning in Table 1 ob-
tain a 5%+ improvement on CoQA.

Enhance inducer-tuning through adapting pair-
wise positional interactions. In § 4.5, we spec-
ulate the prompt-based methods can benefit from
adapting pairwise positional interactions, and we
investigate it on both NLU and NLG tasks. With
the same parameter budgets, the inducer-tuning +
LoRA outperforms the pure inducer-tuning on all
tasks. The improvement is more evident in CoQA,
the more challenging generation task with longer
input sequences. We remark that inducer-tuning
more effectively exploits the tunable parameters
than LoRA-54 for the value part, as the combina-
tion variant also performs better than pure LoRA.

6.2 Ablation Studies

We perform ablation studies on generation tasks to
analyze the efficacy of the different components
in our proposed method. We recall there are four
different features in inducer-tuning compared to
prefix-tuning, including the usage of adaptive in-
ducers, the extension of virtual value vectors, the
residual form of Pk, and the design for Pv,i to
concentrate around attention output.

Accordingly, we implement three other vari-
ants of inducer-tuning to help ablate the effects
of the above-mentioned components. Among them,
Adaptive directly takes Qi as Pk,i but still mod-
els Pv,i as f(Qi) + MLPv(Qi); upon Adaptive,
Extension changes Pv,i to f̄(Qi) + MLPv(Qi);
compared to Extension, Inducer-tuning just mod-

800



ifies Pk,i to Qi + MLPk(Qi); to justify the de-
sign that Pv,i centers around the attention out-
put, Gating models Pv,i simply as MLPv(Qi), and
the new complete attention output thus becomes
(1 − λi)f̄(Qi) + λiMLPv(Qi). The concrete set-
ting of each variant is deferred to Appendix B.4
due to limited space.

The usage of adaptive inducers. To demon-
strate the benefits of adaptive inducers, we com-
pare Prefix-tuning-108 with the basic counterpart—
Adaptive. Table 3 shows Adaptive attains close per-
formance to Prefix-tuning-108 on WebNLG while
obtaining a substantial improvement on CoQA,
which has longer inputs.

The extension of virtual value vectors. We
observe an obvious improvement attributed to ex-
tending the scope of virtual value vectors by com-
paring the performance of Adaptive and Extension.
For almost all the metrics, Extension obtains better
performance than Adaptive, with the same number
of tunable parameters.

The residual form of Pk. A natural design for
Pk is to directly model it as Q, which would auto-
matically be the closest vectors to the ones in Q.
To ablate the usage of MLPk, we compare Inducer-
tuning against Extension, which follows the natural
design to model Pk. Through the empirical results,
we find assigning parameters to MLPk can still
slightly help the performance of inducer-tuning.
Pv,i centers around f̄(Qi). Lastly, to show

the benefits of modeling Pv,i as centering around
f̄(Qi), we compare the variant Gating against
Inducer-tuning. While Gating has a weighted sum
form similar to prefix-tuning, it suffers from a great
performance drop on both tasks, which justifies the
effectiveness of our design for Pv,i’s.

7 Conclusion

In this work, we connect attention modules to
Nadaraya-Watson kernel estimators and review
prefix-tuning from a kernel estimator perspec-
tive. We speculate that continuous prompt tuning
prompts serve as inducing variables in kernel meth-
ods. Following this principle, we propose inducer-
tuning, which customizes an “inducer” for each
query vector from the input sequence and adopts a
residual form to resolve the initialization issue in
prefix-tuning. In addition, the perspective implies a
potential limitation of prompt-based methods: the
positional interactions in attention cannot adapt to
the new tasks in prompt tuning. We empirically

demonstrate that our proposed method performs
better on NLU and NLG tasks.

Limitations

In this section, we start with a common limitation
of the current parameter-efficient techniques, and
further, discuss the specific limitation of our meth-
ods.

The shared limitation of parameter-efficient tech-
niques is that they are not computation-efficient;
These methods choose to directly inherit the pre-
trained weights of the backbone model and add
some extra modules, which increases the computa-
tional cost of these methods during inference.

