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Abstract

Systems for knowledge-intensive tasks such
as open-domain question answering (QA) usu-
ally consist of two stages: efficient retrieval
of relevant documents from a large corpus
and detailed reading of the selected documents
to generate answers. Retrievers and readers
are usually modeled separately, which neces-
sitates a cumbersome implementation and is
hard to train and adapt in an end-to-end fash-
ion. In this paper, we revisit this design and
eschew the separate architecture and training
in favor of a single Transformer that performs
Retrieval as Attention (ReAtt), and end-to-end
training solely based on supervision from the
end QA task. We demonstrate for the first
time that a single model trained end-to-end
can achieve both competitive retrieval and QA
performance, matching or slightly outperform-
ing state-of-the-art separately trained retriev-
ers and readers. Moreover, end-to-end adap-
tation significantly boosts its performance on
out-of-domain datasets in both supervised and
unsupervised settings, making our model a
simple and adaptable solution for knowledge-
intensive tasks. Code and models are available
at https://github.com/jzbjyb/ReAtt.

1 Introduction

Knowledge-intensive tasks such as question an-
swering (QA), fact checking, and dialogue gener-
ation require models to gather relevant informa-
tion from potentially enormous knowledge corpora
(e.g., Wikipedia) and generate answers based on
gathered evidence. A widely used solution is to first
retrieve a small number of relevant documents from
the corpus with a bi-encoder architecture which en-
codes queries and documents independently for
efficiency purposes, then read the retrieved docu-
ments in a more careful and expansive way with a
cross-encoder architecture which encodes queries
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and documents jointly (Lee et al., 2019; Guu et al.,
2020; Lewis et al., 2020; Izacard et al., 2022). The
distinction between retrieval and reading leads to
the widely adopted paradigm of treating retrievers
and readers separately. Retrievers and readers are
usually two separate models with heterogeneous
architectures and different training recipes, which
is cumbersome to train. Even though two models
can be combined in an ad-hoc way for downstream
tasks, it hinders effective end-to-end learning and
adaptation to new domains.

There have been several attempts to connect
up reader and retriever training (Lee et al., 2019;
Guu et al., 2020; Lewis et al., 2020; Sachan et al.,
2021; Lee et al., 2021a; Izacard et al., 2022). How-
ever, retrievers in these works are not learned in a
fully end-to-end way. They require either initial-
ization from existing supervisedly trained dense
retrievers (Lewis et al., 2020), or expensive un-
supervised retrieval pretraining as warm-up (Lee
et al., 2019; Guu et al., 2020; Sachan et al., 2021;
Lee et al., 2021a; Izacard et al., 2022). The re-
liance on retrieval-specific warm-up and the ad-hoc
combination of retrievers and readers makes them
less of a unified solution and potentially hinders
their domain adaptation ability. With the ultimate
goal of facilitating downstream tasks, retriever and
reader should instead be fused more organically
and learned in a fully end-to-end way.

In this paper, we focus on one of the most im-
portant knowledge-intensive tasks, open-domain
QA. We ask the following question: is it possi-
ble to perform both retrieval and reading within
a single Transformer model, and train the model
in a fully end-to-end fashion to achieve compet-
itive performance from both perspectives? Such
a single-model end-to-end solution eliminates the
need for retrieval-specific annotation and warm-up
and simplifies retrieval-augmented training, mak-
ing adaptation to new domains easier. Based on the
analogy between self-attention which relates dif-
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ferent tokens in a single sequence (Vaswani et al.,
2017) and the goal of retrieval which is to relate
queries with relevant documents, we hypothesize
that self-attention could be a natural fit for retrieval,
and it allows an organic fusion of retriever and
reader within a single Transformer.

Specifically, we start from a encode-decoder T5
(Raffel et al., 2020) and use it as both retriever
and reader. We use the first B encoder layers as
bi-encoder to encode queries and documents inde-
pendently, and the attention score at layer B + 1
(denoted as retrieval attention) to compute rele-
vance scores, as shown in Fig. 1. We found that
directly using self-attention for retrieval underper-
forms strong retrievers, which we conjecture is
because self-attention pretrained on local context
is not sufficient to identify relevant information in
the large representation space of the whole cor-
pus. To solve this, we propose to compute re-
trieval attention between a query and a large num-
ber of documents and adjust the retrieval attention
across documents. For each query, we compute
retrieval attention over both close documents that
potentially contain positive and hard negative docu-
ments, and documents of other queries in the same
batch as random negatives. The retrieval attention
is adjusted by minimizing its discrepancy from the
cross-attention between the decoder and encoder
(denoted as target attention), which is indicative
of the usefulness of each document in generating
answers (Izacard and Grave, 2021a). The resulting
Retrieval as Attention model (ReAtt) is a single
T5 trained based on only QA annotations and si-
multaneously learns to promote useful documents
through cross-document adjustment.

