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Abstract
Neural attention models have achieved signifi-
cant improvements on many natural language
processing tasks. However, the quadratic mem-
ory complexity of the self-attention module
with respect to the input length hinders their
applications in long text summarization. In-
stead of designing more efficient attention mod-
ules, we approach this problem by investigat-
ing if models with a restricted context can have
competitive performance compared with the
memory-efficient attention models that main-
tain a global context by treating the input as a
single sequence. Our model is applied to in-
dividual pages, which contain parts of inputs
grouped by the principle of locality, during
both the encoding and decoding stages. We em-
pirically investigated three kinds of locality in
text summarization at different levels of gran-
ularity, ranging from sentences to documents.
Our experimental results show that our model
has a better performance compared with strong
baseline models with efficient attention mod-
ules, and our analysis provides further insights
into our locality-aware modeling strategy.1

1 Introduction

Neural abstractive summarization (Rush et al.,
2015; Nallapati et al., 2016) is mainly formulated
as a sequence-to-sequence (Sutskever et al., 2014)
(Seq2Seq) problem. Neural attention models, e.g.,
Transformers (Vaswani et al., 2017), have been
widely used for such Seq2Seq tasks, allowing effec-
tive modeling of various dependencies in the input
and output sequences. However, the self-attention
module in such models introduces a quadratic mem-
ory growth with respect to the input sequence
length. Consequently, for long-text summarization
datasets,2 recent works (Beltagy et al., 2020; Ki-
taev et al., 2020; Zaheer et al., 2020) have explored

1We have made our code, results, and trained models pub-
licly available at https://github.com/yixinL7/PageSum.

2For example, the average input document length in the
arXiv dataset (Cohan et al., 2018) is more than 8,000 tokens.
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Figure 1: Intrinsic spatial locality in the arXiv dataset.
The X-axis represents the distance of two sentences in
source documents measured by the difference of their
locations (indexes). Y-axis represents the average se-
mantic similarity calculated by the cosine similarity
between sentence embeddings, which are generated by
a pre-trained sentence embedding model (Gao et al.,
2021). The dash line shows the average similarity.

using efficient attention to reduce the memory foot-
print while still maintaining the same global con-
text of a full-attention model – every input token
can receive information from all the other input
tokens. However, efficient attention is just an ap-
proximation of full attention and can show lower
performance compared with its counterpart (Kitaev
et al., 2020). To investigate an alternative memory-
efficient modeling approach, we argue that models
with a restricted context, where each token only
receives a subset of tokens as its context during
the entire computation, can be competitive with
efficient attention models if they can effectively
leverage locality in text summarization.

Locality, or the principle of locality, is one of
the fundamental principles of virtual memory sys-
tems (Denning, 2005),3 and exists in a wide range

3A formal definition of locality coined by Denning (1980)
is: “The concept that a program favors a subset of its segments
during extended intervals (phases) is called locality."
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Figure 2: Model architecture. Our model views the
source document as a number of non-overlapping pages,
and the final output is a weighted combination of local
predictions on the individual pages.

of domains (Koopman et al., 2013; Fonseca et al.,
2003; Zamanian et al., 2015). A classic example
of locality is the spatial locality in computer mem-
ory systems – data units that are stored closely on
the disk are likely to be accessed during a short
time period by a computer process, therefore it is
beneficial to read a block of data as a page in the
memory instead of reading only one data unit at a
time. Such patterns also exist in text summariza-
tion. For example, on the arXiv dataset, we observe
an intrinsic spatial locality in source documents –
the closer in the document two sentences are, the
more semantically similar they are (Fig. 1). This
observation supports the inductive bias of window
attention (Beltagy et al., 2020; Zaheer et al., 2020),
which allows each token to interact with its neigh-
boring tokens within the window size.

We introduce a framework of leveraging locality
for text summarization, which reduces the mem-
ory complexity of full-attention models while still
maintains competitive performance. Instead of
viewing the input document as an entire sequence,
we represent an input document as a number of
pages which are constructed according to the prin-
ciple of locality (Fig. 2). Each of these pages is
encoded independently by the encoder of our ab-
stractive model, and the decoder makes local pre-
dictions over each page along with local confidence
scores of its predictions, which are used to com-
bine the local predictions into final outputs. In
this framework, tokens in different pages never di-
rectly interact with each other during encoding and
decoding, which highlights the role of locality in
text summarization. In contrast, one of the key as-
sumptions of efficient attention models is that all
tokens in the input text should interact with each
other, which is made possible because (1) global
tokens (Beltagy et al., 2020) or overlapping win-

dow attention maintain a global context during en-
coding; (2) the encoder-decoder attention takes the
source document embeddings as an entire sequence
during decoding.