Additionally, our method, which relies on the
unique structure of self-attention, is only applicable
to attention modules. And thus, not as generic as
LoRA and adapters.

Ethics Statement

As an efficient method for NLP, we consider our
work to have a low ethical risk since the outcomes
of the algorithm mainly depend on the downstream
applications. The usage of the method would be
the same as some previous methods, i.e., the prac-
tical deployment for some applications. Also, our
method doesn’t assume any specific structure of the
input and thus doesn’t leverage biases in the data.
We conclude that our work will not likely have a
negative ethical impact.

Acknowledgements

We appreciate all the valuable feedback from the
anonymous reviewers.

801



References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Yifan Chen and Yun Yang. 2021. Fast statistical lever-
age score approximation in kernel ridge regression.
In International Conference on Artificial Intelligence
and Statistics, pages 2935–2943. PMLR.

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. 2021.
Skyformer: Remodel self-attention with gaussian
kernel and nystr\" om method. Advances in Neural
Information Processing Systems, 34.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, et al. 2020. Rethinking
attention with performers. In International Confer-
ence on Learning Representations.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating training
corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021a. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jia-Wei Low, Lidong Bing, and
Luo Si. 2021b. On the effectiveness of adapter-
based tuning for pretrained language model adap-
tation. arXiv preprint arXiv:2106.03164.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782–9793.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. arXiv e-prints, pages
arXiv–2106.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the second workshop on statistical machine
translation, pages 228–231.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), abs/2101.00190.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2020. Exploring versatile generative language model
via parameter-efficient transfer learning. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, pages
441–459.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin
Yang, and Jie Tang. 2021a. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. CoRR, abs/2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

802

https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602


Cameron Musco and Christopher Musco. 2017. Recur-
sive sampling for the nystrom method. In NIPS.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah Smith, and Lingpeng Kong. 2020.
Random feature attention. In International Confer-
ence on Learning Representations.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503, Online. Association for Computational Lin-
guistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020a. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020b. Unks everywhere: Adapting
multilingual language models to new scripts. arXiv
preprint arXiv:2012.15562.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the effi-
ciency of adapters in transformers. arXiv preprint
arXiv:2010.11918.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting knowledge from language models with auto-
matically generated prompts. In Empirical Methods
in Natural Language Processing (EMNLP).

Edward Snelson and Zoubin Ghahramani. 2005. Sparse
gaussian processes using pseudo-inputs. In NIPS.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Americas:
Technical Papers, pages 223–231.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. Bert and
pals: Projected attention layers for efficient adapta-
tion in multi-task learning. In International Con-
ference on Machine Learning, pages 5986–5995.
PMLR.

Michalis Titsias. 2009. Variational learning of inducing
variables in sparse gaussian processes. In Artificial
intelligence and statistics, pages 567–574. PMLR.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2019. Transformer dissection: An unified under-
standing for transformer’s attention via the lens of
kernel. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4344–4353.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gert-
jan van Noord. 2020. UDapter: Language adaptation
for truly Universal Dependency parsing. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2302–2315, Online. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Marko Vidoni, Ivan Vulić, and Goran Glavaš.
2020. Orthogonal language and task adapters in
zero-shot cross-lingual transfer. arXiv preprint
arXiv:2012.06460.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and
Daniel Cer. 2021. Spot: Better frozen model adap-
tation through soft prompt transfer. arXiv preprint
arXiv:2110.07904.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

803

https://aclanthology.org/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180


Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Guihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowledge
into pre-trained models with adapters. arXiv preprint
arXiv:2002.01808.

Larry Wasserman. 2006. All of nonparametric statistics.
Springer Science & Business Media.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Yan Xu, Etsuko Ishii, Zihan Liu, Genta Indra Winata,
Dan Su, Andrea Madotto, and Pascale Fung.
2021. Retrieval-free knowledge-grounded dialogue
response generation with adapters. arXiv preprint
arXiv:2105.06232.