We train ReAtt on Natural Questions dataset
(NQ) (Kwiatkowski et al., 2019) in a fully end-to-
end manner. It achieves both competitive retrieval
and QA performance, matching or slightly out-
performing state-of-the-art retriever ColBERT-NQ
(Khattab et al., 2020) trained with explicit retrieval
annotations and strong QA model FiD (Izacard and
Grave, 2021b,a), demonstrating for the first time
end-to-end training can produce competitive re-
triever and reader within a single model. To further
test ReAtt’s generalization and end-to-end adapta-
tion ability, we conduct zero-shot, supervised, and
unsupervised adaptation experiments on 7 datasets
from the BEIR benchmark (Thakur et al., 2021).
In all settings, end-to-end adaptation improves the
retrieval performance usually by a large margin,
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Figure 1: Illustration of Retrieval as Attention (ReAtt)
with the first B=2 encoder layers as bi-encoder (i.e.,
retriever) and the rest L-B=2 layers as cross-encoder.
During training, the retrieval attention between a query
q1 and documents d11,12,13 is adjusted by minimizing
its discrepancy from the target attention. For simplicity,
we use a single arrow to represent attention of a single
head between multiple tokens.

achieving comparable or superior performance to
strong retrieval adaptation and pretraining methods.

2 Retrieval as Attention (ReAtt)

With the goal of developing a single Transformer
that can perform both retrieval and reading, and
the analogy between retrieval and self-attention,
we first introduce architecture changes to allow
retrieval as attention (§ 2.2), then examine how
well attention as-is can be directly used to perform
retrieval (§ 2.3).

2.1 Formal Definition
We first briefly define the task of retrieval and
question answering. As mentioned in the intro-
duction, queries and documents need to be repre-
sented independently for efficient retrieval which
implies a bi-encoder architecture that has no inter-
action between queries and documents. Without
loss of generality, we use Ed = biencoder(d) to
denote one or multiple representations generated
by a bi-encoder based on a document from a cor-
pus d ∈ D, and likewise Eq = biencoder(q) to
denote query representations.1 The top-k docu-
ments most relevant to a query are retrieved by
Dret

q = arg topkd∈Dr(Eq, Ed), where function r

1Queries and documents can use different bi-encoders but
we use one notation for simplicity.
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computes relevance based on query and document
representations which can be as simple as a dot
product if queries and documents are encoded into
a single vector, and Dret

q stands for the returned
documents. We consider encoder-decoder-based
generative question answering in this paper, which
jointly represents queries and retrieved documents
with the encoder Eq,d = crossencoder(q,d), and
generates the answer a autoregressively with the
decoder P gen(a|q,d) = P gen(a|Eq,d). To han-
dle multiple retrieved documents, we follow the
fusion-in-decoder model (FiD) (Izacard and Grave,
2021b) which encodes each query-document pair
independently and fuse these representations in de-
coder through cross-attention P gen(a|q,Dret

q ) =
P gen(a|Eq,d1 , ..., Eq,d|Dret

q |). Negative log like-
lihood (NLL) is used in optimization LQA =
− logP gen(a|q,Dret

q ).

2.2 Leveraging Attention for Retrieval
Next, we introduce our method that directly uses
self-attention between queries and documents as
retrieval scores.

Putting the Retriever into Transformers As
illustrated in Fig. 1, we choose T5 (Raffel et al.,
2020) as our base model, use the first B layers
of the encoder as the bi-encoder “retriever” by
disabling self-attention between queries and docu-
ments, and the remaining L−B layers as the cross-
encoder “reader”. We use the self-attention paid
from query tokens to document tokens at the B+1-
th layer as the retrieval score, which is denoted as
retrieval attention (green arrows in Fig. 1). It is
computed based on the independent query and doc-
ument contextual representations from the last (B-
th) layer of the bi-encoder (green blocks in Fig. 1).
Formally for an H-head Transformer, document
and query representations are:

Ed = {KB+1,h
d ∈ R|d|×e}Hh=1,

Eq = {QB+1,h
q ∈ R|q|×e}Hh=1,

where K and Q are key and query vectors of the to-
ken sequence used in self-attention, |d| and |q| are
document and query length, and e is the dimension-
ality of each head. The retrieval attention matrix
from query tokens to document before softmax for
one head is computed by:

AB+1,h
q,d = QB+1,h

q ×KB+1,h
d

T ∈ R|q|×|d|.

Directly using attention for retrieval can not only
leverage its ability to identify relatedness, it is also

a natural and simple way to achieve both retrieval
and reading in a single Transformer with minimal
architectural changes, which facilitates our final
goal of end-to-end learning.

