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Abstract
Relation prediction in knowledge graphs
(KGs) aims at predicting missing relations in
incomplete triples, whereas the dominant em-
bedding paradigm has a restriction on handling
unseen entities during testing. In the real-
world scenario, the inductive setting is more
common because entities in the training pro-
cess are finite. Previous methods capture an in-
ductive ability by implicit logic in KGs. How-
ever, it would be challenging to preciously ac-
quire entity-independent relational semantics
of compositional logic rules and to deal with
the deficient supervision of logic caused by
the scarcity of relational semantics. To this
end, we propose a novel graph convolutional
network (GCN)-based model LogCo with log-
ical reasoning by contrastive representations.
LogCo firstly extracts enclosing subgraphs and
relational paths between two entities to supply
the entity-independence. Then a contrastive
strategy for relational path instances and the
subgraph is proposed for the issue of deficient
supervision. The contrastive representations
are learned for a joint training regime. Finally,
prediction results and logic rules for reason-
ing are attained. Comprehensive experiments
on twelve inductive datasets show that LogCo
achieves outstanding performance comparing
with SOTA inductive baselines.

1 Introduction

Knowledge graphs (KGs) store plenty of facts by
triples consisting of entities and relations. They
have been widely used in different application sce-
narios, such as relation extraction (Hu et al., 2021),
question answering (Abdelaziz et al., 2021) and
information retrieval (Verlinden et al., 2021). Ex-
tracting triples from contexts consumes plenty of re-
sources. Therefore, some dominant methods aim at
the KG completion or relation prediction by learn-
ing representations of relations and entities, such
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as TransE(Bordes et al., 2013), RESCAL (Nickel
et al., 2011), R-GCN (Schlichtkrull et al., 2018)
and CompGCN (Vashishth et al., 2020).

However, the above methods predict relations
assuming for a transductive setting, which means
the entities are fixed during training and testing.
In the application scenario, there will be new enti-
ties during testing. For the scenario in Figure 1(a),
training and testing entities have no intersection,
so the previous transductive methods will not accu-
rately predict the relation liveIn between entities
Bill Gates and W.A. in the test set without retraining
the whole model. Thus, some studies like GraiL
(Teru et al., 2020) focus more on models owning
inductive ability, which can handle unseen entities
by implicit first-order logic rules (Horn, 1951) fit-
ting the cognition of human beings. For example,
by the following logic rule r1:

workIn(X,Z) ∧ locatedIn(Z, Y )→ liveIn(X,Y ),

the relation liveIn in the test subgraph can be
inferred. However, existing models majorly take
advantage of the topological structure of entities
and triples in KGs. There still remain two issues of
mining logic in inductive relation prediction.

Firstly, inductive relation prediction has unseen
entities in the test set, which requires the model
to own entity-independence during reasoning. Al-
though implicit logic rules in KGs provide induc-
tive ability, previous methods (Mai et al., 2021;
Teru et al., 2020) merely focus on the entity in-
formation, and have difficulties in modeling rela-
tional semantics of rules which are more critical
for entity-independence. For example, Figure 1(b)
indicates the inductive prediction process by r1.
The training entities Trump, Grand Hyatt and N.Y.
are generalized to variables X,Y, Z marked in red
in Figure 1(b). It indicates that instantiated entities
are less important than relation sequence (workIn,
locatedIn) for predicting the relation liveIn.
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Figure 1: An example for inductive relation prediction and its inference process using a first-order logic rule.

Dataset v1 v2 v3 v4
WN18RR 1.46 1.47 1.43 1.48
FB15K-237 3.13 9.31 16.76 25.27
NELL-995 4.68 15.40 20.95 24.22

Table 1: Statistics of average rules from all subgraphs
with the max rule length as 3. There are four versions
in each inductive relation prediction dataset, whose de-
tails are indicated in Appendix B.1.

Secondly, although logical reasoning provides
inductive ability, the scarcity of relational seman-
tics leads to deficient supervision of logic rules.
Dominant logical reasoning methods like (Meilicke
et al., 2019) indicates that in a KG owning m kinds
of relations, the number of candidate rules within
length N is O(mN ), whereas in the real KG, there
only contain a few rules during logical reasoning.
For example, in Figure 1(b), there are actually 4
rules whose length within 3 from Trump to N.Y.,
but at least 83 = 512 candidate rules. The detailed
statistics of rules in KGs are shown in Table 1. As a
note, we treat number of relational paths as number
of rules, like thick blue paths in Figure 1(b). It
is unlikely to obtain all the supervised candidate
logic rules, which would limit the performance of
inductive relation prediction.

To address the above issues, we propose a
model LogCo for inductive relation prediction with
Logical reasoning using Contrastive representa-
tions. LogCo firstly extracts subgraphs among the
target relation and relational paths within a preset
length. Relational paths will introduce the rela-
tion sequence semantics which is more important
for entity-independence in logical reasoning. Sec-
ondly, a contrastive strategy to address the deficient
supervision of logic rules is introduced into LogCo
by constructing positive and negative relational

paths. Then, LogCo obtains structural represen-
tations using a GCN. Positive and negative samples
containing both topological structure and relation
sequence semantics are all sent to the model for
contrastive representations. Finally, LogCo applies
a joint training regime combining the supervised
and self-supervised information. The logical rea-
soning is illustrated by the relational path and the
target relation, which are considered as the body
and head respectively of a logic rule.

Our main contributions are three-fold:

• By regarding the relational path and the target
relation as the body and head respectively of
a logic rule, we integrate the neural network
model and the discrete logic in inductive rela-
tion prediction by LogCo for the first time.