804

http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101


A Dataset Details

• The Multi-Genre Natural Language Inference
Corpus (Williams et al., 2018, MNLI) involves
433k sentence pairs of premises and hypothe-
ses, labeled with textual entailment annotations.
The premise sentences include ten distinct gen-
res, and the classification can be performed on
both the matched (in-domain) and mismatched
(cross-domain) sections. Concatenating premises
and hypothesis as the inputs, we obtain the se-
quence lengths are on average 39.9 and max 444.
For the results reported in Table 2, we follow Hu
et al. (2021) and take mismatched accuracy as
the metric.

• The Stanford Sentiment Treebank (Socher et al.,
2013, SST2) is a corpus of movie reviews and
human annotations of their sentiment. This task
is incorporated into the GLUE benchmark (Wang
et al., 2019), and the dataset split assigns 67k
sentences to the training set and 0.9k to the dev
set. In SST2, the sequence lengths are on average
13.3 and max 66, much shorter than in MNLI. As
specified in the GLUE benchmark, we test the
accuracy metric on whether the sentiment of a
review sentence is positive or negative.

• The instances in WebNLG dataset are the map-
ping set of RDF triples to text. They are
Data/Text pairs, where the “Data” is in a for-
mat of (subject, property, object) triples. For the
train and the validation set, they involve nine
categories which are extracted from DBpedia;
while in the test set, there are five extra unseen
categories, which can partially reflect the gener-
alization of the adaptation methods. The input
sequences in the training set consist of 1 to 7
triples, and the lengths of most sequences are
bounded by 50 (as each triple only includes three
short phrases). The official evaluation script is
used in our experiments, and we report BLEU
(Papineni et al., 2002), METEOR, (Lavie and
Agarwal, 2007) and TER (Snover et al., 2006) as
the metrics.

• CoQA is a large-scale dataset, mainly for con-
versational question answering. It collects more
than 8K conversations over text passages, involv-
ing over 127K questions with answers in 5 do-
mains. The average conversation length is 15
turns (each turn consists of a question and an an-
swer). The task requires the language model to

generate answers to the given questions based on
related conversation histories and documents in
the dataset. The average passage length in CoQA
is 271 (Reddy et al., 2019, Table 3). We simply
follow the evaluation script provided on the of-
ficial website, reporting both the macro-average
F1 score of word overlap and the exact-match
metric (Reddy et al., 2019).

B Training Details

We mainly implement our methods based on the
GitHub repositories provided by Lin et al. (2020)
and He et al. (2021a). Our code will be made public
after the review procedure.

B.1 General Training Settings
For the NLU tasks, we exactly follow the experi-
mental setup used by He et al. (2021a), and more
details can be found in Appendix B.2.

For the two NLG tasks, we mainly follow the
experimental setting adopted by Lin et al. (2020),
and specifically, keep using “task embeddings” in
our experiments, as they are also applied in the
original GPT-2 model. These task embeddings are
specialized segment embeddings used to indicate
the different components of the text input (e.g., the
three components of a triple in WebNLG, questions,
and answers in CoQA, etc.). 8

We list the task embedding used in each NLG
task: for CoQA, we follow the task embedding sug-
gested by Lin et al. (2020); for WebNLG, we sim-
ply use the special tokens to indicate the different
components in the triples. The details of the spe-
cial tokens in each task are summarized in Table 4.
Notably, the parameter budget for task embedding
is much smaller than the number of tunable pa-
rameters in the aforementioned parameter-efficient
adaptation methods (around 2M).

B.2 Hyper-parameters for Training
For NLU tasks, we train the models with Adam
(Kingma and Ba, 2015) optimizer and use a poly-
nomial learning rate scheduler to make the learning
rate linearly decay; specifically, the learning rate is
linearly warmed up from 0 for the first 6For NLG
tasks, an AdamW (Loshchilov and Hutter, 2018)
optimizer is applied to train the models, and a lin-
ear learning rate scheduler with a 500-step warmup
duration is used.

8The task embedding for the special tokens will also be
updated during training, though we do not count them in Ta-
ble 1.

