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Abstract
Pre-trained Language Models (PLMs) have
shown effectiveness in various Natural Lan-
guage Processing (NLP) tasks. Denoising au-
toencoder is one of the most successful pre-
training frameworks, learning to recompose
the original text given a noise-corrupted one.
The existing studies mainly focus on injecting
noises into the input. This paper introduces
a simple yet effective pre-training paradigm,
equipped with a knowledge-enhanced decoder
that predicts the next entity token with noises
in the prefix, explicitly strengthening the rep-
resentation learning of entities that span over
multiple input tokens. Specifically, when pre-
dicting the next token within an entity, we feed
masks into the prefix in place of some of the
previous ground-truth tokens that constitute the
entity. Our model achieves new state-of-the-art
results on two knowledge-driven data-to-text
generation tasks with up to 2% BLEU gains.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019), MASS (Song et al.,
2019), BART (Lewis et al., 2020), and T5 (Raffel
et al., 2020), have had remarkable performances in
various Natural Language Processing (NLP) tasks
thanks to the use of denoising autoencoder pre-
training schema that is optimized to reconstruct the
original text given a noise-corrupted one. Despite
its common usage, to the best of our knowledge,
existing work mainly focuses on injecting noises
into the encoding sequence, while the feasibility
of injecting noises into the decoding sequence for
PLMs remains an open question. This is the pri-
mary interest of this work.

On the other hand, recent researches (Zhang
et al., 2019; Peters et al., 2019; Xiong et al., 2020;
Wang et al., 2019, 2020; Ke et al., 2020; Tian et al.,
2020; Xu et al., 2021) demonstrate that enhanc-
ing PLMs with real-world knowledge is crucial

∗Equal contribution.

for knowledge-driven downstream tasks, includ-
ing entity typing, relation classification, sentiment
analysis, and entity-related question answering.
However, the pre-training objectives for the above-
mentioned studies are usually designed for Natu-
ral Language Understanding (NLU) tasks. In this
work, we focus on knowledge-oriented sequence-
to-sequence (Seq2Seq) pre-training objectives for
PLMs, so that they can be applied to Natural Lan-
guage Generation (NLG) tasks, such as the data-to-
text task.

Given a noise-corrupted sentence, such as “Tom
Cruise was born in [MASK] [MASK] [MASK] in
the year 1962”, the standard Seq2Seq pre-training
would predict the masked text fragment (i.e., “New
York City”) token by token, while our proposed pre-
training would generate the correct output by learn-
ing facts regarding the concerned entity. We argue
that given merely “Tom Cruise was born in”, if a
PLM can immediately predict the masked fragment
to be “New York City”, it suggests that the PLM has
learned the fact (“Tom Cruise”, “born in”, “New
York City”). In contrast, if the PLM could only pre-
dict “York” after being provided with the entity’s
partial ground-truth token “New”, which is what
most existing PLMs are capable of, although it in-
deed correctly predicts the masked tokens, it does
not truly learn the fact or the entity of Tom Cruise’s
birthplace. Thus, we propose PRefIx-masked
decoding for kNowledge enhanCEd sequence-to-
sequence pre-training (PRINCE), which decodes
entity tokens with noisy prefixes rather than ground-
truth tokens. For example, when predicting “York”,
a mask symbol is fed into the decoder as the prefix,
in place of “New”.

Different from the work of Chen et al. (2020)
that generates knowledge-enriched text based on
a knowledge subgraph from WikiData, PRINCE
can directly incorporate entity knowledge into
PLMs based on the raw text with extracted en-
tities, alleviating error propagations throughout
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Figure 1: A pre-training framework comparison of MASS and our proposed PRINCE. The major difference is that
PRINCE predicts entity tokens without feeding the previous ground-truth entity token into the decoder.

the additional data processing, such as entity
alignment and knowledge triple retrieval. Af-
ter pre-training PRINCE, we evaluate it on two
data-to-text datasets that require entity knowledge:
WebNLG (Shimorina and Gardent, 2018) and Wik-
iBio (Liu et al., 2018). On both datasets, our model
achieves new state-of-the-art results.

Our main contributions are as follows:

• We present PRINCE that predicts entity to-
kens with masked prefixes, aiming to improve
the representation learning of entities that
span over multiple tokens.

• PRINCE exhibits new state-of-the-art perfor-
mances on two data-to-text tasks.