• To satisfy the entity-independence of induc-
tive prediction in KGs, we represent relational
paths as logic rules. A contrastive strategy is
also devised to solve deficient supervision in
logical reasoning. LogCo is the first to sup-
plement the entity-independent semantics by
relational paths and introduces contrastive rep-
resentations into inductive relation prediction.

• Experiments of the relation prediction on
twelve inductive datasets verify the superior-
ity of LogCo comparing with latest inductive
methods. Meanwhile, LogCo could obtain
logic rules for interpretability of reasoning.

2 Preliminary

This section briefly introduces the first-order logic
rule and its connection with the relational path. A
first-order logic rule (Muggleton, 1991) learned
from KGs is a Horn clause (Poole, 1993), which
consists of an atom as head and a series of atoms
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Figure 2: The overall framework of LogCo. It firstly extracts enclosing subgraphs and relational paths from
the KG. Then it utilizes GCN to obtain contrastive representations of the subgraph and relational paths. The
embeddings with red boxes are negative representations. Finally, the joint training regime is carried out to optimize
the prediction model. LogCo outputs the prediction result and logic rules simultaneously.

as body. For example, here is a Horn clause with
length N :

β

body
︷ ︸︸ ︷
r1(X,Z1)∧r2(Z1, Z2)∧ ...rN(ZN−1,Y )→

head︷ ︸︸ ︷
rT (X,Y ) .

in which r1, r2, ..., rN , rT are relations and
X,Z1, Z2, ..., ZN−1, Y are variables generalized
from entities in KGs. The body atoms are con-
nected by a conjunction symbol ∧ and point to
the head by an implication symbol →. In the
rule, an atom contains two variables and adja-
cent atoms share the same variable. During
inference, variables are instantiated to entities
x, z1, z2, . . . , zN−1, y and form a closed path, for
example the blue thick paths in Figure 1(b). We use
the relational path, target relation and β ∈ [0, 1] to
represent the body, head and confidence of the rule.
As we discuss in Section 1, β can be obtained by
the attention weight of a relational path.

3 Methodology

This section illustrates our proposed approach
LogCo with the help of Figure 2.

3.1 Task Definition
Inductive relation reasoning in KGs is to make
relation prediction on unseen entities. A target

triple eT is denoted as (h, rT , t) in the train KG
G = {R,E, T}, in which h and t are head and
tail entities, and rT is the target relation. R and
E are sets of relations and entities in G, and T ⊆
E×R×E is the set of triples. Relation prediction
in a fully-inductive setting intends to quantify the
score of every eT in G and predict the relation
between two unseen entities h′ and t′ in a testing
KG G′ = {R′, E′, T ′}, where R′ ⊆ R, E′ ∩ E =
∅. For clarify, we summarize important symbols
in Table 6 of Appendix A.2

3.2 Initialization and Contrast Construction

Node Features. We extract enclosing subgraph
GT based on the target triple eT from G, and im-
plement the double radius vertex labeling scheme
(Zhang and Chen, 2018) to entities in GT . The
node i around target triple (h, rT , t) is in the in-
tersection of q-hop undirected neighborhoods of
h and t. The node is labeled as (d(i, h), d(i, t)),
in which d is the shortest topological distance be-
tween two entities. The label of node i is denoted
as [one-hot(d(i, h))⊕ one-hot(d(i, t))] ∈ R(2q+2)

to indicate the node feature, where ⊕ refers to the
concatenation operation.

Contrastive Relational Paths Generation. Re-
lational paths need extracting from GT . We use
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breadth first search (BFS) algorithm (Cormen et al.,
2001) for extracting every topological relational
path whose length is no longer than Lmax from h
to t in GT . The set of extracted paths is denoted
as Ph→t. For instance in Figure 2, if Lmax is set
as 3, then the algorithm would select 4 relational
paths from the extracted subgraph GT . Moreover,
for the contrastive samples, we consider rT as the
original instance and Ph→t as the set of positive
relational paths P+

h→t. As for the set of negative
samples P−h→t, they are constructed to distinguish
semantics with the original instance and positive
samples, so we randomly replace a part of every
relational path in GT and guarantee the negative
samples not in P+

h→t for avoiding the false nega-
tive situation. The k-th positive and negative path
samples are denoted as p+k and p−k respectively.

3.3 Contrastive Representations
The second step of LogCo is to get contrastive
representations. The details are in the following.

Subgraph Embedding. We employ a GCN for
obtaining embeddings of entities and relations in
KGs. The propagation process for calculating the
forward-pass update is defined as:

z
(l+1)
i = ReLU(

∑

r∈R

∑

j∈Nr
i

µi,rW(l)
r z

(l)
j + W(l)

selfz
(l)
i ), (1)

where z
(l+1)
i denotes the embedding of node i in

the (l + 1)-th layer. N r
i denotes the set of neigh-

bors of i connected by relation r. W(l)
r and W(l)

self

refer to the transformation matrices for propagating
messages from layer l to l + 1, where W(l)

r is the
matrix over relation r. µi,r is the edge attention
weight corresponding to the edge connected via r:

oi,r = σ(W1[z
(l)
i ⊕ z

(l)
j ⊕ r]), (2)

µi,r = σ(W2[oi,r ⊕ rT ]), (3)

where r and rT indicate the embeddings of relation
r and rT respectively. W1 and W2 are transforma-
tion matrices. σ is an activation function, such as
ReLU(·) or Sigmoid(·).