Using the proposed framework, we are able to
investigate several types of locality in text sum-
marization: (1) spatial locality or sequential local-
ity – neighboring sentences are grouped into the
same (non-overlapping) page; (2) discourse local-
ity – different sections in a scientific paper may
cover different aspects, therefore they are viewed
as different pages (Cohan et al., 2018); (3) docu-
ment locality – for multi-document summarization,
each document in a document cluster can be viewed
as an individual page (Jin and Wan, 2020). Our ap-
proach also has other advantages: (1) Our model
can take the most advantage of pre-trained full-
attention models (e.g. BART (Lewis et al., 2020))
because it preserves the same attention mechanism
as the full-attention models, unlike most of the
efficient attention models; (2) It reduces the over-
all complexity of encoder self-attention to a lin-
ear relationship with the input document length.
We empirically demonstrate that our model out-
performs strong baseline models built upon var-
ious efficient-attention modules on several sum-
marization datasets. Furthermore, we conduct de-
tailed analyses on different modeling options for
our framework, shedding lights on its broader uses.

2 Preliminaries

Abstractive summarization models aim to generate
a shorter text sequence as the summary of an in-
put document. Given an input document D and a
reference summary S, the standard training algo-
rithm of a neural abstractive summarization model
g adopts the cross-entropy loss, which requires the
model to predict the next token of the reference
summary given the input document and the prefix
of the reference summary before the current token:

Lxent = −
l∑

i=1

log pgθ(si|D,S<i; θ), (1)

where θ is the trainable parameters of the model
g, pgθ is the predicted probability over the vo-
cabulary, l is the length of the summary S,
{s1, · · · , si, · · · , sl} are tokens in S, S<i denotes
the partial reference sequence {s0, · · · , si−1} and
s0 is a pre-defined start token.
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Encoder-Decoder Model The encoder-decoder
model formulates abstractive summarization as a
Seq2Seq task,

hi = Decoder(Encoder(D), S<i), (2)

where hi is the hidden representation. The genera-
tion probability is

pgθ(·|D,S<i; θ) = softmax(Lvocab(hi)), (3)

where Lvocab is a linear projection layer.

Neural Attention and Its Limitations Neural
attention modules are essential to the success of
Transformers (Vaswani et al., 2017) and pre-trained
language models (Radford et al., 2019; Lewis et al.,
2020; Zhang et al., 2020) for language generation
tasks such as machine translation or text summa-
rization. Given a query matrix Q, a key matrix K,
and a value matrix V , the output of the dot-product
attention is:

Attention(Q,K, V ) = softmax(QKT )V. (4)

To compute Eq. 4 in a parallel manner, it requires
O(lQ · lK) memory space to store the intermediate
result of QKT where lQ and lK are the length of Q
and K respectively. This becomes a bottleneck of
the self-attention module for long input documents,
where Q, K, V come from the same input D, and
the space complexity becomes O(lD

2), where lD
is the length of the input document and can be very
large (e.g. more than 10,000 tokens).

3 Locality-aware Abstractive Text
Summarization

To avoid the quadratic growth of memory with re-
spect to the length of the input, we introduce a
different view for modeling the input text. Specifi-
cally, instead of viewing the input document as an
entire text sequence, we view it as a series of non-
overlapping pages with a fixed maximum length:

D := {P1, · · · , Pi, · · · , Pn}, (5)

where Pi is the i-th page and n is the number of
pages. We hypothesize that with the principle of
locality, the abstractive summarizer can make local
predictions about the output summary based on
individual pages without having each input token
interact with the entire input document:

h
(j)
i = Decoder(Encoder(Pj), S<i), (6)

where h(j)i is the local hidden state of the i-th token
of the summary given the j-th page. Apart from the
hidden state, we also require the decoder to predict
a confidence score of its local prediction:

cij = Lconf (h
(j)
i ), (7)

where Lconf is a linear layer projecting the hidden
state h

(j)
i to a scalar. The confidence scores are

normalized:

ĉij =
exp(cij)∑n
k=1 exp(cik)

, (8)

and used to combine the local hidden states for
predicting the final output:

pgθ (·|D,S<i; θ) = softmax(Lvocab(
n∑

j=1

ĉij · h(j)
i )). (9)

Fine-tuning from Pre-trained Models Our
model can be directly initialized from a pre-trained
language model (e.g. BART (Lewis et al., 2020))
except for an additional linear layer Lcong (Eq. 7).
The cross-entropy loss (Eq. 1) with label smooth-
ing (Szegedy et al., 2016) is used for training.

