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Abstract

Capturing emotions within a conversation plays
an essential role in modern dialogue systems.
However, the weak correlation between emo-
tions and semantics brings many challenges
to emotion recognition in conversation (ERC).
Even semantically similar utterances, the emo-
tion may vary drastically depending on con-
texts or speakers. In this paper, we propose a
Supervised Prototypical Contrastive Learning
(SPCL) loss for the ERC task. Leveraging
the Prototypical Network, the SPCL targets at
solving the imbalanced classification problem
through contrastive learning and does not re-
quire a large batch size. Meanwhile, we design
a difficulty measure function based on the dis-
tance between classes and introduce curricu-
lum learning to alleviate the impact of extreme
samples. We achieve state-of-the-art results on
three widely used benchmarks. Further, we
conduct analytical experiments to demonstrate
the effectiveness of our proposed SPCL and
curriculum learning strategy. We release the
code at https://github.com/caskcsg/SPCL.

1 Introduction

With the development of online social networks,
capturing emotions during conversations has
gained increasing attention in both academia and
industry(Li et al., 2020; Shen et al., 2021; Wang
et al., 2020; Ghosal et al., 2020; Song et al., 2022;
Zhu et al., 2021). Emotion recognition in conver-
sation (ERC) is critical in many scenarios, such
as chatbots, healthcare applications, mining opin-
ions on social media, and so on(Poria et al., 2019b).
The ERC task aims to identify different emotions
at each turn within a conversation based on the
transcript. A conversation often contains several
speakers and runs several turns; thus, emotions can
vary drastically during the conversation. Compared
to traditional text classification tasks, figuring out
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Absolutely, oh I promise. Tell her what?

I don't care. I am trying to get a person out of
my body here, and you're not making it any
easier. Now go!

Thanks a lot.

Listen, can you promise me that you won’t tell
her though?

Carol

Ross

Pete

Phoebe

Thanks a lot.
Pete

Figure 1: Examples of emotion recognition in conver-
sation. The same utterance "Thanks a lot" can convey
different emotions in different contexts.

emotions needs not only one turn of textual utter-
ance but also contextual information. An example
of ERC is illustrated in Figure 1.

Contrastive learning applied to self-supervised
representation learning has seen a resurgence in
recent years. Khosla et al. (2020) extended the
self-supervised batch contrastive approach to the
fully-supervised setting and show outperformance
over cross-entropy loss in several benchmarks. Al-
though CoG-BART(Li et al., 2021) has demon-
strated the effectiveness of supervised contrastive
learning (SCL) in the ERC task, there are still
two issues worth to solve when building an ERC
model with SCL: (1) As illustrated in Figure 2,
existing ERC datasets are often class-imbalanced
and samples may not be able to meet appropriate
positive/negative samples within a mini-batch. (2)
Existing ERC datasets are usually collected in a
multi-modal manner. There are some conversations
whose textual information is insufficient to distin-
guish emotions. Training a textual ERC model with
those extreme samples may lead to performance
degradation.

For the first issue, we propose a Supervised
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Prototypical Contrastive Learning (SPCL) loss,
which integrates Prototypical Network(Snell et al.,
2017) and supervised contrastive learning. SPCL
maintains a representation queue for each category.
At each training step, SPCL samples a certain num-
ber of representations from these queues as the
support set and calculates a temporary prototype
vector for each emotion category. These prototype
vectors are used as samples of the corresponding
class to compute the loss. SPCL ensures that each
sample has at least one positive sample of the same
category and negative samples of all other cate-
gories within a mini-batch. Experiments show that
SPCL can work well in class-imbalanced scenarios
and is less sensitive to the training batch size.

To alleviate the performance degradation caused
by extreme samples, we combine curriculum learn-
ing(Bengio et al., 2009) with contrastive learning.
We design a distance-based difficulty measure func-
tion. By sorting the training data via this function,
we can schedule the training data in an easy-to-
hard fashion. Experimental results demonstrate the
effectiveness of our proposed curriculum learning
strategy. Finally, we utilize SimCSE(Gao et al.,
2021), a pretrained language model trained with
contrastive learning as our backbone model. Com-
bining our proposed SPCL loss and curriculum
learning strategy, we reach state-of-the-art results
on three widely used benchmarks. In summary, our
contributions can be concluded as follows:

• We propose a Supervised Prototypical
Contrastive Learning (SPCL) loss for the
ERC task, which can perform supervised
contrastive learning efficiently on class-
imbalanced data and has no need for large
batch size.