Paths Representation. We design a strategy to
obtain representations of relational paths in GT ,
which is shown in the purple block of Figure 2. In
this phase, we use the information of relations in
GT as shown in Figure 2. Inspired by a rule mining
work (Yang et al., 2015), we devise to calculate
the semantic similarity between the target relation
rT and the relational path pk ∈ Ph→t, for rT and

pk connect the same h and t. Then, we utilize an
aggregation function ψ to obtain the representation:

ph→t = ψ({pk : pk ∈ Ph→t}). (4)

The paths representation is given by:

ph→t =
n∑

k=1

βkpk (5)

in which n is the number of paths in GT . βk is the
path attention weight between the path pk and rT .
pk is the representation of path pk. We implement
the continuous bag-of-words (CBOW) algorithm
(Mikolov et al., 2013) on relation embeddings. For
an alternate strategy, the path representation can be
indicated by a convolution operation:

pk =

lk−1∑

j=1

(Wrinj + bj), (6)

which utilizes a convolution neural network (CNN)
to aggregate the relational path, considering the or-
der of relations. lk is the number of relations in pk,
and rinj = [rj ⊕ rj+1] refers to the j-th window
of the relation sequence. For the special condition
when lk = 1, we set pk as the representation of the
only relation. W is the convolution kernel and bj
is the optional bias. Because the rule length is not
large, and we pay more attention to the sequence
semantics of adjacent relations, we choose convo-
lution rather than other operations. The attention
weight βk can be regarded as the confidence of
corresponding rule for inference in GT , which is
calculated as:

βk = softmax(pk, rT ) =
exp(pk

>rT )∑
pk′∈Ph→t

exp(pk′>rT )
. (7)

For further contrastive learning, representations of
original sample, positive and negative path are rT ,
p+
h→t and p−h→t respectively, in which p+

h→t and
p−h→t can be acquired with p+

k and p−
k .

Logical Reasoning. LogCo extracts relational
paths to capture the entity-independence during the
reasoning process, which can be treated as first-
order rules in KGs. After training, LogCo obtains
relational paths pk with attention weights βk, which
are actually rules’ embeddings with confidences
during logical reasoning. There would be several
learned rules in a single subgraph that provide the
interpretable process of reasoning.
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3.4 Joint Training Regime
In this step, we propose a joint training regime com-
bining the supervised and contrastive information,
which consists of the associative contrast and path
contrast. The detailed descriptions are as follows:

Associative Contrast. In order to associate the
topological structure of GT denoted as sh→t and
semantics from the path representations denoted as
ph→t, we score the likelihood of target triple eT as:

sh→t = [z
(L)
GT ⊕ z(L)

eT
], (8)

f(eT ,Ph→t) = Ws[sh→t ⊕ rT ⊕ ph→t], (9)

where Ws is the weight matrix. z
(L)
eT is the en-

tity embeddings’ concatenation of eT of all the
L layers’ messages, which can be indicated as[⊕L

l=1(z
(l)
h ⊕ z

(l)
t )
]
. z(L)
GT refers to the global rep-

resentation of GT , given by the average readout:

z
(L)
GT =

1

|VT |
∑

i∈VT
z
(L)
i , (10)

where VT refers to the set of nodes in GT . We
introduce margin-based loss to distance scores of
positive and negative samples by an associative
contrast:

LG=
∑

eT∈E
max(0, η+f(e−T ,P−h→t)−f(e+T ,P+

h→t)), (11)

where e+T and e−T refer to the positive and negative
triple samples, and e−T is the sample that replaces
the head or tail of e+T . f(·) is the score function
indicated as Eq.(9). E is the set of triples in G.

Path Contrast. If focusing on the semantic in-
formation given by relational paths, the contrastive
learning should distinguish rT with negative paths
and make it close to positive paths. Therefore, in-
spiring by the InfoNCE loss in (van den Oord et al.,
2018), for relational path samples pairs in KGs, the
negative samples exist without distribution. The
loss for path contrast is defined as:

LP =−log
[ exp(p+

h→t

>
rT )

exp(p+
h→t

>
rT )+exp(p−h→t

>
rT )

]
. (12)

Supervised Training. Except for the con-
trastive learning, we implement the supervised pre-
diction. With the representation of positive paths
p+
h→t in GT , the supervised learning intends to

make it similar with the embedding of target re-
lation rT . In our training regime, we apply the
cross entropy loss on all relation labels in R to

minimize the distance between p+
h→t and rT , and

maximize the distances with other relations:

LC = −log
[ exp(p+

h→t
>
rT )

∑
r∈Rexp(p+

h→t
>
r)

]
. (13)

Eventually, the overall loss of LogCo is defined as
the weighted summation of three losses, simultane-
ously optimizing them by a joint training process:

L = LG + λ1LP + λ2LC , (14)

where λ1 and λ2 are hyper-parameters represent-
ing weights of path contrast loss and supervised
training loss respectively.

4 Experiments

In this section, we firstly introduce benchmarks,
baselines, experiment settings and details. Sec-
ondly, to verify the effectiveness of LogCo, we
implement comparison experiments on relation
prediction task. Then, we use ablation studies,
weight analysis and case studies to comprehen-
sively demonstrate the performance.

4.1 Experimental Settings

Datasets. The inductive link prediction datasets
are derived from WN18RR (Dettmers et al., 2018),
FB15K-237 (Toutanova et al., 2015) and NELL-
995 (Xiong et al., 2017), and each has been divided
into four versions. The statistics of benchmark
datasets are illustrated in (Teru et al., 2020). Each
version of a dataset consists of train and test KGs,
whose entities are totally different indicating the
fully-inductive setting.
Baselines. The inductive baselines for compar-
ison include rule-based RuleN (Meilicke et al.,
2018), Neural-LP (Yang et al., 2017) and DRUM
(Sadeghian et al., 2019), and graph-based GraIL
(Teru et al., 2020), CoMPILE (Mai et al., 2021),
TACT (Chen et al., 2021) and RED-GNN (Zhang
and Yao, 2022). We also compare with two trans-
ductive methods TransE (Bordes et al., 2013) and
CompGCN (Vashishth et al., 2020) to illustrate the
effectiveness of them for inductive prediction.
Metrics. In the comparison, we implement both
classification and ranking metrics to evaluate the
model for multiple runs considering the random
seeds and samples. AUC-PR is an indicator for clas-
sification task computing the area under prediction-
recall curve and it evaluates if the triple is true.
For the ranking metric Hits@10, we evaluate it in
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Metric Category Method
WN18RR FB15K-237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

