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Abstract

Zero-shot cross-lingual named entity recog-
nition (NER) aims at transferring knowledge
from annotated and rich-resource data in source
languages to unlabeled and lean-resource data
in target languages. Existing mainstream meth-
ods based on the teacher-student distillation
framework ignore the rich and complementary
information lying in the intermediate layers
of pre-trained language models, and domain-
invariant information is easily lost during trans-
fer. In this study, a mixture of short-channel
distillers (MSD) method is proposed to fully
interact the rich hierarchical information in the
teacher model and to transfer knowledge to
the student model sufficiently and efficiently.
Concretely, a multi-channel distillation frame-
work is designed for sufficient information
transfer by aggregating multiple distillers as
a mixture. Besides, an unsupervised method
adopting parallel domain adaptation is pro-
posed to shorten the channels between the
teacher and student models to preserve domain-
invariant features. Experiments on four datasets
across nine languages demonstrate that the
proposed method achieves new state-of-the-art
performance on zero-shot cross-lingual NER
and shows great generalization and compatibil-
ity across languages and fields.

1 Introduction

Named entity recognition (NER) is a fundamental
and important task to locate and classify named
entities in a text sequence. Recently, deep neural
networks have achieved great performance on
monolingual NER in rich-resource languages with
abundant labeled data (Ye and Ling, 2018; Jia
et al., 2020; Chen et al., 2022). However, it is
too expensive to annotate a large amount of data
in low-resource languages for supervised NER
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Figure 1: Comparison between the previous mainstream
method and the proposed MSD. (a) Baseline Distil-
lation is the teacher-student distillation framework.
The teacher model is utilized to predict the soft labels
of unlabeled target language data, which are further
utilized to distill a student model. (b) MSD constructs a
dozen of channels and shortens the transmission route
between the teacher and student models to transfer NER
knowledge. Θtea / Θstu: teacher / student models; DS /
DT: unlabeled source / target language data.

training. This issue drives research on cross-lingual
NER, which utilizes the rich-resource annotated
data in source languages to alleviate the scarcity
of unlabeled lean-resource data in target languages.
In this paper, following Wu et al. (2020a), we focus
on the extremely low-resource setting, i.e., zero-
shot cross-lingual NER, where labeled data is not
available in target languages.

The most popular approaches for zero-shot cross-
lingual NER are based on distillation (Wu et al.,
2020a,b; Chen et al., 2021; Liang et al., 2021).
They employed a supervisedly trained teacher
model to predict the soft labels of target languages,
and then utilized the soft labels to distill a student
model, which was first exploited in Wu et al.
(2020a). Besides, domain-invariant features have
been proven effective for distillation (Nguyen-
Meidine et al., 2020; Hu et al., 2019). Chen et al.
(2021) proposed to alleviate the representation
discrepancy between languages in the teacher
model to exploit language-independent features,
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which were further distilled to the student model.
It is worth noting that distillation-based methods
assisted with auxiliary tasks have become the
mainstream paradigm due to their robustness and
scalability, achieving good performance on zero-
shot cross-lingual NER (Li et al., 2022).

However, these methods always ignored the rich
and complementary information lying in the in-
termediate layers of multilingual BERT (mBERT)
(Devlin et al., 2019). Pires et al. (2019) and
Müller et al. (2021) have verified that the upper
layers of mBERT are more task-specific and not
as important as the lower ones in terms of cross-
language transfer. But recent studies just adopted
the last layer of mBERT for distillation (Wu et al.,
2020b; Li et al., 2022), while neglected the explicit
knowledge transfer of the lower layers. Besides,
domain-invariant features in the teacher model
were first exploited, which were then transferred
to the student model via distillation (Chen et al.,
2021). However, due to the limitation of transfer
learning, it is difficult to fully retain the domain-
invariant features to the student model. Further-
more, auxiliary tasks to assist distillation usually
require the operations of translation or data sifting
(Wu et al., 2020b), resulting in huge pre-processing
costs. The ensemble strategies to generate high-
quality soft labels or augmented data also require
oceans of model parameters and a large number of
computational resources.