• To the best of our knowledge, we are the first
to combine supervised contrastive learning
and curriculum learning for the ERC task.

• We achieve state-of-the-art results on three
widely used benchmarks. Experimental re-
sults further demonstrate the effectiveness of
our proposed SPCL loss and curriculum learn-
ing strategy.

2 Related Work

2.1 Emotion Recognition in Conversation
Most existing approaches focus on context mod-
eling. They can be divided into sequence-based,
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Figure 2: Emotion distributions of the three datasets.

graph-based, and knowledge-enhanced methods.
Sequence-based methods consider contextual in-
formation as utterance sequences. ICON(Hazarika
et al., 2018) and HiGRU(Jiao et al., 2019) both
use the gated recurrent unit to capture the con-
text information. DialogRNN(Majumder et al.,
2019) is a recurrence-based method that mod-
els dialog dynamics with several RNNs. Dia-
logueCRN(Hu et al., 2021) introduces multi-turn
reasoning modules to model the ERC task from
a cognitive perspective. CoMPM(Lee and Lee,
2021) models the context and speaker’s mem-
ory via pretrained language models. For those
graph-based methods, DialogGCN(Hu et al., 2021)
and RGAT(Ishiwatari et al., 2020) build a graph
upon the utterances nodes. ConGCN(Zhang et al.,
2019) trades both speakers and utterances as nodes
and builds a single graph upon the whole ERC
dataset. DAG-ERC(Shen et al., 2021) uses a di-
rected acyclic graph (DAG) to model the intrin-
sic structure within a conversation. Knowledge-
enhanced methods(Zhong et al., 2019; Zhu et al.,
2021; Ghosal et al., 2020; Zhang et al., 2020) usu-
ally utilize external knowledge from ATIMOC(Sap
et al., 2019) or ConceptNet(Liu and Singh, 2004).
Besides individual models, several frameworks
have also been proposed. Yang et al. (2021) de-
veloped an ERC-oriented hybrid curriculum learn-
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ing framework and Bao et al. (2022) proposed a
speaker-guided encoder-decoder framework, for-
mulating the modeling of speaker interactions as a
flexible component.

2.2 Contrastive Learning
In the field of natural language processing, Sim-
CSE(Gao et al., 2021) is a state-of-the-art con-
trastive learning framework for generating sen-
tence embeddings, it can learn from unlabeled sen-
tences or annotated pairs from natural language
inference datasets. Khosla et al. (2020) extend the
self-supervised batch contrastive approach to the
fully-supervised setting to make full use of label
information. Yeh et al. (2021) let the contrastive
learning get rid of the dependence on large batch
size. CoG-BART(Li et al., 2021) adapts supervised
contrastive learning to make different emotions mu-
tually exclusive to identify similar emotions better.

3 Methodology

3.1 Definition
Given a collection of all speakers S, an emo-
tion label set E and a conversation C, our goal
is to identify speaker’s emotion label at each
conversation turn. A conversation is denoted as
[(s1, u1), (s2, u2), · · · , (sN , uN )], where si ∈ S
is the speaker and ui is the utterance of i-th turn.
In this paper, we focus on the real-time settings of
ERC, in which model can only take previous turns
[(s1, u1), (s2, u2), · · · , (st, ut)] as input to predict
the emotion label yt of t-th turn.

3.2 Context Modeling
We build a prompt-based context encoder upon
SimCSE(Gao et al., 2021) to get speaker and
context-aware emotion representations. The archi-
tecture of the context encoder is illustrated in Fig-
ure 3. To calculate representation for ut, we use
the most recent k turns of utterances and speakers
as context.