AUC-PR

Rule-based
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 89.71 85.94

Graph-based
GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
TACT† 95.43 97.54 87.65 96.04 83.15 93.01 92.10 94.25 81.06 93.12 96.07 85.75
CoMPILE† 98.29 99.36 93.60 99.51 83.06 90.21 93.12 93.24 82.39 93.30 95.71 52.98

LogCo Lmax=2 98.62 99.10 91.24 98.36 86.62 91.99 94.58 94.54 88.72 95.96 96.10 87.81
Lmax=3 99.43 99.45 93.99 98.75 89.74 93.65 94.91 95.26 91.24 91.15 96.28 78.45

Hits@10

Transductive
TransE 18.09 18.03 20.25 20.68 17.07 19.77 21.97 20.25 24.00 21.64 21.94 19.49
CompGCN <0.001 <0.001 <0.001 0.035 <0.001 0.104 0.058 0.140 <0.001 <0.001 <0.001 <0.001

Rule-based
RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35
Neural-LP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58
DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58

Graph-based

GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19
RED-GNN 79.90 78.00 52.40 72.10 48.30 62.90 60.30 62.10 86.60 60.10 59.40 55.60
TACT† 84.04 81.63 67.97 76.56 65.76 83.56 85.20 88.69 79.80 88.91 94.02 73.78
CoMPILE† 81.91 76.64 57.35 71.80 62.20 82.01 84.67 87.44 58.33 88.86 93.63 60.81

LogCo Lmax=2 90.16 84.69 68.68 79.08 73.90 81.91 80.64 84.20 61.75 93.48 94.19 80.82
Lmax=3 86.70 86.73 68.43 77.15 66.34 84.21 86.47 89.22 59.75 90.86 94.44 76.81

Table 2: Comparison of AUC-PR (%) and Hits@10 (%) results on inductive benchmarks from WN18RR, FB15K-
237 and NELL-995. † means we reproduce the project by original codes. Other results are from (Teru et al., 2020)
and (Zhang and Yao, 2022). The optimal and suboptimal values are marked in bold and underline respectively.

a general mode by ranking the test triples among
50 randomly negative samples, and see if the true
triple can rank the top 10.
Experimental Details. For the subgraph extrac-
tion, we obtain 3-hop enclosing subgraphs by the
double vertex labeling. In the graph embedding
process, we employ a 3-layer GCN with the dimen-
sion as 32. We implement the experiments on one
NVIDIA’s Tesla V100 graphic card. Different pa-
rameters might influence the performance on differ-
ent datasets, so the parameters are tuned separately.
During the training process, the batch size is set as
16 and we use Adam (Kingma and Ba, 2015) as the
optimizer with learning rate being 0.001. When ex-
tracting relational paths, we choose the max length
as Lmax = 2 and 3. For the hyper-parameters λ1
and λ2, we choose λ1, λ2 ∈ [0.8, 1.2] and we will
explain the choice in Subsection 4.4.1

More settings are detailed in Appendix B.3.

4.2 Comparison Results

Comparison of Prediction Results. The compar-
ison results of relation prediction in Table 2 show
that LogCo significantly outperforms them among
the vast majority of datasets.

For the transductive methods, it is obvious in Ta-
ble 2 that they are not suitable for solving inductive
reasoning because of the lower Hits@10 results.
For the rule-based inductive methods, the average
boosts of LogCo on WN18RR, FB15K-237 and

1Codes of LogCo will be available at https://github.
com/pyd418/LogCo.

NELL-995 in AUC-PR are 12.54%, 6.65% and
7.55% respectively compared with the rule-based
method RuleN. LogCo is also superior to differen-
tiable methods Neural-LP and DRUM in terms of
the classification and outperforms other rule-based
methods on most datasets in terms of the ranking
task, except for Hits@10 result on FB15K-237_v3.
We attribute this phenomenon to the general perfor-
mance of graph-based pattern.

After observation, graph-based inductive meth-
ods are generally more effective on most datasets
than rule-based methods. Comparing with
more competitive graph-based inductive methods,
LogCo owns optimal results among these datasets
in two metrics, which illustrate its superiority as
well. LogCo results in as much as 6.15%, 3.04%
and 2.95% average performance improvements in
AUC-PR comparing to GraIL, which is the basic
graph-based inductive method. As for the SOTA
methods RED-GNN, CoMPILE and TACT, our
method performs better on most datasets in terms
of both metrics in the same experimental environ-
ment. The slight difference may be due to the fixed
length of relational paths in LogCo.