805



Datasets Special tokens # of trainable parameters for task embedding

WebNLG
<bos_webnlg>, <eos_webnlg>, <subject>,
<property>, <object>, <target_webnlg>

6 ∗ 768 = 4608

CoQA
<bos_qa>, <eos_qa>, <question>,

<answer>, <document>
5 ∗ 768 = 3840

Table 4: The special tokens used in different tasks and the corresponding size of trainable parameters.

For the evaluation of NLG tasks, we follow the
script provided by Lin et al. (2020) to generate the
texts through a greedy search for both WebNLG
and CoQA. As for the number of epochs and the
argument for weight decay, we mainly follow the
setting used by Lin et al. (2020); Hu et al. (2021):
for WebNLG, we train the model for 10 epochs;
for CoQA, we train the model for 5 epochs.

For the model-specific hyper-parameters,
namely batch size (gradient accumulation is
used if necessary) and learning rate, we decide
them for different methods based on the loss
on the validation set. For the proposed method
inducer-tuning with/without LoRA and MAM
inducer-tuning in Table 1, we set the learning rate
as 0.00125, and the batch size is 16 for WebNLG;
for CoQA, the learning rate we use is 0.001, and
the batch size is 16. On MNLI, we set the learning
rate as 0.0002 for both two methods and the batch
size as 32 for inducer-tuning with LoRA and 16
for MAM inducer-tuning; on SST2, the learning
rate is similarly set as 0.0002, the batch size for
inducer-tuning with LoRA is 16, and for MAM
inducer-tuning 64.

To reduce the random variability in the results,
all the methods reported are trained for multiple
independent runs. In particular, for WebNLG, we
train models over 5 runs, and for CoQA, MNLI,
and SST2 3 runs. The reported numbers in the cells
in Tables 1 and 2 are the mean value averaged over
the runs, and the significance tests in Table 1 are
also based on the replicates.

B.3 Training Efficiency and Implementation
Details

All the models in this work are implemented by
PyTorch. For the training runtime, if we perform
the training using 1 Tesla V100 16GB GPU, on
WebNLG, it will take inducer-tuning and its vari-
ants around 8 minutes to finish one epoch; on
CoQA, the time cost is around 160 minute/epoch.
On MNLI and SST2, the runtime is 120 and 25
minute/epoch, respectively. We remark all the

parameter-efficient tuning methods have a similar
time cost, while indeed, they solely slightly save
training time compared to fine-tuning. The same
phenomenon is also observed by Lin et al. (2020);
Rücklé et al. (2020).

For the implementation of MLPv, we provide
the exact expression for MLP(h)

v (Q(h)) in head h
as follows:

σ
(
Q(h)W

(h)
1 + 1(b

(h)
1 )T

)
W

(h)
2 + 1bT2 , (11)

where σ is the activation function. As the super-
script suggests, W (h)

1 ∈ Rp×r, b(h)1 ∈ Rr, and
W

(h)
2 ∈ Rr×Nhp are specific to the head h, while

b2 ∈ RNhp are shared among all the heads, which
is the same case as in Equation (4) (in the original
attention sub-layer, the bias term bo applies to all
the heads as well).

B.4 Specific settings for baseline methods

In this subsection, we provide the detailed setting
for the methods in Tables 1, 2, and 3 that need
further specification.

In Table 1, the settings for Adapter-108 and
Prefix-tuning-108 are clear, as the only arguments
are the bottleneck size / prefix length; for LoRA-54,
we apply rank-54 updates for both Wq and Wv, as
suggested by Hu et al. (2021); for MAM adapter,
we mimic the parameter assignment scheme (bot-
tleneck size 512 for FFN and prefix length 30) by
He et al. (2021a), and use the ratio 102 : 6 to
implement MAM adapters with 1.61% tunable pa-
rameters.

For the variants of inducer tuning, their settings
are summarized in Table 5. In this table, the num-
bers in column MLPk and MLPv are the bottle-
neck sizes used for computing Pk and Pv; notice
for Adaptive, the scope of virtual value tokens is
not extended and thus has a larger bottleneck size
than others. (Recall for MLPv, the size of W (h)

2

in Equation (11) is larger than the counterparts in
MLPv. For the numbers in column LoRA, they are

806



the rank of the update used in the LoRA compo-
nent to adjust Wq; only for our proposed method
inducer-tuning with LoRA, the number will be non-
zero.