Ct = [st−k, ut−k, st−k+1, ..., st, ut] (1)

Kim and Vossen (2021) indicated that it is difficult
for the pretrained language model to distinguish the
"context" (i.e., [st−kut−k · · · st−1ut−1]) and target
turn (i.e., st, ut). Inspired by prompt learning(Liu
et al., 2021), we construct a prompt for the t-th turn
as follows.

Pt = for ut, st fells <mask> (2)

Transformer-based Pretrained Language Model

Carol:..... Now go!</s>Ross:Thanks a lot</s>for  "Thanks a lot", Ross feels <mask>

context prompt

Figure 3: The architecture of our prompt-based context
encoder.

The full input of the encoder is Ct ⊕ Pt, where
⊕ is the concatenation operation. In order to let
the encoder realize that the prompt contains the
target sentence, for the training pair of t-th turn
Xt

t = {Ct ⊕ Pt, yt}, we construct an additional
training pair Xh

t = {Ct ⊕ Ph, yh}, where h is
randomly selected from (t−k, · · · , t). Xt

t and Xh
t

shares the same context but has different prompts
and labels. Training on such data helps the model
to pay more attention to the target sentence and
generate reasonable representations.

For a training pair Xk
t , we first feed Ct⊕Pk into

the SimCSE model and get the last hidden states
Hk

t ∈ Rl×d,

Hk
t = SimCSE(Ct ⊕ Pk) (3)

where l is the number of tokens in Ct⊕Pk, and d is
the dimension of a token embedding. Then we use
the embeddings of the special token <mask> from
Hk

t as a representation of yk-th emotion.

3.3 Supervised Prototypical Contrastive
Learning for ERC

Supervised Contrastive Learning Supervised
contrastive learning(Khosla et al., 2020) treats all
examples with the same label in the batch as pos-
itive examples. A batch of N emotion represen-
tations generated via context encoder is denoted
as I = [z1, z2, · · · , zN ]. The vanilla supervised
contrastive learning computes the loss Lsup

i for zi
as follows,

F(zi, zj) = exp(G(zi, zj)/τ) (4)

Nsup(i) =
∑

zj∈A(i)

F(zi, zj) (5)
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Psup(i) =
∑

zp∈P (i)

F(zi, zp) (6)

Lsup
i = − log

1

|P (i)|
Psup(i)

Nsup(i)
(7)

Here, G(zi, zj) is a score function that can be dot
production, cosine similarity, etc. In our work,
we use the cosine similarity for G(·). τ ∈ R+ is
a scalar temperature parameter. A(i) ≡ I\{zi}
contains all representations in I except zi, and P (i)
is the set of positive samples that have the same
label with zi in a batch.

Prototypical Contrastive Learning The object
function Lsup introduces contrastive learning into
supervised learning scenarios but suffers from
class-imbalanced problem. Due to the limitations
of batch size, samples from the majority class (e.g.,
neutral emotion) of the dataset may see insuffi-
cient negative samples within a batch. At the same
time, it is hard for samples from the minority class
to meet positive samples.

To solve this issue, we design a supervised pro-
totypical contrastive learning (SPCL) loss func-
tion, which introduces prototype vectors of each
category into the Lsup loss. First, we maintain a
fixed-size representation queue for each emotion
category. A representation queue for i-th emotion
with size M is denoted as Qi = [zi1, z

i
2, · · · , ziM ].

When a new representation ẑi of i-th emotion is
generated, we will first remove the oldest element
in Qi if |Qi| equals M , then detach the gradient
of ẑi and push it into Qi. Second, to calculate the
prototype vector for i-th category, we randomly
select K samples from Qi as the support set SK ,
then take the mean of support set as the prototype
vector Ti.

SK = RANDOMSELECT(Qi,K) (8)

Ti =
1

K

∑

zij∈SK ,j∈[1...K]

zij (9)

We can get at most CK
M different prototypes

through sampling even if the representation queue
is not updated.

After obtaining the prototype vectors, we treat
each of them as an example of the corresponding
category, so the sum of negative scores of zi can be
calculated as follows,

Nspcl(i) = Nsup(i) +
∑

k∈E\yi
F(zi,Tk) (10)

where yi is the emotion label of i-th sample. Simul-
taneously, the sum of positive scores of zi is also
computed with the corresponding prototype vector.