Except for sampling one negative relational
path during training, we implement LogCo with
multiple negatives. However, the prediction re-
sults slightly increase with more time consumed.
For example, the AUC-PR with one negative on
WN18RR_v1 is 99.43% costing 23.66s per epoch,
and 99.79% with 2 negatives costing 42.19s per
epoch. More results are in Appendix C.1. In addi-
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Method
WN18RR FB15K-237 NELL-995

v1 v2 v3 v4 Avg v1 v2 v3 v4 Avg v1 v2 v3 v4 Avg
LogCo 99.43 99.45 93.99 98.75 97.91 89.74 93.65 94.91 95.26 93.39 91.24 95.96 96.28 87.81 92.82
LogCo w/o Paths 93.04 95.15 87.48 94.22 92.47 84.56 91.23 91.97 92.90 90.17 81.94 91.59 89.90 73.81 84.31
∆ ↓6.39 ↓4.30 ↓6.51 ↓4.53 ↓5.44 ↓5.18 ↓2.42 ↓2.94 ↓2.36 ↓3.22 ↓9.30 ↓4.37 ↓6.38 ↓14.00 ↓8.51
LogCo#1 95.64 96.05 87.57 95.25 93.63 85.01 92.03 92.48 92.42 90.49 88.12 89.70 93.33 81.18 88.08
∆ ↓3.79 ↓3.40 ↓6.42 ↓3.50 ↓4.28 ↓4.73 ↓1.62 ↓2.43 ↓2.84 ↓2.90 ↓3.12 ↓6.26 ↓2.95 ↓6.63 ↓4.74
LogCo#2 95.38 95.26 86.59 95.05 93.07 83.71 91.69 92.26 91.85 89.88 82.97 89.62 91.52 78.45 85.64
∆ ↓4.05 ↓4.19 ↓7.40 ↓3.70 ↓4.84 ↓6.03 ↓1.96 ↓2.65 ↓3.41 ↓3.51 ↓8.27 ↓6.34 ↓4.76 ↓9.36 ↓7.18

Table 3: Ablation results of AUC-PR (%) on inductive benchmarks derived from WN18RR, FB15K-237 and
NELL-995. Especially, LogCo#1 removes the associative contrast. LogCo#2 removes path contrast compared
with LogCo#1, where the performance comparison with LogCo#2 verifies the effectiveness of the path contrast.

Method
WN18RR FB15K-237 NELL-995

v1 v2 v3 v4 Avg v1 v2 v3 v4 Avg v1 v2 v3 v4 Avg
LogCo 86.70 86.73 68.43 77.15 79.75 70.24 84.21 86.47 89.22 82.54 59.75 93.48 94.19 80.82 82.06
LogCo w/o Paths 83.51 78.68 63.05 76.28 75.38 65.36 81.17 80.59 81.25 77.09 48.50 81.93 89.25 68.05 71.93
∆ ↓3.19 ↓8.05 ↓5.38 ↓0.87 ↓4.37 ↓4.88 ↓3.04 ↓5.88 ↓7.97 ↓5.45 ↓11.25 ↓11.55 ↓4.94 ↓12.77 ↓10.13
LogCo#1 85.10 81.63 62.40 76.35 76.37 66.58 82.12 79.94 80.68 77.33 58.25 82.87 91.96 77.42 77.63
∆ ↓1.60 ↓5.10 ↓6.03 ↓0.80 ↓3.38 ↓3.66 ↓2.09 ↓6.53 ↓8.54 ↓5.21 ↓1.50 ↓10.61 ↓2.23 ↓3.40 ↓4.43
LogCo#2 84.04 81.63 62.31 76.34 76.08 63.65 81.38 75.61 54.92 68.89 45.50 76.79 91.03 66.21 69.88
∆ ↓2.66 ↓5.10 ↓6.12 ↓0.81 ↓3.67 ↓6.59 ↓2.83 ↓10.86 ↓34.30 ↓13.65 ↓14.25 ↓16.69 ↓3.16 ↓14.61 ↓12.18

Table 4: Ablation results of Hits@10 (%) on inductive benchmarks derived from WN18RR, FB15K-237 and
NELL-995. The settings of LogCo#1 and LogCo#2 are the same as Table 3.

Figure 3: Comparing numbers of parameters (k) of
LogCo and SOTA methods TACT and CoMPILE.

tion, we implement LogCo when Lmax > 3. How-
ever, there are circles and other noise when extract-
ing relational paths, which will reduce the predic-
tion results with more time. AUC-PR by LogCo on
WN18RR_v1 is 98.86% if Lmax = 4. Therefore,
we record the results when Lmax = 2, 3.
Comparison of Complexity. Moreover, LogCo
needs less parameters than the SOTA methods,
which means we achieve lower model complex-
ity. The numbers of parameters on twelve datasets
are shown in Figure 3(a), (b) and (c), where orange,
blue and green bars refer to parameter quantities
of TACT, CoMPILE and LogCo respectively. It is
shown that CoMPILE needs much more parame-
ters on WN18RR, and TACT consumes multiple
parameters on FB15K-237 and NELL-995. LogCo
performs better on complexity on all the twelve
datasets. LogCo owns slightly lower results than
CoMPILE on WN18RR_v4, but it has 17,288 pa-
rameters while CoMPILE has 34,465, reflecting
the superiority of LogCo from an aspect.

Figure 4: Training details of the proposed LogCo
model and several kinds of ablation models.

4.3 Ablation Results

We investigate impacts of relational paths for logi-
cal reasoning and contrasts. Table 3 and 4 indicate
the results when training the model by LogCo with-
out the factors on all the datasets, and the methods
are divided into two parts respectively. Especially,
1) “LogCo w/o Paths" removes the relational paths
in LogCo. 2) LogCo#1 removes the associative
contrast. 3) LogCo#2 removes the path contrast
compared with LogCo#1. ∆ indicates the reduc-
tion between the ablation model and LogCo. Other
parameters remain the same during training and
testing for a fair comparison.