On account of the above issues, a mixture of
short-channel distillers (MSD) method is proposed
in this paper to transfer cross-lingual NER knowl-
edge sufficiently and efficiently. On the one hand, a
multi-channel distillation framework is designed to
let the hierarchical information in the teacher model
fully interact with each other, and transfer more
complementary information to the student model.
Specifically, the teacher model is first trained on the
annotated source data with each layer being directly
supervised by the labels. Then, each layer of the
teacher model is tasked to predict the soft labels
of the unlabeled target data. Correspondingly,
the layers of the student model are distilled by
leveraging the mixture sets of soft labels from the
teacher model, constructing multiple information
transmission channels for a “wider” bridge between
the teacher and student models. On the other hand,
an unsupervised auxiliary task of parallel domain
adaptation is proposed to explicitly transfer domain
information. During every batch of distillation,

as Figure 1 depicts, unlabeled target data is fed
into the student model, while unlabeled source
data is fed into both the teacher and student
models. The representation discrepancy between
the outputs of the teacher and student source
language, together with that between the outputs of
the teacher source and student target languages is
minimized to preserve the cross-model and cross-
language domain information respectively. In this
way, the domain information can be preserved
across models and languages, so that the domains
of the teacher and student models can be effectively
pulled “closer”.

Experiments on four datasets across nine lan-
guages are conducted to evaluate the effectiveness
of the proposed MSD. The results show that our
method achieves new state-of-the-art performance
on all datasets.

In summary, our contributions are as follows:
(1) A multi-channel framework is proposed to
leverage the rich, hierarchical and complementary
information contained in the teacher model, and to
interactively transfer cross-lingual NER knowledge
to the student model. (2) An unsupervised auxiliary
method is designed to explicitly constrain the
discrepancy of teacher/student domains without
utilizing any external resources. (3) Experiments
on four datasets across nine languages verify the
effectiveness and generalization ability of MSD.

2 Related Work

Zero-shot Cross-lingual NER Existing meth-
ods on zero-shot cross-lingual NER are mainly
separated into three categories: translation-based,
feature-based, and distillation-based. Translation-
based methods generate pseudo labels for the target
language data from the labeled source language
data. Jain et al. (2019) projected labels from the
source language into the target language by using
entity projection information. Xie et al. (2018)
and Wu et al. (2020b) translated the annotated
source language data to the target language word-
by-word. Feature-based methods use the labeled
source language data to train the language model
for a language-independent representation, such
as Wikifier features (Tsai et al., 2016), aligned
word representations (Wu and Dredze, 2019),
and adversarial learning encodings (Keung et al.,
2019). Distillation-based methods are effective
in cross-lingual NER by transferring knowledge
from a teacher model to a student model (Hinton
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et al., 2015). The teacher model is first trained
on the labeled source language data. Then the
student model is trained on soft labels of the
target language data predicted by the teacher model.
Wu et al. (2020a) trained several teacher models
to generate averaged soft labels for the student
model. Liang et al. (2021) proposed a reinforced
knowledge distillation framework to selectively
transfer useful information.

Domain Adaption Label sparsity causes domain
shift (Ben-David et al., 2010) in zero-shot cross-
lingual NER. The strategy of cross-domain trans-
fer (Qin et al., 2020; Zhang et al., 2021a; Huang
et al., 2021) is widely adopted. Existing methods
mitigate the discrepancies of sentence patterns
between the source and target domains, mainly
including multi-level adaptation layers (Lin and
Lu, 2018), tensor decomposition (Jia et al., 2019),
multi-task learning (Liu et al., 2020b) and word
alignment (Lee et al., 2021). However, these
methods require sufficient labeled data, in contrast
to zero-shot scenarios.

Generally speaking, previous studies on zero-
shot cross-lingual NER only leverage the last layer
of the teacher model. Besides, the existing NER
domain adaptation strategies only constrain the
domain-invariant information within the teacher
model and transfer them to the student model
implicitly. To the best of our knowledge, this
paper makes the first attempt to let the rich and
hierarchical information in the teacher model fully
interact with each other, and further transfer the
domain information to the student model explicitly.

3 Preliminary

3.1 Problem Definition

NER is typically formulated as a sequence labeling
task. Denote one sentence as x = {xi}Li=1 with
its labels y = {yi}Li=1, where yi denotes the label
of its corresponding word xi and L denotes the
length of the sentence. An NER model generates
a sequence of predictions ȳ = {ȳi}Li=1, where ȳi
denotes the label of xi annotated by the model.
The labeled data DS

train = {(x,y)} is available for
the source language, while the unlabeled DT

train =
{x} and labeled DT

test = {(x,y)} are available for
target languages. Formally, zero-shot cross-lingual
NER aims at achieving good performance on DT

test
by leveraging both DS

train and DT
train.

3.2 Basic Model
The basic model for cross-lingual NER in this
paper consists of a semantic encoder and a classifier.
The encoder fθ is used to learn and generate the
contextual representations of input sentences.