2 Background

We first introduce the existing denoising au-
toencoder schema for the Seq2Seq pre-training.
Given a sentence with a masked text fragment,
MASS (Song et al., 2019) proposes a masked
Seq2seq pre-training objective that is optimized
to predict the masked tokens auto-regressively. Re-
cent work, such as BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020), has exhibited gains by ap-
plying a wide range of approaches to inject noises
into the input, such as sentence permutation, docu-
ment rotation, and text infilling. In this work, we
adopt the framework of MASS. PRINCE is simple
and flexible that we anticipate it would be able to
integrate to other denoising autoencoder schemas
with more sophisticated noising approaches.

Next, we will describe the basic framework
of the masked Seq2seq pre-training. Given a

sentence x = {x1, x2, · · · , xs}, xpredict =
{xp, xp+1, · · · , xq} is a text span from x where
1 ≤ p < q ≤ s. xmask is a sequence in which the
tokens ranging from xp to xq are replaced by the
mask symbol M. The masked Seq2seq pre-training
model maximizes the conditional probability of
xpredict: P (xpredict|xmask).

The loss function Lt for each time t is the nega-
tive log likelihood of the token xt ∈ xpredict:

Lt = −log P (xt|{xp, · · · , xt−1},xmask) (1)

3 Our Model

PRINCE is built upon the masked Seq2seq pre-
training. The difference is that PRINCE pre-
dicts entity tokens with noises, in place of the
previous ground-truth entity token, as the decod-
ing prefix. The framework of PRINCE is shown
in Figure 1. Formally, for a fragment of entity
xentity = {xm, xm+1, · · · , xn} ∈ xpredict where
p ≤ m < n ≤ q, PRINCE predicts xt ∈ xentity

(m < t ≤ n) by replacing the previous ground-
truth entity tokens {xm, · · · , xt−1} with M. The
loss is:

Lt = −log P (xt|{xp, · · · , xm−1,M∗},xmask)
(2)

where we denote the replaced sequence of entity
tokens as M∗ for simplicity.

For the example shown in Figure 1, the masked
entity fragment is {New,York,City}. When pre-
dicting “York”, for MASS, the previous ground-
truth sequence “New” is fed into the decoder. While
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for PRINCE, “New” is replaced by M. In this way,
each token in the entity fragment is generated with-
out any indication from other entity tokens.

4 Experiments

4.1 Model Architecture

PRINCE applies the sequence-to-sequence Trans-
former architecture (Vaswani et al., 2017a), consist-
ing of a 12-layer encoder and a 12-layer decoder.
The size of hidden vectors is set to 1024. We adopt
GELU activation (Hendrycks and Gimpel, 2016).
We use Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 3e-5, β1 = 0.9, β2= 0.98,
weight decay of 0.01. The dropout probability is
0.1. The maximum sequence length is set to 512.
Pre-training takes 5 days with 8 Telsa V100 GPUs.
We use the beam search with a beam size of 4 for
the inference. Other hyper-parameters can be found
in our code.

4.2 Pre-training Dataset

We use English Wikipedia as the source of our pre-
training data, which is aligned to Wikidata. Entity
tokens can be extracted through the alignment1.
We set the max length of the sentence to 256 and
abandon sentences containing less than three enti-
ties. To obviate data leakage during pre-training,
we discard the pre-training data overlapped with
the samples in downstream datasets. In the end, we
obtain 14GB of pre-training data.

4.3 Pre-training Details

PRINCE prioritizes masked fragments covering en-
tity tokens, and the number of the masked tokens
is set to 30% of the length of the input sentence.
When injecting noises into the decoder, following
Devlin et al. (2019), the noise will be a mask sym-
bol 80% of the time, a random token 10% of the
time, and an unchanged token in the rest of the time.
We adopt the architecture of BART large model.

4.4 Fine-Tuning on Data-to-Text Tasks

WebNLG (2.0) Dataset (Shimorina and Gardent,
2018) This dataset takes RDF triples as input and
outputs a textual description.
WikiBio Dataset (Lebret et al., 2016) This dataset
takes a Wikipedia infoboxes table as input and out-
puts a biography description.

1We use the same data as KGPT (Chen et al., 2020).

4.5 Experimental Results

4.5.1 Results on WebNLG

Models BLEU MTR RG

Existing Methods

Seq2Seq 54.0 37.0 64.0
Seq2Seq + Delex 56.0 39.0 67.0
Seq2Seq + Copy 61.0 42.0 71.0
GCN 60.8 42.76 71.13
KGPT-Graph 63.84 46.10 74.04
KGPT-Seq 64.11 46.30 74.57
MASS 60.34 43.61 69.28
ProphetNet 64.39 46.28 74.53

Our Implementations

Transformer (No PT) 51.40 38.29 59.07
BART (14GB PT) 62.98 45.58 72.53
BART (160GB PT) 64.61 46.78 74.41
PRINCE (14GB PT) 64.35 46.31 74.18
PRINCE (BART + 14GB PT) 66.86 47.48 75.99

Table 1: Results (%) on the WebNLG dataset. MTR and
RG are short for METEOR and ROUGE-L. PT is short
for Pre-Training.