From Table 3 and 4, the reduction of AUC-PR
and Hits@10 values demonstrates that our contribu-
tions on LogCo all have positive impacts for induc-
tive relation prediction. In addition, it shows that
relational paths and contrasts are more effective
on NELL-995 than other two datasets. Especially,
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Dataset β body →head

WN18RR_v1

0.99 verb_group(X,Z1)∧ hypernym(Z1, Z2)∧ hypernym(Z2, Y ) →hypernym(X,Y )

0.50 derivationally_related_form(X,Z1)∧ derivationally_related_form(Z1, Z2)∧ hypernym(Z2, Y ) →hypernym(X,Y )

0.50 derivationally_related_form(X,Z1)∧ hypernym(Z1, Z2)∧ derivationally_related_form(Z2, Y ) →hypernym(X,Y )

<0.01 derivationally_related_form(X,Z)∧ derivationally_related_form(Z, Y ) →hypernym(X,Y )

0.41 derivationally_related_form(X,Z1)∧ derivationally_related_form(Z1, Z2)∧ verb_group(Z2, Y ) →verb_group(X,Y )

0.41 verb_group(X,Z1)∧ derivationally_related_form(Z1, Z2)∧ derivationally_related_form(Z2, Y ) →verb_group(X,Y )

0.18 verb_group(X,Z)∧ verb_group(Z, Y ) →verb_group(X,Y )

<0.01 hypernym(X,Y ) →verb_group(X,Y )

FB15K-237_v1

1.00 location/contains(X,Z1)∧ location/state(Z1, Z2)∧ location/contains(Z2, Y ) →location/contains(X,Y )

1.00 location/contains(X,Z)∧ location/contains(Z, Y ) →location/contains(X,Y )

0.45 location/contains(X,Z)∧ location/adjoins(Z, Y ) →location/contains(X,Y )

<0.01 gardening_hint/split_to(X,Y ) →location/contains(X,Y )

0.97 film_release_region(X,Z1)∧ netflix_genre/titles(Z1, Z2)∧ film/language(Z2, Y ) →film/language(X,Y )

0.50 film/genre(X,Z1)∧ netflix_genre/titles(Z1, Z2)∧ film/language(Z2, Y ) →film/language(X,Y )

<0.01 film_release_region(X,Z1)∧ location/contains(Z1, Z2)∧ major_field_of_study(Z2, Y ) →film/language(X,Y )

NELL-995_v1

1.00 agentControls(X,Z1)∧ agentCollaboratesWithAgent(Z1, Z2)∧ worksFor(Z2, Y ) →worksFor(X,Y )

0.53 worksFor(X,Z)∧ subpartOfOrganization(Z, Y ) →worksFor(X,Y )

<0.01 agentControls(X,Z)∧ agentControls(Z, Y ) →worksFor(X,Y )

1.00 subpartOf(X,Z)∧ subpartOf(Z, Y ) →subpartOf(X,Y )

0.38 agentBelongsToOrganization(X,Z)∧ subpartOf(Z, Y ) →subpartOf(X,Y )

<0.01 agentcollaborateswithagent(X,Y ) →subpartOf(X,Y )

Table 5: Rules derived from three versions of datasets. The red rules indicate unreasonable ones.

the larger reduction of “LogCo w/o Paths" and
“LogCo#2" in TABLE 3 verifies that the effective-
ness is more obvious with the simultaneous action
of paths and contrasts. It might because the more
rules provide more relational semantics for logical
reasoning. We also use Figure 4 to illustrate train-
ing details of LogCo and three ablation models on
three versions of datasets. By comparing the AUC-
PR values with “LogCo w/o path", “LogCo#1" and
“LogCo#2", it is obvious that LogCo learns better
on two datasets after 50 epochs, which representing
the effectiveness of LogCo.

4.4 Weight Analysis

In our model, λ1 and λ2 are critical for adjust-
ing functions of the supervised and self-supervised
learning during training, so we rerun the train-
ing process in different values of λ1 and λ2 ∈
[0.2, 1.2], and record the mean results after 5 tests
on WN18RR_v1 and FB15K-237_v1 in Figure 5.

From the distribution of mean results, we ob-
serves that the inductive performance varies with
different λ1 or λ2 values and better results gather
at the lower right corner of the heat map. Espe-
cially, the best results occurs when λ1 = 1.0 and
λ2 = 1.2 for WN18RR_v1. For FB15K-237_v1,
when λ1 = 0.8 and λ2 = 0.8, LogCo obtains the
best test result. The best results distribute near the
diagonal of the lower right corner, which means the
supervised and self-supervised learning are equally
important for inductive reasoning. From the pre-
vious analysis, we choose λ1 and λ2 in [0.8, 1.2]
for better performance. More weight analysis is in
Appendix C.3.

Figure 5: Effectiveness evaluation by Hits@10 (%) of
parameters λ1 and λ2 over two datasets.

4.5 Case Studies

As stated in Section 3, a crucial advantage of
LogCo is to represent first-order rules for logical
reasoning explicitly. Table 5 shows examples of
derived rules by LogCo on three datasets. The
value in front of each rule is the confidence value
in the corresponding subgraph. Rules in the same
block are with the same head, which is general-
ized from an exact target triple, and the body is
generalized from the reasoning path when predict-
ing. The rules in red with the weights β < 0.01
indicate unreasonable rules when inference. They
are less important for logical reasoning when pre-
dicting relations. Overall, LogCo implements the
interpretability by these explicit rules.

5 Related Work

Inductive Learning in KGs can be divided into
two aspects: rule-based and graph-based. Despite
of the works with supplementary information (Xie
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et al., 2016b,a), the statistical rule-based methods
(Galárraga et al., 2013, 2015; Meilicke et al., 2018)
are proposed to solve unseen entities without exter-
nal knowledge. They induce inherent rules from
KGs by enumerating all the candidates and select
rules by preset thresholds. Some other differen-
tiable models are proposed for scalability and less
time. NeuralLP (Yang et al., 2017) and DRUM
(Sadeghian et al., 2019) obtain rules by a neural
controller system, especially the latter captures the
backward and forward information about the order
of atoms in rules. These methods are based on
TensorLog (Cohen, 2016) to represent triples using
matrices, which will cause high space complexity.