Pspcl(i) = Psup(i) + F(zi,Tyi) (11)

Based on Eq.(10) and Eq.(11), the SPCL loss can
be formulated as follows,

Lspcl
i = − log

(
1

|P (i)|+ 1
· Pspcl(i)

Nspcl(i)

)
(12)

The total SPCL loss of a batch is as follows,

Lspcl =
N∑

i=1

Lspcl
i (13)

In summary, by introducing the prototype vec-
tors, the SPCL loss ensures that there are at least
one positive pair and |E|−1 negative pairs for each
sample in a batch.

3.4 Curriculum Learning
Existing ERC datasets are usually collected in a
multi-modal fashion. When building a text-only
ERC model, some utterances are not informative
enough to judge the emotions. Training the model
with these extreme samples will lead to perfor-
mance degradation. In this paper, we try to use
curriculum learning to alleviate this issue.

Difficulty Measure Function To combine with
contrastive learning, we propose a difficulty mea-
sure function based on the distance between classes.
Let the total size of training set Dtrain as L, the
emotion representation of i-th data sample as zi,
and the label of i-th data sample as yi. Before each
training epoch, we first compute zi for all samples,
then the center of k-th emotion is computed as
follows,

Ck =
1

|{zj |∀j, yj = k}|
L∑

j=1

zj · I(yj = k) (14)

The difficulty of i-th sample DIF(i) is calculate
as follows,

DIF(i) =
dis(zi,Cyi)∑|E|
j=1 dis(zi,Cj)

(15)

dis function here is cosine distance. This function
has the following two properties:
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• The closer the sample is to the category center,
the lower the difficulty.

• For two samples with the same distance from
the center within the category, the further
away from the center of other categories, the
lower the difficulty.

Curriculum Strategy After sorting the entire
training set, instead of directly splitting the train-
ing set, we design a sampling-based approach to
construct a series of subsets ranging from easy to
hard. Let R as the number of training epochs, to
train the model at k-th epoch, we first generate a
arithmetic progression a with a length of L, where
a1 = 1− k/R and aL = k/R. Then we initialize
a Bernoulli distribution with a and draw a binary
random array RB from it. We use B to draw a sub-
set Dsub−k from training set for the current epoch,
where Dsub−k ≡ {xi ∈ Dtrain|RBi = 1}. Ob-
viously, Dsub−0 mainly consists of easy samples
and Dsub−R mainly consists of hard samples. Com-
pared to splitting the training set sequentially, the
sampling-based approach provides a smoother dif-
ficulty variation for the model. The curriculum
strategy is illustrated in line2 − line9 of Algo-
rithm 1. We conduct a qualitative analysis of our
curriculum learning strategy in Section 5.5.

3.5 Training and Evaluation

Training The overall procedure of our proposed
approach is illustrated in Algorithm 1. We first
generate emotion representations for all samples in
training set, then use them to compute difficulty for
each sample. After sorting the training set based
on difficulty, we sample a subset SK and train the
context encoder on SK through the SPCL loss.

Evaluation Since we computed the center of
each class C when calculating SPCL loss, we can
directly obtain the prediction through matching the
centers as follows,

picm =
G(zi,Cc)∑|E|
k=1 G(zi,Ck)

(16)

where picm indicates the probability that i-th sample
belongs to category c, and the subscript m means
picm is calculated through matching.

For comparison, we train an additional linear
layer to predict the labels using cross-entropy loss,

pil = W · zi + b (17)

Algorithm 1 Training Process with SPCL and Cur-
riculum Learning

Inputs: Dtrain:the training set with size L
R: the number of total epochs
K: the size of support set SK

M : the context encoder
E : the label set

Outputs: the optimal model M∗

category centers Cj , j ∈ 1..|E|
1: for k=0 to R do
2: I = {M(xi), ∀xi ∈ Dtrain}
3: compute Cj , j ∈ 1..|E| (Eq.14)
4: compute DIF(i), i = 1..L (Eq.15)
5: Dtrain = sort(Dtrain, DIF)
6: st = k/R, ed = 1− k/R
7: a1 = st, an = a1 + (n− 1) · ed−st