Following Wu and Dredze (2019), the widely-
used multilingual pre-trained language model,
mBERT, is utilized as the encoder to extract
semantic representations. A softmax classification
layer is appended to calculate the probability.
Finally, the basic model is formulated as follows:

H = fθ(x), (1)

p (xi; Θ) = softmax (W · hi + b) , (2)

where H = {hi}Li=1 and hi is the representation
of xi. p(xi; Θ) ∈ R|C| with C being a set of
entity labels, and Θ = {fθ,W , b} denotes all the
parameters to be learned.

3.3 Maximum Mean Discrepancy (MMD)
MMD (Long et al., 2015) is a nonparametric
test statistic to measure the distance between the
distributions of two different random variables
(Ps, Pt). MMD is defined in particular function
spaces as follows:

MMD(F , ps, pt) = sup
f∈F

(Ex∼ps [f(x)]− Ey∼pt [f(y)]) ,

(3)

where F is the unit ball in a universal Repro-
ducing Kernel Hilbert Space (RKHS) denoted
by H. An important property of MMD is that
MMD(F , ps, pt) = 0 if and only if Ps = Pt.
Given the source and target sample sets S =
{si}Mi=1 and T = {tj}Nj=1 respectively, where si
or tj denotes a sample of the set, the empirical
estimation of MMD can be defined as:

MMD(S, T ) =

∥∥∥∥∥
1

M

M∑

i=1

ϕ (si)− 1

N

N∑

j=1

ϕ (tj)

∥∥∥∥∥
H

, (4)

where ϕ(·) : X → H is a nonlinear mapping.
In cross-lingual NER, the squared formulation

of MMD between the representations (hs or ht) of
the two sets is usually calculated as:

MMD2(S, T ) =
1

(M)2

M∑

i,j=1

G
(
hs

i ,h
s
j

)
+

1

(N)2

N∑

i,j=1

G
(
ht

i,h
t
j

)
− 2

M ×N

M×N∑

i,j=1

G
(
hs

i ,h
t
j

)
,

(5)

where G is a Gaussian kernel in this paper.
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Figure 2: The overall structure of the proposed MSD.

4 Methodology

In this section, we present the detailed frame-
work of the proposed mixture of short-channel
distillers (MSD). On the one hand, the mixture
of distillers module is introduced. Specifically,
multiple channels are built between corresponding
layers of the teacher and student’s encoders. Then
a mixture of weights is employed to control the
broadened information transmission route. On the
other hand, parallel domain adaptation is conducted
to explicitly transfer domain information between
the teacher and student models during distillation.

4.1 Mixture of Distillers

Previous studies have verified the importance of
lower layers for cross-language transfer (Müller
et al., 2021). Our pilot experiments also further
illustrate that lower layers of mBERT are critical
for NER, which are elaborated in Appendix A.2.
To this end, we propose the mixture of distillers
framework that fully transfers the complementary
information to the student model to equip it with
stronger cross-language NER ability. To establish
multiple information transmission channels, each
layer of the pre-trained mBERT is appended with
a classifier. Denote each of these classifiers as a
“channel terminal”, as shown in Figure 2. Given a

sentence x of length L with labels y from source
language data DS

train , these could be described as:

Hm = fθ
m(x), (6)

pm (xi; Θ) = softmax (Wm · hm
i + bm) , (7)

where Hm is the sentence representation from
the m-th layer of mBERT and pm (xi; Θ) is the
probability distribution generated from the corre-
sponding channel terminal.

At the training stage for the teacher, the language
model along with several channel terminals are
jointly trained on the labeled source language data.
Specifically, the channel terminal of the last layer
is employed as the main distiller and the others
are employed as the auxiliary ones in charge of
providing complementary information. Following
Wu et al. (2020a), the embedding layer and the
bottom three layers of mBERT in the teacher and
student models are frozen. So only the top nine
layers of the teacher are optimized as:

Lmain =
1

L

L∑

i=1

LCE
(
p12 (xi; Θ) , yi

)
, (8)

Laux =
1

L

L∑

i=1

11∑

m=4

λmLCE (pm (xi; Θ) , yi) ,

(9)
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where λm ∈ R is a trainable parameter represent-
ing the contribution degree of the m-th layer1 and
LCE is cross entropy loss. The final loss for the
teacher model is denoted as:

Ltea = Lmain + αLaux , (10)

where α is a manually set hyperparameter that
regulates the contribution of the auxiliary layers.