Space Complexity Our model has a linear space
complexity with respect to the length of input docu-
ments. Specifically, given a pre-defined maximum
page length Lpage, a document of which the length
is lD will be split into at most ⌈ lD

Lpage
⌉ pages. The

space complexity of the encoder self-attention for
one page is O(L2

page), and the complexity for all
pages is

O(L2
page · ⌈

lD
Lpage

⌉) = O(LpagelD). (10)

When lD ≫ Lpage, the complexity is O(lD).4

Locality in Abstractive Summarization We
mainly explore three types of locality for abstrac-
tive summarization, which provide the principles
of splitting an input document or document cluster
(in the case of multi-document summarization) into
different pages.
(1) Spatial Locality: in the most direct form, an
input document can be sequentially split into dif-
ferent pages. The underlying intuition is that neigh-
boring sentences are likely to focus on the same

4In practice, the page size Lpage can be large (e.g. 512 to-
kens). However, we note that sparse attention models can also
use window attention with large sizes (e.g. Longformer (Belt-
agy et al., 2020) uses either 512 or 1024 tokens).
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topic. Under this setting, each document will be
equally split into np pages, which is a pre-defined
number.
(2) Discourse Locality: long documents usually
have a hierarchical discourse structure, and dis-
course units at the same level have different focus.
For example, a scientific paper usually has multiple
sections with different purposes (e.g. introduction,
related work, etc.), and this discourse structure can
be a useful inductive bias (Cohan et al., 2018). Un-
der this setting, each discourse unit (e.g. a section
in a scientific paper) is viewed as a page.
(3) Document Locality: for multi-document sum-
marization, we can view each single document in
the document cluster as a page. Previous work (Jin
and Wan, 2020) has shown that multi-document
summarization can benefit from single-document
summarization models by first summarizing each
document then combining the predictions.

4 Related Work

4.1 Efficient Attention Models

Efficient attention models aim to reduce the mem-
ory complexity of full attention models, of which
the most important and commonly used build-
ing blocks are window attention (Beltagy et al.,
2020; Zaheer et al., 2020) and low-rank approxi-
mation (Liu* et al., 2018; Wang et al., 2020; Peng
et al., 2021; Choromanski et al., 2021).

Window attention means that each token can
only receive information from its neighboring to-
kens that are located in the same window. How-
ever, multi-layer models with overlapping win-
dow attention (Beltagy et al., 2020; Zaheer et al.,
2020; Manakul and Gales, 2021; Guo et al., 2021)
can still maintain a global context. On the other
hand, non-overlapping window attention (local
attention) with fixed windows (Liu* et al., 2018;
Zhao et al., 2020; Pietruszka et al., 2020) has a re-
stricted context since tokens in different windows
cannot interact with each other. Instead of using
fixed windows throughout the model, using win-
dow attention with learnable patterns (Kitaev et al.,
2020; Tay et al., 2020; Huang et al., 2021) offer
more flexibility because windows can be dynami-
cally constructed at different layers of the model,
which allows a larger context. Headwise sparse
attention (Qiu et al., 2020; Huang et al., 2021) is
another method of reducing memory usage while
preserving global context.

Compared to these methods, our model has a dis-

tinct feature in that we maintain a local context of
the input tokens at both the encoding and decoding
stages. Zhao et al. (2020) proposed a similar block-
wise encoder-decoder attention module which only
uses a subset of input tokens (blocks) at each de-
coding stage. However, our method differs from
theirs in that our model dynamically combines the
local predictions based on all the individual pages
into the final output (Eq. 9).

4.2 Hierarchical Summarization Models

Hierarchical attention (Yang et al., 2016) models
aim to utilize the inherent structure of documents as
a source of inductive bias. For text summarization,
Ling and Rush (2017) proposes a coarse-to-fine
structure consisting of word-level and chunk-level
attention. Cohan et al. (2018); Xu et al. (2020a);
Dong et al. (2021) introduce discourse-aware atten-
tion at the level of document sections or elementary
discourse units. Related work (Xiao and Carenini,
2019; Xu et al., 2020b; Rohde et al., 2021; Ruan
et al., 2022) use a similar structure that computes
both token-level and sentence-level attention. Cao
and Wang (2022) introduces learnable hierarchical
biases into the attention module.

Hierarchical models have also been widely used
for multi-document summarization. Hierarchical
attention can focus on the sentence level (Fab-
bri et al., 2019), paragraph level (Liu and Lapata,
2019), and document level (Zhang et al., 2018; Jin
and Wan, 2020; Jin et al., 2020). Ernst et al. (2021)
porposed a proposition-level clustering algorithm,
which generates summaries from each of the propo-
sition clusters extracted from source documents.