L−1
8: RB ∼ Bernoulli(p = a)
9: Dsub−k ≡ {xi ∈ Dtrain|RBi = 1}

10: Qj = [],j ∈ 1..|E|
11: for batch ∈ Dsub−k do
12: UPDATE(Qj), j ∈ 1..|E|
13: SKj = RANDOMSELECT(Qj ,K)
14: compute prototype Tj , j ∈ 1..|E| (Eq.9)
15: compute SPCL loss (Eq.10-Eq.13)
16: optimize(M )
17: end for
18: end for
19: return M∗,Cj , j ∈ 1..|E|

LCE = − 1

N

N∑

i=1

E∑

c=1

yic · log picl (18)

where W ∈ Rdim×|E| is a trainable parameter. The
gradient of zi is detached so the model is only
optimized via contrastive learning loss.

In this paper, we use pim to predict labels when
SPCL is the loss function and use pil for other cases.

4 Experimental Settings

4.1 Experimental Setup

The code framework and initial weight of Sim-
CSE come from Huggingface’s Transformers(Wolf
et al., 2020). We use the AdamW optimizer and
cosine learning rate schedule strategy. When con-
structing training samples, we restrict their length
to less than 256. We search the hyper-parameters
on the develop set. For all experiments in this pa-
per, we keep the best checkpoint on the develop
set, then report the results on the test set using the
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Models IEMOCAP MELD EmoryNLP
COSMIC(Ghosal et al., 2020) 65.28 65.21 38.11
DialogueCRN (Hu et al., 2021) 66.46 63.42 38.91
DAG-ERC (Shen et al., 2021) 68.03 63.65 39.02
TODKAT (Zhu et al., 2021) 61.33 65.47 38.69
Cog-BART (Li et al., 2021) 66.18 64.81 39.04
TUCORE-GCN_RoBERTa(Lee and Choi, 2021) - 65.36 39.24
SGED + DAG-ERC(Bao et al., 2022) 68.53 65.46 40.24
EmotonFlow-Large (Song et al., 2022) - 66.50 -
CoMPM (Lee and Lee, 2021) 69.46 66.52 38.93
SPCL-CL-ERC(Ours) 69.74 67.25 40.94

Table 1: Performance comparisons on three datasets.

MELD IEMOCAP EmoryNLP
No.Dials 1,432 151 827

Train 1,038 100 659
Dev 114 20 89
Test 280 31 79

No.Uttrs 13,708 7,333 9,489
Train 9,989 4,810 7,551
Dev 1,109 1,000 954
Test 2,610 1,523 984

No.CLS 7 6 7

Table 2: Statistics of the three datasets.

kept checkpoint. All experiments are conducted on
Nvidia V100 GPU.

4.2 Datasets

We conduct experiments on three widely used
benchmarks: MELD(Poria et al., 2019a),
EmoryNLP(Zahiri and Choi, 2018) and IEMO-
CAP(Busso et al., 2008).

MELD This dataset has more than 1400 dia-
logues and 13000 utterances from Friends TV se-
ries. Multiple speakers participated in the dia-
logues. Each utterance in a dialogue has been
labeled by any of these seven emotions – Anger,
Disgust, Sadness, Joy, Neutral, Surprise
and Fear.

EmoryNLP This dataset comprises 97 episodes,
897 scenes, and 12,606 utterances, where each ut-
terance is annotated with one of the seven emotions
borrowed from the six primary emotions in the
Willcox’s feeling wheel(Willcox, 1982), i.e., Sad,
Mad, Scared, Powerful, Peaceful, Joyful,
and a default emotion of Neutral.

IEMOCAP This dataset consists of 151 videos
of recorded dialogues, with 2 speakers per
session for a total of 302 videos across the
dataset. Each segment is annotated for the
presence of 9 emotions (Angry, Excited,
Fear, Sad, Surprised, Frustrated, Happy,
Disappointed and Neutral). The dataset is
recorded across 5 sessions with 5 pairs of speakers.