For the following knowledge distillation, a stu-
dent model Θstu is distilled based on the unlabeled
target language data DT

train. In this paper, the
student model has the same structure as the teacher
model2. Firstly, DT

train is fed into the teacher model
Θtea to obtain its soft labels derived from all the
appended channel terminals. Then, as shown in
Figure 2, each layer of the student model can be
trained along with the student channel terminals
using the mixture of soft labels generated from the
corresponding layer of the teacher model. Given a
sentence x′ of length L from DT

train, the distillation
loss of the m-th layer is as follows:

LKD
m =

1

L

L∑

i=1

MSE
(
pm (

x′
i; Θtea

)
,pm (

x′
i; Θstu

))
.

(11)
Following Eq. (10), the loss for the multi-channel
distillation is as follows:

Lstu = LKD
main + βLKD

aux

= LKD
12 +

11∑

m=4

λ′
mLKD

m ,
(12)

where λ′
m and β have the same effect on the student

model as λm and α do on the teacher model.

4.2 Parallel Domain Adaptation
As aforementioned, the teacher model is trained
with hard-labeled source data, but the student
model is trained with soft-labeled target data. Thus,
training in different manners and languages leads
to a huge discrepancy between the domains of
the teacher and student models, which causes the
loss of domain information during distillation and
decreases the transfer efficiency.

In this section, we aim to explicitly transfer
domain information to provide a closer route for

1We did study semantic-wise weights by projecting the
[CLS] token embeddings to a set of trainable parameters, but
no further improvement could be achieved.

2Our method can also be extended to the framework that
the teacher and student models are asymmetrical by designing
a mapping function as that in Jiao et al. (2020), which will be
a part of our future work.

distillation. The parallel domain adaptation method
based on MMD is proposed to preserve domain
information between the teacher and student mod-
els at sentence-level. As Figure 2 depicts, the
cross-model and cross-language MMD losses are
proposed to minimize the cross-model and cross-
language discrepancies respectively, which are
denoted as LM

MMD and LL
MMD. During distillation,

the soft labels DStea
train and DSstu

train are obtained by
applying the teacher and student models to the
source language data respectively. The LM

MMD

could be formulated as:

LM
MMD(D

Stea
train, D

Sstu
train) = MMD2(HStea

cls ,HSstu
cls ),

(13)
where Hcls denotes a set of [CLS] token embed-
dings hcls. Meantime, the soft labels DTstu

train is
obtained by applying the student model to the
unlabeled target language data. The LL

MMD is
formulated as:

LL
MMD(D

Stea
train, D

Tstu
train) = MMD2(HStea

cls ,HTstu
cls ).

(14)
Thus, the discrepancies between the teacher and

student models, as well as between the source
and target languages are both reduced during
distillation, strengthening the domain adaptability
of the proposed framework for efficient transfer.

The training for the final student model contains
two parts: the mixture of distillers and the parallel
domain adaptation. The final loss is denoted as:

Lfinal = Lstu + α′LM
MMD + β′LL

MMD , (15)

where α′ and β′ are the weights to balance the
contributions of the parallel adaptation methods.

5 Experiments

In this section, the proposed MSD was evaluated
on four zero-shot cross-lingual NER datasets and
compared with several state-of-the-art models.
Some ablation studies were also conducted to
validate the effectiveness of the proposed modules.

5.1 Datasets

We conducted experiments on these widely-used
benchmark datasets: (1) CoNLL-2002 (Sang, 2002)
included Spanish and Dutch; (2) CoNLL-2003
(Sang and Meulder, 2003) included English and
German; (3) WikiAnn (Pan et al., 2017) included
English and three non-western languages (Arabic,
Hindi, and Chinese); (4) mLOWNER (Malmasi
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et al., 2022) included four languages (English,
Korean, Farsi, and Turkish). CoNLL-2002 and
CoNLL-2003 were annotated with 4 entity types:
LOC, MISC, ORG, and PER. WikiAnn was anno-
tated with 3 entity types: LOC, ORG, and PER.
mLOWNER was annotated with 6 entity types:
LOC, ORG, PER , CW, GRP, PROD.

In this study, the CoNLL3 and the WikiAnn4

datasets were just the same as they were initially
published. As for the mLOWNER5 dataset, fol-
lowing Malmasi et al. (2022), 10000 sentences
were randomly sampled from the original test
set to construct the test set used in this paper.
All datasets were annotated with the BIO entity
labelling scheme and were divided into the training,
development and testing sets. Table 1 shows the
statistics of all datasets.

Following the previous work (Wu et al., 2020a),
English was employed as the source language in
all experiments, and the other languages were
employed as target languages. Only unlabeled
target language data in the training set was utilized.