The multi-stage method of text summariza-
tion (Chen and Bansal, 2018; Xu and Durrett, 2019;
Pilault et al., 2020) also has a hierarchical struc-
ture. In particular, Zhang et al. (2022) first gener-
ates a coarse summary for each part of the input
document, then further summarizes the generated
summaries. Mao et al. (2022) first extracts sen-
tences from the source documents, and generates
the summary based on the selected sentences.

Our method introduces pages as a new, unified
abstraction for hierarchical models which can be
instantiated as sentence clusters, scientific paper
sections, and entire documents in a document clus-
ter. Furthermore, unlike previous work, our model
emphasizes the role of locality by preventing ex-
plicit interactions among different units (pages) at
the higher levels of the hierarchy.
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System arXiv PubMed GovReport

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LED* (4096) 44.40 17.94 39.76 - - - - - -
LED* (16384) 46.63 19.62 41.83 - - - - - -
LED‡ (16384) 48.10 19.78 43.08 46.93 19.88 42.73 59.42 26.53 56.63
HEPOS* (7168) 48.24 20.26 41.78 48.12 21.06 42.72 55.00 21.13 51.67
HEPOS* (10240) 47.87 20.00 41.50 47.93 20.74 42.58 56.86 22.62 53.82
PRIMERA* (4096) 47.60 20.80 42.60 - - - - - -
PRIMERA‡ (4096) 47.65 20.76 43.19 - - - - - -
HAT-BART* (3072) 46.68 19.07 42.17 48.36 21.43 37.00 - - -

PageSum (7168) 49.72† 21.06† 44.69† 48.24† 21.06† 44.26† 59.05 26.37 56.22
PageSum (20480) - - - - - - 59.91† 27.20† 57.07†

PageSum⋆ (7168/20480) 49.60† 20.98† 44.69† 48.73† 21.33† 44.67† 60.04† 27.17† 57.21†

Table 1: System performance comparison for spatial locality. R-1/2/L are the ROUGE-1/2/L F1 scores respectively.
The numbers in parentheses indicate the maximum input length (tokens). *: results reported in the original papers.
‡: results from our own evaluation script (and own checkpoints). †: significantly better than LED‡ (p < 0.01).
PageSum denotes the model fine-tuned from a BART checkpoint pre-trained on the CNN/DailyMail dataset, while
PageSum⋆ is its counterpart without the CNN/DailyMail pre-training. For PageSum⋆, the maximum token number
is 7168 on arXiv and PubMed, and 20480 on GovReport.

5 Experiments

5.1 Experimental Settings

Datasets We use four datasets (Tab. 10) in our
experiments.
arXiv and PubMed are two scientific paper sum-
marization datasets introduced by Cohan et al.
(2018).5 The abstracts of the papers are used as the
summaries of the main content of those papers.
GovReport6 (Huang et al., 2021) is a long docu-
ment summarization dataset based on reports pub-
lished by the U.S. Government Accountability Of-
fice and Congressional Research Service.
MultiNews7 (Fabbri et al., 2019) is a multi-
document summarization dataset, with news ar-
ticles and summaries collected from newser.com.

Baselines We use the following top-performing
models as baselines for comparison.
(1) LED (Longformer Encoder-Decoder) (Beltagy
et al., 2020) is an encoder-decoder model with a
sparse encoder self-attention module.
(2) HEPOS (Huang et al., 2021) combines both ef-
ficient encoder self-attention and encoder-decoder
attention in its encoder-decoder architecture.
(3) PRIMERA (Xiao et al., 2022) shares the same
architecture as LED, but has task-specific pre-
training for multi-document summarization.
(4) HAT-BART (Rohde et al., 2021) is built upon
BART (Lewis et al., 2020) while it has additional

5https://github.com/armancohan/long-summarization
6https://github.com/luyang-huang96/LongDocSum
7https://github.com/Alex-Fabbri/Multi-News

hierarchical layers for sentence-level interactions.
It uses full attention and not sparse attention.

Implementation Details We use BART8 as the
backbone of our model, except for the linear layer
computing the confidence scores (Eq. 7). We initial-
ize the model from either a checkpoint pre-trained
on CNN/DailyMail dataset (Hermann et al., 2015;
Nallapati et al., 2016), or its counterpart without the
CNN/Dailymail pre-training. We select the model
checkpoints based on their performance on the vali-
dation set, using cross-entropy loss (Eq. 1). We use
ROUGE (Lin, 2004) as the automatic evaluation
metric for performance comparison. More specifi-
cally, we report the F1 scores of ROUGE-1/2/L in
our experiments.

We name our model as PageSum for the follow-
ing experiments.

5.2 Exp-I: Spatial Locality

We first investigate the case of spatial locality,
where the sentences in the source document are se-
quentially split into different pages with the same
number of sentences. The maximum number of
tokens for one page is 1,024.