The Statistics of these datasets are listed in Table
2. No.dials stands for the number of dialogues
while No.uttrs stands for the total number of ut-
terances in the dataset. No.CLS is the number of
different emotions in the dataset.

4.3 Metrics

From Figure 2 we can see class-imbalance in all
three benchmarks, so we use weighted-F1 score as
the metric for all experiments in this paper.

5 Results and Analysis

5.1 Main Results

We compare our proposed approach with state-
of-the-art text-based ERC methods, and the re-
sults are presented in Table 1. We can see that
combining our proposed SPCL and curriculum
learning strategy, we achieves state-of-the-art re-
sults on three benchmarks, which outperform pre-
vious SOTAs by 0.28%(CoMPM on IEMOCAP),
0.73%(CoMPM on MELD) and 0.7%(SGED +
DAG-ERC on EmoryNLP).

5.2 Ablation Study

To evaluate the individual effects of SPCL and CL,
we conducted a series of ablation experiments, and
the results are shown in Table 3. The first line in
Table 3 shows the performances of our proposed
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IEMOCAP MELD EmoryNLP
CE 68.35 65.33 38.72

+ CL 67.40 65.63 39.00
SupCon 68.13 65.67 39.20

+ CL 68.64 66.15 39.49
SPCL 69.03 66.56 40.14

+ CL 69.74 67.25 40.94

Table 3: Results of ablation study. Here, CE means
Cross-entropy loss, SupCon is the vanilla supervised
contrastive learning loss and SPCL is our proposed su-
pervised prototypical contrastive learning loss. CL is
our proposed curriculum strategy.

prompt-based context encoder trained with cross-
entropy loss, which is our baseline model. We no-
tice that curriculum learning didn’t help a lot with
cross-entropy loss. We believe that it is because
we use the cosine distance in the difficulty mea-
sure function DIF . However, it is unreasonable to
compute cosine distance directly on representations
optimized via cross-entropy loss.

The SupCon loss performs better than cross-
entropy loss on MELD and EmoryNLP datasets
but slightly worse than on the IEMOCAP dataset.
Combining the three results, we can see no signifi-
cant performance gap between SupCon and cross-
entropy losses. But the combination of curriculum
learning and SupCon(SupCon+CL) shows consis-
tent superiority since SupCon uses cosine similarity
as the score function. For the representations gener-
ated by SupCon, the cosine distance between repre-
sentations of the same category will be closer, and
the distance between representations of different
categories will be distant. Therefore, the difficulty
measure function of CL can be more faithful, re-
sulting in better performance.

The SPCL loss outperforms SupCon and cross-
entropy losses on all three datasets. Meanwhile, it
also has consistent performance improvements in
combination with curriculum learning.

To summary, both our proposed SPCL and cur-
riculum learning strategy contribute significantly
to the results.

5.3 Using SPCL on Class Imbalanced Data

To demonstrate the superiority of SPCL on im-
balanced data, we construct an imbalanced subset
from MELD training set, as illustrated in Figure
4. We sample 1024, 128, 64, 32, 32, 32, and 32
samples of neutral, joy, surprise, anger,
sadness, disgust, and fear, respectively. We

neutral joy suprise anger sadness disgust fear
0

200

400

600

800

1000

Figure 4: Emotion distribution of the extreme class-
imbalanced training set. We construct it from MELD
training set.

train the model using these two loss functions on
the imbalanced training set. Since a small batch
size will aggravate the impact of class-imbalance
on contrastive learning, we conducted experiments
with batch size of 4, 8, 16, and 32, respectively. The
results on MELD test set are shown in Table 4. We
notice that using SPCL outperforms using SupCon
in all four sets of experiments. As the batch size
decreases from 32 to 4, the weighted-F1 score of
SupCon loss drops 6.95% while SPCL drops 4.1%.
We can conclude that in the class-imbalance scenar-
ios: 1) both SupCon and SPCL need a larger batch
size to reach satisfied performances; 2) introducing
the prototypical network into contrastive learning
can alleviate the impact of class-imbalance.