5.2 Evaluation Metrics

Following Sang (2002), entity-level F1-score was
used as the evaluation metric. Denote A as the
number of all entities classified by the model, B as
the number of all correct entities classified by the
model, and E as the number of all correct entities,
the precision (P), recall (R), and entity-level F1-
score (F1) of the model were:

P =
B

A
, R =

B

E
, F1 =

2× P ×R

P +R
. (16)

5.3 Baselines

The proposed method was mainly compared with
the following (1) distillation-based methods: TSL
(Wu et al., 2020a), Unitrans (Wu et al., 2020b),
AdvPicker (Chen et al., 2021), RIKD (Liang et al.,
2021), and MTMT (Li et al., 2022), and (2) non-
distillation-based methods: Wiki (Tsai et al., 2016),
WS (Ni et al., 2017), BWET (Xie et al., 2018),
Adv (Keung et al., 2019), BS (Wu and Dredze,
2019) and TOF (Zhang et al., 2021b). Readers
can refer to Appendix A.1 for the implementation
details of the baseline models.

3http://www.cnts.ua.ac.be/conll2003
4http://nlp.cs.rpi.edu/wikiann
5https://registry.opendata.aws/multiconer/

Language Type Train Dev Test

CoNLL dataset (Sang, 2002; Sang and Meulder, 2003)

English-en Sentence 14,987 3,466 3,684
(CoNLL-2003) Entity 23,499 5,942 5,648

German-de Sentence 12,705 3,068 3,160
(CoNLL-2003) Entity 11,851 4,833 3,673

Spanish-es Sentence 8,323 1,915 1,517
(CoNLL-2002) Entity 18,798 4,351 3,558

Dutch-nl Sentence 15,806 2,895 5,195
(CoNLL-2002) Entity 13,344 2,616 3,941

WikiAnn dataset (Pan et al., 2017)

English-en Sentence 20,000 10,000 10,000
Entity 27,931 14,146 13,958

Arabic-ar Sentence 20,000 10,000 10,000
Entity 22,500 11,266 11,259

Hindi-hi Sentence 5,000 1,000 1,000
Entity 6,124 1,226 1,228

Chinese-zh Sentence 20,000 10,000 10,000
Entity 25,031 12,493 12,532

mLOWNER dataset (Malmasi et al., 2022)

English-en Sentence 15,300 800 10,000
Entity 23,553 1,230 15,429

Korean-ko Sentence 15,300 800 10,000
Entity 24,643 1,302 16,308

Russian-ru Sentence 15,300 800 10,000
Entity 19,840 1,042 12,941

Turkish-tr Sentence 15,300 800 10,000
Entity 23,305 1,245 15,209

Table 1: The statistics of the CoNLL (Sang, 2002; Sang
and Meulder, 2003), WikiAnn (Pan et al., 2017) and
mLOWNER (Malmasi et al., 2022) datasets.

5.4 Implementation Details

All code was implemented in the PyTorch frame-
work,6 and is published to help replicate our re-
sults.7 All of the feature encoders mentioned in this
paper employed pre-trained cased mBERT (Devlin
et al., 2019) in HuggingFace’s Transformers where
the number of transformer blocks was 12, the
hidden layer size was 768, and the number of self-
attention heads was 12.

Some hyperparameters were empirically set
following Wu and Dredze (2019). Each batch
contained 32 examples, with a maximum encoding
length of 128. The dropout rate was set to
0.1, and AdamW (Loshchilov and Hutter, 2019)
with WarmupLinearSchedule in the Transformers
Library (Wolf et al., 2020) was used as optimizer.
The parameters of the embedding layer and the
bottom three layers of the mBERT used in the
teacher model and the student model were frozen.

Following Keung et al. (2019), the other hyper-

6https://pytorch.org/
7https://github.com/Mckysse/MSD
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Method de es nl Avg

Wiki (Tsai et al., 2016) 48.12 60.55 61.56 56.74
WS (Ni et al., 2017) 58.50 65.10 65.40 63.00
BWET (Xie et al., 2018) 57.76 72.37 71.25 67.13
ADV (Keung et al., 2019) 71.90 74.30 77.60 74.60
BS (Wu and Dredze, 2019) 69.59 74.96 77.57 73.57
TSL (Wu et al., 2020a) 73.16 76.75 80.44 76.78
Unitrans (Wu et al., 2020b) 74.82 79.31 82.90 79.01
AdvPicker (Chen et al., 2021) 75.01 79.00 82.90 78.97
RIKD (Liang et al., 2021) 75.48 77.84 82.46 78.59
TOF (Zhang et al., 2021b) 76.57 80.35 82.79 79.90
MTMT (Li et al., 2022) 76.80 81.82 83.41 80.67