We report the model performance9 in Tab. 1 on

8It contains around 400M parameters.
9For a fair comparison, we used public-available check-

points of LED from Hugging Face’s Transformers (Wolf
et al., 2020) on arXiv (‘allenai/led-large-16384-arxiv’)
and PubMed (‘patrickvonplaten/led-large-16384-pubmed’)
to generate the summaries and used our own evaluation script.
The performance difference between the original result and
the ours is likely because the original implementation uses
window-attention with 512 tokens while HF uses 1,024 tokens.
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System R-1 R-2 R-L

PageSum-Spatial (7168) 49.72 21.06 44.69
PageSum-Discourse (8192) 49.84 21.19† 44.89†

Table 2: System performance comparison for discourse
locality on arXiv. R-1/2/L are the ROUGE-1/2/L F1

scores respectively. The numbers in the parentheses
indicate the maximum input length. PageSum-Spatial
is with spatial locality. PageSum-Discourse is with
discourse locality. †: significantly better (p < 0.05).

reference random spatial discourse

0.9800 0.9543 0.9734 0.9798

Table 3: Semantic coherence (Eq. 11) of summaries on
arXiv. reference is the reference summary. random
is an oracle which randomly shuffles reference sum-
mary sentences. spatial is PageSum with spatial locality
while discourse is with discourse locality.discourse has
significantly higher (p < 0.01) coherence than spatial.

the arXiv, PubMed, GovReport datasets. We
make the following observations. (1) PageSum
achieves better ROUGE scores on all three long text
summarization datasets compared with the base-
lines that leverage efficient attention modules. (2)
On Pubmed, HAT-BART achieves slightly better
performance than PageSum, likely because HAT-
BART uses full attention instead of efficient atten-
tion. (3) On GovReport, increasing the maxi-
mum input length helps to improve PageSum’s
performance.

5.3 Exp-II: Discourse Locality

We use the arXiv dataset to explore another lo-
cality principle – discourse locality. Specifically,
we view each section of the input document as an
individual page. The maximum number of tokens
for one page is still 1,024, however, here we allow
each example to have a different number of pages
because documents can have different numbers of
sections. For each page, we concatenate the name
of the section and the content together as the input.

The results in Tab. 2 show that PageSum with
discourse locality achieves higher ROUGE scores
than PageSum with spatial locality. In addition,
we note that with discourse locality, PageSum can
also generate more coherent summaries. Specif-
ically, following Bommasani and Cardie (2020),
we evaluate the semantic coherence of the gener-
ated summaries using the next sentence prediction
task (Devlin et al., 2019) with a pre-trained BERT

System R-1 R-2 R-L

PRIMERA* 49.90 21.10 25.90
PRIMERA‡ 50.29 21.20 46.23
BART-Long-Graph* 49.24 18.99 23.97

PageSum-Spatial 49.03 19.10 44.73
PageSum-Document 51.17† 21.39† 46.88†

Table 4: System performance comparison for document
locality on MultiNews. R-1/2/L are the ROUGE-
1/2/L F1 scores respectively. PageSum-Spatial is Page-
Sum with spatial locality. PageSum-Document is with
document locality. *: results reported in the original
papers. ‡: results from our own evaluation script. †:
significantly better than PRIMERA‡ (p < 0.05).

model10 to predict the probability (pBERT) of one
sentence S(i−1) in the summary S being followed
by the next sentence S(i):

SC(S) =

∑NS
i=2 pBERT(S

(i)|S(i−1))

NS − 1
, (11)

where NS is the number of sentences in the sum-
mary. Tab. 3 shows the average semantic coher-
ence of summaries. The summaries generated by
PageSum with discourse locality have higher se-
mantic coherence, suggesting that grouping the
sentences based on discourse structures helps to
generate more well-structured summaries.

5.4 Exp-III: Document Locality
For multi-document summarization, we evaluate
PageSum with document locality on MultiNews,
where we view each document in the document
cluster as a page. The other experiment setting
is the same as in §5.3. In addition to the base-
line systems in §5.1, we add another model BART-
Long-Graph (Pasunuru et al., 2021) for comparison,
which is specifically designed for multi-document
summarization and achieves top performance on
MultiNews. The results are shown in Tab. 4.11

PageSum achieves strong performance in this set-
ting, outperforming the previous state-of-the-art
models. We also note that PageSum with document
locality achieves much better performance than its
counterpart with spatial locality, suggesting the
importance of choosing the suitable locality for a
specific task.

10We use the checkpoint (‘bert-large-uncased’) from Hug-
gingFace Transformers (Wolf et al., 2020).