4 8 16 32
SupCon 53.14 57.36 58.50 60.09
SPCL 57.27 58.85 59.47 61.38

Table 4: Results of different loss functions and different
batch sizes trained on the imbalanced training set.

5.4 Using SPCL with Small Batch Size

Contrastive learning approaches usually need a
large batch size to ensure more positive/negative
pairs within a batch, which leads high compu-
tational cost. In the Section 5.3, we find that
both SupCon and SPCL relay on large batch sizes.
We conjecture that SPCL’s dependence on batch
size may be because we sample too few data
samples for some categories(i.e., 32 for anger,
sadness,disgust, and fear) to compute rea-
sonable prototypes at the beginning of the training.
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In order to further investigate the effect of batch
sizes on SPCL, we apply SPCL to a more general
scenario. From Figure 2 we can see the IEMOCAP
dataset is not extreme class-imbalanced. Even the
smallest category (happy) still has hundreds of sam-
ples. We conduct experiments on the IEMOCAP
dataset, and the results are illustrated in Table 5.
Experimental results show that given enough sam-
ples for each category, the SupCon loss still needs
a large batch size, but the SPCL doesn’t. With the
batch size decreasing from 32 to 4, the performance
of SupCon drops 5.63%, while SPCL only drops
0.82%.This demonstrates that the SPCL loss is less
sensitive to the training batch size.

4 8 16 32
SupCon 62.50 65.01 67.04 68.13
SPCL 68.21 68.41 68.48 69.03

Table 5: Results of SupCon and SPCL with different
batch sizes on IEMOCAP dataset.

5.5 Qualitative Analysis of Curriculum
Learning
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Figure 5: Visualizations of how the difficulty measure
function DIF in Eq.(15) ranks the data.

To conduct a qualitative analysis of our proposed
curriculum learning strategy, we generate a toy
dataset that contains three classes and visualize it
in Figure 5(A).

As illustrated in Figure 5(B-C), the difficulty
measure function DIF ranks the samples in a rea-
sonable way. The easiest 20% samples(in green)
are distributed in the center of their respective cate-
gories, while the hardest 20% samples(in red) are
mainly on the boundaries between classes.

In practice, we found that directly sorting the
data with DIF cannot obtain satisfactory results.
The model will overfit on simple samples in the
early stage of training and produce large losses in
the later stage, so we design the sampling-based
curriculum learning strategy described in Section
3.4 to provide a smoother difficulty variation for the
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Figure 6: The sampling-based curriculum strategy.

model. We control the difficulty of training subsets
based on the sampling probability of samples with
different difficulties. As illustrated in Figure 6, the
arithmetic progression a we used to sample downs
from 1 to 0 at the first epoch, the sampling results
are shown in Figure 6(A), we can find that the most
selected samples(in green) are around the centers
while a few samples are away from the centers.
When running to the last epoch, a grows from 0 to
1, so hard samples are in the majority of the subset,
as shown in Figure 6(B).

6 Conclusion

In this paper, we propose a novel loss func-
tion called Supervised Prototypical Contrastive
Learning (SPCL) loss for the emotion recognition
in conversation task. Combining with Prototypical
Network, the SPCL loss outperforms the traditional
supervised contrastive learning loss. It also works
well on class-imbalanced data and is less sensitive
to the training batch size, which reduces the require-
ment of computing resource. To further exploit the
power of contrastive learning on ERC tasks, we
design a distance-based difficulty measure function
and introduce curriculum learning to alleviate the
impact of extreme samples. We conduct experi-
ments on three widely used benchmarks: IEMO-
CAP, MELD, and EmoryNLP. Results show that
our approach achieves state-of-the-art performance
on all three datasets.

Limitations

This work has three limitations: 1) We introduce
too many hyperparameters, which requires addi-
tional computing resources to search. 2) Our pro-
posed difficulty measure function can not be com-
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bined with most existing ERC methods since it
requires the emotion representations produced by
the ERC model to be distance-aware. 3) We used
multiple random sampling, resulting in unstable
performance. The results in this paper are averaged
with multiple seeds. In practice, we found that
the results generated by different seeds may have
significant variance.
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