MSD 77.56 81.92 85.11 81.53

MSD w/o. distillers 75.31 79.34 83.16 79.27
MSD w/o. LL

MMD 76.68 80.27 84.07 80.34
MSD w/o. LM

MMD 77.12 79.81 84.36 80.43
MSD w/o. all 74.17 77.82 81.31 77.76

Table 2: Evaluation results (%) of entity-level F1-score
on the test set of the CoNLL datasets (Sang, 2002; Sang
and Meulder, 2003). Results except ours were cited
from the published literature. For a fair comparison,
scores of the version of RIKD (mBERT) was listed.

parameters were tuned on each target language
dev set. All models were trained for 10 epochs
and chosen the best checkpoint with the target dev
set. For the training of teacher model, the learning
rate was set to 5e-5, and the hyperparameter α in
Eq. (10) was set to 0.05. For knowledge distillation,
keeping the learning rate 2e-5 for the student
models and the hyperparameter β was set to 0.05 in
Eq. (12), α′ and β′ were all set to 0.001 in Eq. (15).
Furthermore, each experiment was conducted 5
times and reported the mean F1-score.

The number of parameters in a teacher or student
model was about 111M. The whole training of
MSD was implemented with one GeForce RTX
3090 and consumed about 3 hours.

5.5 Results and Comparisons

Table 2, 3 and 4 reported the zero-shot cross-
lingual NER results of different methods on 4
datasets, containing 9 target languages. The
results show that the proposed MSD method
significantly outperformed the baseline method
TSL and achieved new state-of-the-art performance
on all target languages. For results on CoNLL,
MSD outperformed MTMT (previous SOTA) by
absolute margins of 0.76% and 1.70% in terms
of German[de] and Dutch[nl] respectively. As for
results of non-western languages on WikiAnn and
mLOWNER, MSD outperformed MTMT and Ad-
vPicker by marked absolute margins from 2.41% to

Method ar hi zh Avg

BS (Wu and Dredze, 2019) 42.30 67.60 52.90 54.27
TSL (Wu et al., 2020a) 43.12 69.54 48.12 53.59
RIKD (Liang et al., 2021) 45.96 70.28 50.40 55.55
MTMT (Li et al., 2022) 52.77 70.76 52.26 58.60

MSD 62.88 73.43 57.06 64.46

MSD w/o. distillers 54.52 70.22 52.46 59.06
MSD w/o. LL

MMD 56.93 71.50 56.68 61.70
MSD w/o. LM

MMD 58.65 72.11 56.53 62.43
MSD w/o. all 43.17 68.07 49.25 53.49

Table 3: Evaluation results (%) of entity-level F1-score
on the test set of the WikiAnn dataset (Pan et al., 2017).
Results except ours were cited from the published
literature.

Method ko ru tr Avg

BS (Wu and Dredze, 2019) 51.78 52.33 58.85 54.32
TSL (Wu et al., 2020a) 53.91 54.26 61.15 56.44
AdvPicker (Chen et al., 2021) 56.22 55.65 63.17 58.34

MSD 61.67 58.06 67.80 62.51

MSD w/o. distillers 57.23 56.81 65.14 59.72
MSD w/o. LL

MMD 57.88 57.24 67.83 60.98
MSD w/o. LM

MMD 59.12 58.08 67.41 61.53
MSD w/o. all 54.37 54.03 61.55 56.65

Table 4: Evaluation results (%) of entity-level F1-score
on the test set of the mLOWNER dataset (Malmasi
et al., 2022). Results except ours were obtained by re-
implementing these baseline models with the source
code provided by the original authors. 5 experiments
under the same configuration were conducted for all
the methods and the average results were taken as
the final numbers. Numbers in bold denote that the
improvement over the best performing baseline is
statistically significant (t-test with p-value <0.05).

10.11% for all target languages. The results clearly
demonstrated the effectiveness and generalization
ability across languages and datasets of MSD.

Obviously, existing distillation-based methods
were outperformed by the proposed MSD. Specifi-
cally, translation and ensemble of teacher models
for high-quality soft labels in Unitrans and Ad-
vPicker, as well as iterative knowledge distillation
in RIKD requiring huge computational resources,
were not adopted in MSD any more. Instead, the
proposed MSD fully explored the rich hierarchical
information in the teacher model without ensemble,
and only utilized the unsupervised data without
extra data-process.