The results on the WebNLG dataset are shown
in Table 1. Shimorina and Gardent (2018) ap-
ply Seq2Seq model with attention (Luong et al.,
2015) as the baseline and address rare words by
delexicalization (Delex) and copying (Copy). The
GCN model (Marcheggiani and Perez-Beltrachini,
2018) adopts a graph convolutional networks
based generator. The KGPT model (Chen
et al., 2020) is a knowledge-grounded pre-training
model with graph (Graph) or sequential (Seq) en-
coders. Our implementations are based on Trans-
former (Vaswani et al., 2017b). We first evaluate
the BART (Lewis et al., 2020) pre-trained with En-
glish Wikipedia (14GB) and pre-trained with data
used in BART (160GB), respectively, For our pro-
posed pre-training method, we pre-train PRINCE
from scratch and warm-start PRINCE with BART
(pre-trained with 160GB data).

As we can see, pre-training PRINCE from
scratch with 14GB data already achieves compa-
rable performance with BART pre-trained with
160G data. Pre-training PRINCE based on the
BART initialization leads to the best performance,
which significantly improves the results over the
original BART model (+ 2.25%/0.70%/1.58% for
BLEU/METEOR/ROUGE-L scores, paired t-test,
p-value<0.01).
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4.5.2 Results on WikiBio
The results on the WikiBio dataset are shown in
Table 2. Table NLM (Lebret et al., 2016) is a
table-conditioned neural language model. Order-
Planning (Sha et al., 2018) is an order-planning
text generation model. Field-Gating (Liu et al.,
2018) is a structure-aware seq2seq model with
the field-gating encoder. KBAtt (Chen et al.,
2019) enhances data-to-text model with external
background knowledge. Hierarchical+Auxiliary
Loss (Liu et al., 2019) is a data-to-text model
trained with multiple auxiliary objectives.

Models BLEU

Existing Methods

Table NLM 34.70
Order-Planning 43.19
Field-Gating 44.71
KBAtt 44.59
Hierarchical + Auxiliary Loss 45.01
KGPT-Graph 45.10
KGPT-Seq 45.06
MASS 44.18
ProphetNet 47.54

Our Implementations

Transformer (No PT) 42.46
BART (14GB PT) 45.76
BART (160GB PT) 47.80
PRINCE (w/o BART, 14GB PT) 47.38
PRINCE (BART + 14GB PT) 49.03

Table 2: Results (%) on the WikiBio dataset.

First, we can find that the models with pre-
training outperform the models without pre-
training, while the improvement is smaller than
that on the WebNLG dataset, which can be as-
cribed to the larger size of the WikiBio dataset.
Second, similar to the results on the WebNLG
dataset, pre-training PRINCE with the BART ini-
tialization brings significant improvements com-
pared to other models (+ 1.23% for BLEU score
over BART, paired t-test, p-value<0.01).

4.6 Further Analysis

4.6.1 Can PRINCE Generate Entities Better?
PRINCE aims to enhance the representation learn-
ing of entities that span over multiple tokens. Look-
ing into the WebNLG datasets, we observe that
97.61% entities are composed of multiple tokens af-
ter BPE (Sennrich et al., 2016) preprocessing. Can
PRINCE generate these entities better? To answer
this question, we perform manual evaluations with
100 examples from the test set of WebNLG. Three

annotators are involved in deciding whether the
generated entities are faithful and readable. The re-
sults are shown in Table 3, where faithfulness refers
to that the generated text accurately expresses the
true meaning of the input, and readability refers to
that the generated text is easy to understand. The
results depict that PRINCE outperforms other mod-
els .

Models Qualified%

Transformer 87.0
BART 94.0
PRINCE (BART + 14GB PT.) 99.0

Table 3: Entity-oriented manual evaluation.

4.6.2 Benefit of Entity-oriented Noises
We evaluate PRINCE (BART initialized) with dis-
tinct noising strategies, including injecting noises
for entities (our main model), injecting noises for
common tokens2, and no noising. The results in Ta-
ble 4 demonstrate the superiority of entity-oriented
noising against other strategies.

Models WebNLG WikiBio

BART 64.61 47.80
PRINCE (Entity noising) 66.86 49.03
PRINCE (Common token noising) 65.21 47.64
PRINCE (No noising) 65.84 47.96

Table 4: BLEU scores for different noising methods.