To solve the scalability and complexity issues,
some graph-based inductive methods are proposed.
GraIL (Teru et al., 2020) extracts subgraphs from
KGs and implement the inductive capability by
a graph neural network (GNN). CoMPILE (Mai
et al., 2021) strengthens the message interactions
between edges and entities. TACT (Chen et al.,
2021) uses a relational correlation network to sup-
ply topological patterns between relations. RED-
GNN (Zhang and Yao, 2022) proposes a relational
directed graph to capture the KG’s local evidence.

Distinguished from them, LogCo considers both
aspects and utilizes the graph structure, and cap-
tures the entity-independent relational semantics in
rules for logical reasoning.

Contrastive Learning aims to obtain representa-
tions by encoding similar or different samples to
improve the effectiveness on downstream tasks.
For the representation of text, CPC (van den Oord
et al., 2018) gets context representations by predict-
ing future information using a probabilistic con-
trastive loss. As for the images, MoCo (He et al.,
2020) obtains visual representations by building
large and consistent dictionaries with a momentum
contrastive loss. SimCLR (Chen et al., 2020) de-
clares that the composition of data augmentation,
larger sizes and more training epochs are crucial
for contrastive tasks. In the graph network, the
deep graph infomax (Velickovic et al., 2019) is
proposed to contrast the patch representations and
corresponding high-level summary of graphs.

Contrastive learning is used for text, images and
graphs, etc. For solving the deficient supervision
of rules, we innovatively introduce the contrastive
strategy into the inductive relation prediction.

6 Conclusion

We propose a novel inductive relation prediction
model with logical reasoning using contrastive rep-
resentations in KGs, named LogCo. We aim to
solve two main issues in this task. To acquire
the entity independence semantics from first-order
logic rules, LogCo extracts relational paths in each
subgraph. For the deficient supervision of logic
rules caused by scarcity of relational semantics,
LogCo introduces contrastive representations to ob-
tain self-supervised information. The experiments
on twelve fully-inductive datasets show the effec-
tiveness of LogCo, and comprehensively demon-
strate the impacts for relational paths and contrasts.

7 Limitations

LogCo still needs improving on performance and
scalability. In LogCo, the path extracting method
can be developed to own relational paths with flex-
ible lengths. In addition, LogCo can be applied
into more scenarios. For examples, LogCo solves
the fully-inductive prediction, and it can be ex-
tended to both transductive and inductive learning.
We also intend to implement LogCo on common-
sense knowledge graphs (Speer et al., 2017) whose
entities are free-form texts for high-order logical
reasoning.
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A Model Details

A.1 Training Procedure of LogCo

LogCo can predict missing relations of incomplete
triples in an inductive setting, and also mine first-
order rules for interpretability at the same time.
In Algorithm 1, we demonstrate the process of
predicting relations by LogCo. LogCo uses a KG
as the input and at last outputs the score of target
triple and a set of first-order rules with confidences.

Algorithm 1 Process of learning first-order rules
by LogCo
Input: KG G 〈R,E, T 〉 and target triple eT
Parameter: Max length of relational paths Lmax,
hyper-parameters λ1, λ2, η, etc.
Output: score of eT and First-order logic rules
F .

1: Extract subgraph GT around each triple eT , and
initialize each node i by the double radius ver-
tex labeling scheme.

2: for each training iteration do
3: for each batch of triples in G do
4: P+

h→t,P−h→t ← generate contrastive rela-
tional paths within the length Lmax.

5: Obtain embeddings of entities and rela-
tions in GT .

6: ph→t, βi ← get representation of all the
relational paths in GT and the attention
weight of each path by Eq. (4)(6)(5)(7).

7: Calculate score of eT by Eq. (9).
8: LG,LN ,LC ← calculate associative con-

trast loss, path contrast loss and super-
vised loss by Eq. (11)(12)(13) respec-
tively.

9: L ←weighted summation ofLG,LN and
LC by Eq. (14).

10: Update the parameters by Adam opti-
mizer.

11: end for
12: end for
13: Score of target triples and first-order rules in

F with the structure and confidence.
14: return Set of first-order rules F .

A.2 Notation Table

To clarify the process of LogCo, we use Table 6
to summarize the important symbols and their de-
scriptions.

Symbol Description
eT = (h, rT , t) Target triple to be predicted

G,G′ Train and test KGs for inductive predic-
tion

GT The enclosing subgraph of eT
z(l) Embedding vector of node i at layer l
Lmax Max length of the relational paths

P+
h→t,P−h→t Positive and negative relational paths

from h to t
p+
h→t,p

−
h→t Positive and negative paths’ representa-

tions of GT
pk, βk Representation of path k and its atten-

tion weight
ph→t Overall path representation in GT
sh→t Structure representation of GT

Table 6: Important symbols and their descriptions.

B Experimental Details

B.1 Datasets

The inductive link prediction datasets are derived
from three benchmarks, and have been generated
into four versions respectively (Teru et al., 2020).
The statistics of benchmark datasets are illustrated
in Table 7. In each dataset, there is no intersection
between entities in the train set and test set for the
fully-inductive setting. In particular, each version
of a dataset consists of a pair of KGs, train-graph
and ind-test-graph, whose entities are totally dif-
ferent. Meanwhile, train-graph contains all the
relations in ind-test-graph. Each train-graph has a
corresponding valid KG during training.

B.2 State-of-the-Art Baselines

The baselines for comparison are previous methods
for transductive and inductive relation prediction in
KGs. The inductive methods are divided into two
categories: rule-based and graph-based.

• TransE (Bordes et al., 2013) is the clas-
sical transductive reasoning method and
CompGCN (Vashishth et al., 2020) is the re-
cent and well-known state-of-the-art method.
We choose the two methods to illustrate the
effectiveness of transductive methods for in-
ductive reasoning.