Besides, AdvPicker shortened the gap between
the source and target languages to derive the
language-independent features in the teacher
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Figure 3: T-SNE visualization (Van der Maaten and Hinton, 2008) of semantic domains of different models by
randomly sampling 100 unannotated English (source) and German (target) sentences from the training set of the
CoNLL datasets (Sang, 2002; Sang and Meulder, 2003). “tea/stu” refers to the teacher/student model respectively.
“src/tgt” refers to the source/target data respectively. Each point refers to the [CLS] representation of a sample in
source/target languages. (a) Domains of the basic teacher-student distillation are away from each other. (b) The
distribution discrepancy within the teacher (tea_src, tea_tgt) or within the student (stu_src, stu_tgt) models
is implicitly affected by the mixture of distillers. (c) The distribution discrepancy between the teacher (tea) and
student (stu) models is reduced after further performing parallel domain adaptation.

model, and then distilled the domain information
to the student model implicitly. However, the
proposed MSD chose to transfer the domain-
invariant information directly from the teacher
to the student via the parallel domain adaptation.
The results demonstrated that the implicit domain
transfer in AdvPicker is overshadowed by the
explicit domain transfer in MSD. As shown in
Figure 3, domain discrepancy between the teacher
and student models is vividly reduced by MSD,
contributing to a closer transfer route. Further
analysis of the difference between the domain
transfer manners of AdvPicker and MSD was
elaborated in Section 5.6.3.

5.6 Analysis

5.6.1 Ablation Study

To validate the contributions of different compo-
nents in MSD, the following variants and baselines
were conducted to perform the ablation study: (1)
MSD w/o. distillers, which only activated the last
channel and removed others between the teacher
and student models. Besides, the two different
MMD losses were still used during distillation. (2)
MSD w/o. LL

MMD, which only removed the cross-
language MMD loss. In this case, the teacher and
student models had multiple transmission channels
but only the cross-model MMD loss was employed.
(3) MSD w/o. LM

MMD, which only removed the
cross-model MMD loss correspondingly. (4) MSD
w/o. all, which removed all the components

mentioned above, and was equivalent to a baseline
distillation model as TSL.

Results of the ablation experiments were shown
in the bottom five lines of Table 2, 3 and 4
respectively. Some in-depth analysis could be
explored: (1) Compared MSD with MSD w/o.
distillers, we could see that the removal of distillers
caused a significant performance drop, which
further demonstrated the importance of leveraging
information contained in the intermediate layers
of mBERT; (2) Compared MSD with MSD w/o.
LL

MMD and MSD w/o. LM
MMD, the parallel domain

adaptation contributed to cross-lingual NER signifi-
cantly. The results well demonstrated that explicitly
transfer domain information across models and
languages during distillation was reasonable and
effective; (3) The two MMD losses were correlated,
as LL

MMD measured both cross-language and cross-
model effects. Removal of LL

MMD caused larger
performance degradation than removal of LM

MMD.
The ablation study validated the effectiveness

of all components. Moreover, subtle integration
of these modules achieved state-of-the-art perfor-
mance. Not only multiple channels between the
teacher and student models should be established
to leverage the complementary and hierarchical
information of mBERT, but also these channels
should be shortened for efficient transfer.

5.6.2 Case Study on Domain Discrepancy
To further illustrate the effectiveness of MSD,
various metrics were employed to measure the
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Figure 4: Metrics of MMD, symmetrical KL divergence and cosine similarity on CoNLL02/03 under the ablation
settings. “tea/stu” refers to the teacher/student model respectively. “src/tgt” refers to the source/target data
respectively. For example, tea_src--stu_src refers to the distance between the teacher’s source domain and
the student’s source domain. Each result was calculated from the mean center of the two domains as the same as
mentioned in Section 4.2. [w/o dis]: MSD w/o. distillers; [w/o L]: MSD w/o. LL

MMD; [w/o L]: MSD w/o. LM
MMD.

distribution discrepancy between different domains:
MMD (Long et al., 2015), symmetrical KL di-
vergence (Jiang et al., 2020; Liu et al., 2020a),
and cosine similarity (Bromley et al., 1993). The
results in Figure 4 is corresponding to the ablation
study. Along with Figure 3, the effects of different
components could be discussed.

i) Parallel Domain Adaptation. LM
MMD pulled the

source domain of the teacher and student models
closer. As shown in Figure 4 (a), the MMD
and symmetrical KL divergence increased and the
cosine similarity decreased without LM

MMD. Similar
to LM

MMD, LL
MMD pulled the source domain of the

teacher and the target domain of the student closer.
ii) Distillers. From Figure 4 (c) and (d), distillers
made the domains within the model closer. This
effect can be seen intuitively in Figure 3 (b). From
Figure 4 (a) and (b), the influence of distillers
on the discrepancy between different models was
much smaller than that of LL

MMD and LM
MMD. iii)

Other results. LL
MMD and LM

MMD were helpful for
reducing the distance between the source and target
domains of the student model, as shown in Figure 4
(c). Besides, they alleviated domains discrepancy
during distillation, as shown in Figure 3 (c).