C Attention as Kernels

To justify the claim that attention is a kernel op-
eration, we construct a Nadaraya–Watson kernel
estimator (Wasserman, 2006, Definition 5.39) of a
query vector Qi (taking {Kj}nj=1 as the supporting
points) as follows:

f(Qi) =
n∑

j=1

ℓj(Qi)Cj , (12)

where ℓj(Qi) :=
κ(Qi,Kj)∑n
k=1 κ(Qi,Kj)

.

κ(·, ·) is a kernel function, and Cj’s are the coeffi-
cients corresponding to the rows Vj’s in the value
matrix V .

Take kernel function κ(x, y) =
exp

(
⟨x, y⟩ /√p

)
. We slightly abuse the no-

tation κ(Q,K) to represent the n-by-n empirical
kernel matrix M , in which the i-th row and the
j-th column is κ(Qi,Kj),∀i ∈ [n], j ∈ [N ]. With
these notations, the output of the kernel estimator
will be,

D−1MC, (13)

where D is a diagonal matrix serving as the row
normalization in Equation (12), and C is an n-
by-p matrix with Cj as its j-th row. We observe
an obvious correspondence between Equation (13)
and the standard attention in Equation (3). The
correspondence implies a finer division of the at-
tention module: the empirical kernel matrix M (D
is decided by κ(Q,K)) and the value part C. (In
Section 4.4, we show that C includes but is not
limited to the value matrix in attention.)

D Example

We provide an example answer generated by fine-
tuning and our inducer-tuning with LoRA on CoQA
in Table 6.

807



NLG tasks MLPk MLPv LoRA FFN-adapter
Adaptive 0 108 0 0
Extension 0 16 0 0
Gating 10 15 0 0
Inducer-tuning 10 15 0 0
∼ w/ LoRA 5 12 24 0
MAM inducer-tuning 3 7 16 42
NLU tasks MLPk MLPv LoRA FFN-adapter
Inducer-tuning 6 4 0 0
Inducer-tuning + LoRA 2 4 4 0
MAM inducer-tuning 2 2 4 12

Table 5: The exact parameter assignment settings for variants of inducer-tuning in Tables 1, 2, and 3.

Documents Kendra and Quinton travel to and from school every day. Kendra lives
further from the bus stop than Quinton does, stops every morning at
Quinton’s house to join him to walk to the bus stop. Every afternoon,
after school, when walking home from the bus stop they go in for cookies
and milk that Quinton’s mother has ready and waiting for them. Quinton
can’t eat cheese or cake so they had the same snack every day. They
both work together on their homework and when they are done they play
together. Kendra always makes sure to leave in time to get home for
dinner. She doesn’t want to miss story time which was right before bedtime.

One morning Kendra walked up to Quinton’s house, she thought
something might be wrong because normally Quinton was waiting
outside for her and on this morning he was not to be found. Kendra
went up to the door and knocked. She waited and waited and yet no one
answered. She saw that Quinton’s mother’s car wasn’t in their driveway
which was weird. She waited for a few bit looking up and down the block
and getting worried when Quinton was nowhere to be found.

Kendra didn’t want to miss the bus to school and hurried off to
make it in time. The bus driver saw that she was upset and that Quinton
was not with her that morning. She told him what happened and he said
that he was sure that everything would be okay.

Kendra got to school, ran to her teacher and told him what happened
that morning. The teacher smiled and told her not to worry, Quinton’s
mother had called and he was going to the dentist and would be at school
after lunch and that she would see him at the bus stop like normal tomorrow.

Q4: What happened when Kendra knocked on Quinton’s door?
Reference: no one answered

Fine-tuning she thought something might be wrong
Inducer-tuning w/ LoRA he was not to be found

Table 6: A qualitative example from CoQA. In particular fine-tuning generates an answer farther away from the
correct answer than inducer-tuning with LoRA.

808