• RuleN (Meilicke et al., 2018) is the statistical
rule-based inductive method which obtains
rules for inductive relation prediction. Neural-
LP (Yang et al., 2017) and DRUM (Sadeghian
et al., 2019) are differentiable rule-based meth-
ods, and they generate explicit rules during the
reasoning process.
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WN18RR FB15K-237 NELL-995
#R #E #Tr #R #E #Tr #R #E #Tr

v1 9 2,746 6,678 183 2,000 5,226 14 10,915 5,540
v1-ind 9 922 1,991 146 1,500 2,404 14 225 1,034
v2 10 6,954 18,968 203 3,000 12,085 88 2,564 10,109
v2-ind 10 2,923 4,863 176 2,000 5,092 79 4,937 5,521
v3 11 12,078 32,150 218 4,000 22,394 142 4,647 20,117
v3-ind 11 5,084 7,470 187 3,000 9,137 122 4,921 9,668
v4 9 3,861 9,842 222 5,000 33,916 77 2,092 9,289
v4-ind 9 7,208 15,157 204 3,500 14,554 61 3,294 9,520

Table 7: Statistics of Datasets.

• Graph-based inductive methods GraIL (Teru
et al., 2020), CoMPILE (Mai et al., 2021),
TACT (Chen et al., 2021) and RED-GNN
(Zhang and Yao, 2022) utilize the topological
structure of subgraphs. However, they imple-
ment the prediction without interpretability by
explicit rules. As a note, to reduce the influ-
ence of experimental environment and imple-
ment the comparison of complexity, we repro-
duce state-of-the-art methods CoMPILE and
TACT with settings by original codes. Other
results of baselines are from (Teru et al., 2020)
and (Zhang and Yao, 2022).

B.3 Detailed Experimental Settings
We implement the experiments on one NVIDIA’s
Tesla V100 graphic card. During experiments, dif-
ferent parameters might influence the performance
of LogCo on different datasets, so the parameters
are tuned separately for each dataset. We conduct
experiments in the following search space of pa-
rameters:

• Learning rate: {0.0005, 0.001, 0.005, 0.01}

• The number of subgraph hops: {2, 3, 4}

• The number of negative samples: {1, 2}

• Maximum length of relational pathsLmax: {2,
3, 4}

• Margin hyper-parameter η: {8, 10, 16}

C Supplementary Results

C.1 Results of Multiple Negatives
LogCo uses contrastive representations in logical
reasoning. It is reasonable to generate more neg-
atives for better results, but it is limited by the

Figure 6: Analysis of the GCN layer number by AUC-
PR on WN18RR_v1.

space and time resource. We solve this problem
by randomly constructing one negative during it-
erations. The contrastive losses are calculated by
various negative samples. It can implement the di-
versity of negatives and avoid false negatives with
too many negative samples. For clear illustration,
Table 8 shows the results with one (Neg = 1) and
multiple negatives (Neg = 2). It is indicated that
multiple negatives can slightly increase the predic-
tion results but cost more time. For example, the
AUC-PR by LogCo on WN18RR_v1 is 99.43%
with 23.66s per epoch, and 99.79% with 2 nega-
tives, but costing 42.19s per epoch.

C.2 Analysis of Number of Layers

Figure 6 shows the result curves of different GCN
layer numbers L during training. The optimal layer
number is in {1, 2, 3, 4}. It is indicated that test
and valid results are best when the layer number
is 3. Thus we set the layer number of LogCo as 3
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Dataset
Neg = 1 Neg = 2

AUC-PR Time AUC-PR Time

WN18RR

v1 99.43 23.66s 99.79 42.19s
v2 99.45 104.60s 99.48 118.04s
v3 93.99 215.40s 91.79 232.62s
v4 98.75 64.81s 98.82 79.51s

Table 8: Prediction results (%) and consumed time per epoch (s) for one and multiple negatives. The results of
time for one epoch are recorded with the same environment and settings.

Figure 7: Effectiveness evaluation by AUC-PR and Hits@10 of parameters λ1 and λ2 over two datasets.

during experiments.

C.3 Hyper-parameter Sensitivity Analysis
In addition to the effectiveness evaluation by
Hits@10 in Section 4, Figure 7 shows the distri-
butions of results by two metrics AUC-PR and
Hits@10 on WN18RR_v1 and FB15K-237_v1.
From the distribution of mean results, we get sev-
eral observations. Firstly, for WN18RR_v1, better
results gather at the lower right corner of the heat
map, especially when λ1 = 1.0 and λ2 = 1.2.
Secondly, for FB15K-237_v1, apparently the best
results distribute near the diagonal, which means
the supervised and self-supervised learning are
equally important for inductive reasoning. When
λ1 = 0.8 and λ2 = 0.8, LogCo obtains the best
test result. In addition, Fig. 5 also shows the distri-
butions of results by the ranking metric Hits@10
on WN18RR_v1 and FB15K-237_v1. From the
heat maps, we find that the results of AUC-PR
and Hits@10 are in similar distributions. For
WN18RR_v1, the best results gather at the lower
right corner of Figure 7, and obtain the best re-
sult when λ1 = 1.0 and λ2 = 1.2. For FB15K-
237_v1, despite slight differences, the best results
distribute near the diagonal as well, especially
when λ1 = 0.8, λ2 = 0.8 and λ1 = 1.0, λ2 = 1.2.
The distributions are distinct on different datasets.
It might be related to the number of paths in a

subgraph, for the average paths in an enclosing sub-
graph of WN18RR are less than those of FB15K-
237 and NELL-995 in TABLE 1. From the previ-
ous analysis, we choose λ1 and λ2 in [0.8, 1.2] for
WN18RR and FB15K-237 and NELL-995.
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