5.6.3 Comparison of Transfer Manners
To validate the effectiveness of the explicit domain
transfer in MSD, an implicit domain transfer
experiment was designed. Imitating Chen et al.
(2021), MMD was employed to get language-
independent features in the teacher model, and
then a baseline distillation was conducted. In
contrast, MSD w/o. distillers actually adopted
an explicit domain transfer manner. As shown in
Appendix A.3, MSD w/o. distillers outperformed

methods with implicit domain transfer manners.

6 Conclusion

In this paper, we propose a mixture of short-
channel distillers framework for zero-shot cross-
lingual NER, including a multi-channel distillation
framework to fully leverage the complementary and
hierarchical information in the teacher model, and
an unsupervised parallel domain adaptation method
to effectively pull the domains between teacher and
student models closer. Experimental results show
that the proposed method outperforms previous
methods on four datasets across nine languages. In
the future, we will extend this method to languages
where data resources are scarcer.

Limitations

Our method has certain limitations, such as it
cannot be used for target languages without any
text data. Furthermore, although the results show
great performance, more efforts are required to
explore the hidden impact of distillers as shown in
the t-SNE graph, which will help the application of
the proposed model in the future.
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A Appendices

A.1 Baseline Models
We mainly compared our method with the follow-
ing distillation-based methods.
TSL (Wu et al., 2020a) proposed a teacher-student
learning model, via using source-language models
as teachers to train a student model on unlabeled
data in the target language for cross-lingual NER.
Unitrans (Wu et al., 2020b) unified both model
transfer and data transfer based on their comple-
mentarity via enhanced knowledge distillation on
unlabeled target-language data.
AdvPicker (Chen et al., 2021) proposed a novel
approach to combine the feature-based method and
pseudo labeling via language adversarial learning
for cross-lingual NER.
RIKD (Liang et al., 2021) proposed a reinforced
knowledge distillation framework.
MTMT (Li et al., 2022) proposed an unsupervised
multiple-task and multiple-teacher model for cross-
lingual NER.

In addition, Wiki (Tsai et al., 2016), WS (Ni
et al., 2017), BWET (Xie et al., 2018), Adv (Keung
et al., 2019), BS (Wu and Dredze, 2019) and
TOF (Zhang et al., 2021b) were non-distillation-
based methods.

A.2 Pilot Experiment
Previous studies have verified the importance of
lower layers for cross-language transfer (Müller
et al., 2021). Our pilot experiments also further
illustrate that lower layers of mBERT are critical
for NER as shown in Table 5.

Method en

BS (Wu and Dredze, 2019) 91.30
mixture 91.49

Table 5: Evaluation results (%) of entity-level F1-score
on the English test set of the CoNLL dataset (Sang,
2002; Sang and Meulder, 2003). Both models were
trained with the training set data of English in CoNLL.
BS was the basic model in Section 3.2. mixture
represented the teacher model described in Section 4.1.

A.3 Comparison of Transfer Manners
Table 6, 7 and 8 reported the results of different
transfer manners. Imitating AdvPicker (Chen et al.,
2021), TSL w. MMD was designed to get language-
independent features in the teacher model, and then
a baseline distillation was conducted, which was

an implicit transfer manner. MSD w/o. distillers
represented the explicit transfer manner.

Method de es nl Avg

AdvPicker 75.01 79.00 82.90 78.97
TSL w. MMD 75.02 78.83 82.73 78.86
MSD w/o. distillers 75.31 79.34 83.16 79.27

Table 6: Evaluation results (%) of entity-level F1-score
on the test set of the CoNLL datasets (Sang, 2002; Sang
and Meulder, 2003).

Method ar hi zh Avg

AdvPicker 53.12 69.88 51.09 57.69
TSL w. MMD 53.47 70.09 50.12 57.89
MSD w/o. distillers 54.52 70.22 52.46 59.06

Table 7: Evaluation results (%) of entity-level F1-score
on the test set of the WikiAnn dataset (Pan et al., 2017).

Method ko ru tr Avg

AdvPicker 56.22 55.65 63.17 58.34
TSL w. MMD 56.68 56.28 63.13 58.69
MSD w/o. distillers 57.23 56.81 65.14 59.72

Table 8: Evaluation results (%) of entity-level F1-score
on the test set of the mLOWNER dataset (Malmasi et al.,
2022).
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