11We reported the performance fine-tuned from the BART
model pre-trained on CNN/DailyMail dataset while we found
the model without this pre-training having similar perfor-
mance. We notice a large difference between ROUGE-L
scores reported by the original paper and as calculated us-
ing our evaluation script for PRIMERA. This may be due to
different versions of ROUGE-L.
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Page Size #Pages R-1 R-2 R-L

128 32 47.67 18.76 42.82
256 16 48.29 19.32 43.38
512 8 48.82 19.80 43.85

1024 4 48.66 19.90 43.74

Table 5: Performance comparison of different page sizes
on arXiv. Page Size denotes the number of tokens in
one page. #Pages denotes the number of pages. R-1/2/L
are the ROUGE-1/2/L F1 scores respectively.

System R-1 R-2 R-L

arXiv

Global-Decoding 48.57 19.92 43.71
PageSum-Spatial 48.66 19.90 43.74

MultiNews

Global-Decoding 48.75 19.03 44.48
PageSum-Document 51.17 21.39 46.88

Table 6: Comparison of page-wise decoding and global
decoding on arXiv and MultiNews. R-1/2/L are the
ROUGE-1/2/L F1 scores respectively.

5.5 Analysis

We analyze several important aspects of our method
to gain further insights.

Page Size To investigate how the maximum
length of a page affects the model performance,
we conduct experiments with different page sizes
on arXiv. For a fair comparison, we first truncate
each document in arXiv to 4,096 tokens, then
split the document into different pages based on
the page size. The results are shown in Tab. 5.
We observe that increasing the page size generally
helps to improve model performance. However,
model performance stops increasing after the page
size reaches 512 tokens.

Page-wise v.s. Global Decoding Both the en-
coder and decoder in PageSum are designed to
follow the principle of locality. Specifically, the
decoder in PageSum first makes local predictions
based on each encoded page (Eq. 6), which are
later combined into final predictions. An alterna-
tive approach is to directly make global predictions
based on the entire input document – the encoded
pages are concatenated as a single sequence, which
serves as the input to the decoder. We compare
this option with our modeling strategy in Tab. 6.12

The results show that on arXiv, page-wise decod-
ing with spatial locality has a similar performance

12On arXiv, we compare the models with this setting: 4
pages, 1,024 tokens for each page.
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Figure 3: Visualization of importance scores of differ-
ent pages at each decoding step on MultiNews and
arXiv. Darker colors represent greater importance.

compared with global decoding. On the other hand,
document locality on MultiNews is proven to be
a very useful inductive bias because PageSum with
document locality has a large improvement over
the model with global decoding.

Visualizing Locality The confidence scores cal-
culated by PageSum’s decoder (Eq. 7) can be inter-
preted as the importance scores of different pages
at each decoding step. That is, a page associated
with a higher score will contribute more to the de-
cision at the current step. Fig. 3 depicts how the
importance scores changed during the decoding
of the reference summaries on MultiNews and
arXiv using two examples. We observe two phe-
nomena: (1) space locality – at each decoding step
only a subset of pages are making large contribu-
tions to the current prediction; (2) time locality –
PageSum’s decoder tends to focus on the similar
subset of pages at neighboring decoding steps.

5.6 Human Evaluation for Coherence

Summary coherence is a critical aspect of the sum-
mary quality, especially when the summaries are
very long. Fabbri et al. (2021) shows that auto-
matic metrics have a low correlation with human
evaluation results w.r.t. summary coherence, while
Goyal et al. (2022) demonstrates that recent state-
of-the-art summarization models can still make
many coherence errors on long text summarization
datasets. Therefore, we conduct human evaluation
for the coherence of system-generated summaries
on GovReport13 dataset to investigate this impor-
tant aspect.

13We choose GovReport dataset because it has the
longest summaries.
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Error Type Example Explanation

RefE The Part D program, administered by the Centers for Medicare & Medicaid Services (CMS), pays
Part D plan sponsors to provide drug coverage, and plan sponsors may charge beneficiaries monthly
premiums in exchange for coverage. Plan sponsors and PBMs negotiate reimbursement rates for
the drugs provided to beneficiaries. ... Seventy-four percent of the drug benefits management
services provided under 624 Part D plans sponsors’ contracts were performed by a pharmacy
benefit manager (PBM) alone or in conjunction with a plan sponsor in 2016.

The word, PBM, is an abbrevi-
ation for pharmacy benefit man-
ager, which is mentioned without
first introducing the full name.

TopicE . . . The President may implement the recommendations suggested in the Commerce report, take
other actions, or decide to take no action. After making a decision, the President has 15 days to
implement the action and 30 days to submit a written statement to Congress explaining the
action or inaction; he must also publish his findings in the Federal Register. While there is no
specific definition of national security in the statute, it states that the investigation must consider
certain factors, such as domestic production needed for projected national defense requirements;
domestic capacity; . . .