4.6.3 Case Study
Table 5 illustrates an example from the WebNLG
dataset. PRINCE with common token noising strat-
egy generates a text with wrong team name of “los
angeles” and missing information of “draft round
2”. By contrast, PRINCE with entity token noising
successfully expresses exactly the same meaning
as the references.

5 Discussions

5.1 Motivation of PRINCE
Denoising autoencoder pre-training can train the
model to learn language representations by trans-
ferring a noise-corrupted input back to the orig-
inal state. Injecting noises into the decoding se-
quence makes this process more challenging and
strengthens the robustness of the decoder. More-
over, knowledge-oriented noises force the model to

2For a fair comparison, we randomly inject noises for 25%
common tokens.
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Input Triplets
LOS_ANGELES_RAMS FORMERTEAM AKEEM_AYERS
2 DRAFTROUND AKEEM_AYERS
39 DRAFTPICK AKEEM_AYERS
References
(1) Former Los Angeles Rams team member, Akeem
Ayers, was number 39 in the draft pick, in draft round 2.
(2) Akeem Ayers, whose former team was the Los Ange-
les Rams, was in draft round 2 and his draft pick number
was 39.
Result of Transformer (without pre-training)
in draft round 2, akeem ayers was the draft pick and his
draft pick is 39.
Result of PRINCE (Common token noising)
akeem ayers was number 39 in the draft pick and used
to play for the los angeles.
Result of PRINCE (Entity noising)
akeem ayers, who used to play for the los angeles rams,
was number 39 in the draft pick, in draft round 2.

Table 5: Case study.

predict the knowledge with noisy context. Specif-
ically, the noises are injected when the decoder
predicts the entity tokens, and the previously gen-
erated partial entity tokens are unseen for the latter.
In that case, the decoder needs to predict the com-
plete entity tokens without of any clues from the
entity itself, which can motivate the model to learn
better to predict the entity relying solely on the
context. In this way, we argue that our model can
enhance the representation learning of knowledge
and the ability of knowledge reasoning.

5.2 Type of Knowledge to be Injected Noises

While in this work, we regard entities stored in
Wikidata as the knowledge to be masked, PRINCE
is actually not designed for any specific type of
knowledge. Other knowledge, such as lexical re-
lation (Lauscher et al., 2019; Wang et al., 2020),
sentiment words (Ke et al., 2020; Tian et al., 2020),
keywords (Li et al., 2020b; Xu et al., 2020), entail-
ment (Eichler et al., 2017; Li et al., 2018), and do-
main attribute schema (Li et al., 2020a; Zhu et al.,
2020), would be compatible with our model as
well.

5.3 Comparison with ProphetNet

The motivation of ProphetNet (Qi et al., 2020)
partially resembles that of PRINCE. ProphetNet
predicts future n-gram based on an n-stream self-
attention mechanism that contains a main stream
and n predicting stream. Only the main stream
is maintained for fine-tuning on the downstream
tasks. In contrast, the PRINCE decoder is con-
sistent throughout, bridging the gap between pre-

training and fine-tuning. Besides, ProphetNet pre-
dicts a fixed n-step ahead, while PRINCE is more
flexible designed for knowledge fragments with
variable lengths.

6 Conclusion and Future Work

We propose PRINCE, a Seq2Seq pre-training
model equipped with a knowledge-enhanced de-
coder that predicts entity tokens with masked pre-
fixes. PRINCE achieves new state-of-the-art results
on two data-to-text datasets. In the future, we will
adopt PRINCE to other pre-training schemas and
more knowledge-driven tasks. Our code is publicly
available3.

Limitations

A limitation of our work is that it is designed for
entity-oriented text generation tasks (i.e., data-to-
text tasks), where the text is generated from struc-
tural data, such as RDF triples and infoboxes table.
Based on the observation of our work, we can con-
clude that the performance of pre-training models
can be improved for data-to-text tasks, while the
improvements for other general text-to-text tasks
are sometimes not significant. Thus, it asks for fur-
ther explorations on whether universal pre-training
with denoising common token noises is helpful for
general text-to-text tasks.

Second, we consider entities as the knowledge in
our work, and the pre-training aims to learn better
representations for the entities. We argue that a
broader definition of the knowledge may lead to a
much wider set of application scenarios.

In addition, various types of noises injected into
the input text have been proved effective (Lewis
et al., 2020; Raffel et al., 2020), while we only
test with noises in a simple form. We believe that
more complex noises are potentially extended to
the decoder.
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