The topic abruptly changes from
the President and recommen-
dations to the specific definition
of national security.

InconE ... To do this work, GAO selected seven states Arizona, Florida, Kansas, New Jersey, Pennsylva-
nia, Tennessee, New York, Virginia, and Pennsylvania based on factors such as population size,
Medicaid enrollment, and geographic location and interviewed CMS officials. ...

There are nine states mentioned
instead of seven.

RepE . . . The high productivity helped the operation come in under budget by $118 million a 36 percent
reduction while the operation’s cost was $185 million, 36 percent below the anticipated cost. . . .

The 36 percent reduction are
mentioned twice in one sentence.

Table 7: Examples of different coherence errors on GovReport dataset. RefE: Missing Information/Reference
about an Event/Object. TopicE: Abrupt Transition from the Previous Topic. InconE: Inconsistent, Conflicting
Information. RepE: Repetition.

Following Goyal et al. (2022), we use a fine-
grained human evaluation protocol which requires
the annotators to identify different types of span-
level coherence errors in the summaries. We
adopted the taxonomy of coherence errors pro-
posed by Goyal et al. (2022) and modified it for
GovReport, which results in four types of coher-
ence errors (the definitions are taken and modified
from the definitions in Goyal et al. (2022)):

(1) Missing Information/Reference about an
Event/Object (RefE). These refer to coherence er-
rors where an event or object is mentioned the first
time without the proper context or introduction. On
GovReport, a common error is referring an en-
tity using its abbreviation without introducing the
entity and its whole name before.

(2) Abrupt Transition from the Previous Topic
(TopicE). These refer to coherence errors where
there is a sudden topic shift in the summary.

(3) Inconsistent, Conflicting Information
(InconE). These refer to text spans that contradict
previous content.

(4) Repetition (RepE). These refer to text spans
where content is repeated.

We show examples of these types of errors in
Tab. 7. We randomly sampled 30 examples from
the test set of GovReport, and counted the num-
ber of text spans containing the coherence errors in
the summaries generated by PageSum and LED.
All examples are annotated by three of the au-
thors.14 We anonymized the examples for a fair
comparison. The results are shown in Tab. 8.

14The Krippendorff’s alpha (Krippendorff, 2011) is 0.5719.

System RefE TopicE InconE RepE Total

LED 41.7 19 8.3 9.7 78.7
PageSum 32.3 14 10 8.3 64.7

Table 8: Human Evaluation for Coherence on
GovReport. We report the number of different coher-
ence errors made by PageSum and LED on 30 examples
(averaged across three annotators). RefE: Missing In-
formation/Reference about an Event/Object. TopicE:
Abrupt Transition from the Previous Topic. InconE: In-
consistent, Conflicting Information. RepE: Repetition.

Aligned with the findings in Goyal et al. (2022),
we found that both LED and PageSum make a non-
trivial amount of errors. However, PageSum is able
to make fewer errors for each of the error types
except for the InconE error type.

5.7 Case Study: Long-Distance Dependencies

A global context can be much more important in
the presence of long-distance dependencies for text
summarization models (Fernandes et al., 2019; Xu
et al., 2020a). To study this phenomenon, we lever-
age the notion of sentence fusion (Barzilay and
McKeown, 2005) to investigate sentence-level de-
pendencies. Specifically, following Lebanoff et al.
(2019a,b), we define a fusion sentence in the refer-
ence summary to be a sentence that has significant
overlaps with two or more sentences15 in the source
document. Then, we define two sentences ŝ1, ŝ2
in the source document D to be interdependent
if they have the most significant contribution to a

15We focus on the case of two sentences.
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Fusion
Sentence

ED issued a notice of proposed rulemaking in late 2018,
after revoking some of its previous guidance to schools
in 2017.

14th Source
Sentence

And ED recently issued another notice of proposed rule-
making, after having revoked some of its prior guidance
to schools in 2017.

410th Source
Sentence

On November 29, 2018, ED issued a notice of proposed
rulemaking in the Federal Register.

PageSum
Output

ED recently issued another notice of proposed rulemak-
ing, after having revoked some of its prior guidance to
schools in 2017.

Table 9: Case Study on GovReport about long-
distance dependencies. Both 14th and 410th sentences
contribute to the same reference sentence. PageSum’s
output fails to capture this long-distance dependency.
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Figure 4: Number of interdependent sentences with dif-
ferent distances on GovReport and arXiv datasets.
X-axis represents the ratio of sentence distances normal-
ized by the number of sentences in the entire document.

fusion sentence h:

(ŝ1, ŝ2) := argmax
(si,sj),si,sj∈D

ROUGERecall(h, si⊕sj). (12)

More details can be found in Appendix B.
We found that PageSum can fail to capture the

dependencies where two interdependent sentences
are far away from each other. We show such an ex-
ample in Tab. 9, where the 14th sentence and 410th
sentence in the source document both contribute
to the same fusion sentence. PageSum’s output
only captures the information in the 14th sentence.
However, the impact of the potential failures is re-
stricted. As shown in Fig. 4, there are much fewer
interdependent sentence pairs with long distances.

6 Conclusions

We empirically investigate three kinds of locality
in abstractive text summarization by using them as
important inductive biases. Using a new abstrac-
tion of viewing the input document as a series of
pages, our model emphasizes the role of locality
in both encoding and decoding stages. The ex-
perimental results show that our model has strong
performance by following the principle of local-
ity. We also show that it is important to select the
suitable kind of locality for different application

scenarios. We note that the fact that our model
has better or competitive performance comparing
with the models equipped with efficient attention
modules suggests that those models may fall short
of their designing objectives. Therefore, for future
work, our findings call for more rigorous examina-
tions of the memory-efficient abstractive summa-
rization models that aim to capture global features
(e.g. long-distance dependencies) and maintain a
global input context.

7 Limitations

Computation Resources While our approach can
reduce the memory footprint of full-attention mod-
els, it still requires GPUs with large memory sizes
(e.g. 48 GBs) and long time (more than 7 days
with a single GPU) to train our model. We note
that our model has a similar memory footprint
as the efficient-attention models such as Long-
former (Beltagy et al., 2020). Therefore, the re-
quirement of computation resources is a common
challenge in long text summarization.

Long-Distance Dependencies The inductive
bias of our approach is to emphasize the role of
locality in abstractive text summarization. As a re-
sult, our approach can fail to capture long-distance
dependencies. We have discussed this potential
problem in §5.7. While we have shown that the
ratio of sentence-level long-distance dependencies
are relatively low in the datasets we investigated for
this work, it is worthwhile to be aware of this limi-
tation when extending our method to other datasets.

Human Evaluation While we have presented
a fine-grained human evaluation on summary co-
herence in §5.6, there are other important as-
pects of summary quality such as factual con-
sistency (Maynez et al., 2020). However, it is
even a more non-trivial task to evaluate an input-
document-based aspect such as factual consistency
on the datasets we used as it requires reading the
entire input documents which can be more than
10K words long and having domain-specific knowl-
edge to understand the context of scientific papers
or government reports. We believe the research of
long text summarization will benefit greatly from
better human and automatic evaluation.
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A Experimental Settings

A.1 Datasets Statistics

We report the dataset statistics in Tab. 10.

Datasets # Examples Avg. Tokens

Train Valid Test Doc. Sum.

arXiv 203K 6.4K 6.4K 8154.3 197.8
PubMed 120K 6.7K 6.6K 3983.6 261.3
GovReport 17.5K 973 974 10726.1 681.6
MultiNews 45.0K 5.6K 5.6K 2526.4 277.2

Table 10: Dataset Statistics. We report the average num-
ber of tokens generated by the BPE tokenizer (Sennrich
et al., 2016) used by BART (Lewis et al., 2020) on the
validation set. For MultiNews dataset, we report the
sum of lengths of the individual source document in a
document cluster as it is a multi-document dataset.

A.2 Implementation Details
We use the Adam optimizer (Kingma and Ba, 2015)
with learning rate scheduling as follows:

lr = 2× 10−3 min(step−0.5, step · warmup−1.5). (13)

warmup is the number of warmup steps, which
is set to 10000. step is the number of update
steps taken so far. Our models are trained on one
NVIDIA A6000 GPU, and it takes around 5-25
hours (depending on the size of the dataset) for
one training epoch. All models converged in 10
epochs. For ROUGE score computation, we use
the summary-level ROUGE-L score which is the
default choice of the standard ROUGE Perl script.

B Long-Distance Dependencies

We define two sentences ŝ1, ŝ2 in the source docu-
ment D to be interdependent if they have the most
significant contribution to a fusion sentence h in
the reference summary:

(ŝ1, ŝ2) := argmax
(si,sj),si,sj∈D

ROUGERecall(h, si⊕sj). (14)

where we use ROUGE Recall to measure the sen-
tence contribution by viewing h as the reference.
We define two filtering rules:

ROUGE(h, s) > t1, (15)

ROUGE(h, ŝ1 ⊕ ŝ2)− ROUGE(h, s) > t2, (16)

where s ∈ {ŝ1, ŝ2}. t1 and t2 are two threshold
values which are set to 20 and 10 respectively based
on our empirical observations. Eq. 15 ensures that
each sentence has a non-trivial overlap with the
fusion sentence, while Eq. 16 ensures that each
sentence has a unique contribution.
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