From Token Attention to Document Relevance
Given the token-level attention scores AB+1,h

q,d , the
relevance between q and d is computed by avg-max
aggregation: choosing the most relevant document
token for each query token (i.e., max) then averag-
ing across query tokens:

rh(q,d) = avg0
(
max1(A

B+1,h
q,d )

)
, (1)

where 1 and 0 refer to the dimension over which the
operation is applied. This is similar to the MaxSim
and sum operators used in ColBERT (Khattab and
Zaharia, 2020), with the intuition that a relevant
document should match as many query tokens as
possible with the best-matching token. The final
relevance is a weighted sum over all heads:

r(q,d) =
H∑

h=1

P head
h · rh(q,d),

where Ph is a learnable weight that sums to one.
As explained in the next section, we empirically
find only a few attention heads with non-random re-
trieval performance, and among them one particular
head is significantly better than the others. Given
this observation, we introduce a low temperature
τ to promote this sparsity P head

h = exp(wh/τ)∑
h′ exp(w

′
h/τ)

,
which always ends with a single head with the
great majority of the weight, which is denoted as
retrieval head h∗. As a result, the learned head
weights are practically a head selector, a fact that
can also be exploited to make test-time retrieval
more efficient.

End-to-end Retrieval with Attention To per-
form retrieval over a corpus, we first generate key
vectors KB+1,h∗

d of retrieval head for all document
tokens offline and index them with FAISS library
(Johnson et al., 2021). For each query token, we
issue its vector (QB+1,h∗

q ) to the index to retrieve
top-K ′ document tokens, which yields a filtered set
of documents, each of which has at least one token
retrieved by a query token. We then fetch all tokens
of filtered documents, compute relevance scores
following Eq. 1, and return top-K documents with
the highest scores rh∗(q,d). This is similar to the
two-stage retrieval in ColBERT (Khattab and Za-
haria, 2020), and we reuse their successful practice
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Figure 2: Illustration of approximate attention over the
corpus with |Q|=4 queries in a batch and K=3 close
documents per query. We use q1 as an example to illus-
trate the required computation, where close documents
require both retrieval and target attention while random
documents only require retrieval attention.

in index compression and search approximation to
make test-time retrieval efficient, which we refer to
Santhanam et al. (2021) for details.

2.3 How Good is Attention As-is?

To examine this question, we use T5-large and test
queries from the Natural Question dataset (NQ),
retrieve 100 documents with BM25, compute rel-
evance scores rh(q,d) with half layers (B = 12)
as bi-encoder, and measure its correlation with
the gold binary annotation. We found that among
H = 24 heads, 4 heads have non-trivial correla-
tions of 0.137, 0.097, 0.082, and 0.059. We fur-
ther perform end-to-end retrieval over Wikipedia
using the best head, achieving top-10 retrieval ac-
curacy of 43.5%, inferior to 55.5% of BM25. This
demonstrates that there are indeed heads that can
relate queries with relevant documents, but they
are not competitive. We hypothesize that because
self-attention is usually trained by comparing and
relating tokens in a local context (512/1024 tokens)
it cannot effectively identify relevant tokens in the
enormous representation space of a corpus with
millions of documents. This discrepancy motivates
us to compute retrieval attention between queries
and potentially all documents (i.e., attention over
the corpus), and adjust attention across documents
to promote useful ones.

3 Learning Retrieval as Attention

We first approximate attention over the corpus at
training time by sub-sampling a manageable num-
ber of documents for each query containing both
potentially relevant and random documents (§ 3.1).
Next, we introduce our end-to-end training objec-
tive that optimizes a standard QA loss while also
adding supervision to promote attention over docu-
ments that are useful for the end task (§ 3.2).

3.1 Approximate Attention over the Corpus

Encoding the entire corpus and computing atten-
tion between the query and all documents is very
expensive. To make it practical, we propose to sub-
sample a small set of documents for each query to
approximate the whole corpus. Inspired by nega-
tive sampling methods used in dense retriever train-
ing (Karpukhin et al., 2020; Xiong et al., 2021;
Khattab and Zaharia, 2020), we sub-sample both
(1) documents close to queries that can be either rel-
evant or hard negatives, and (2) random documents
that are most likely to be easy negatives. This al-
lows the model to distinguish between relevant and
hard negative documents, while simultaneously pre-
venting it from losing its ability to distinguish easy
negatives, which form the majority of the corpus.

Iterative Close Document Sub-sampling To
sample documents close to a query Dclose

q , we start
from widely used lexical retriever BM25 (Robert-
son and Zaragoza, 2009) to retrieve K = 100 doc-
uments, as shown by the orange blocks in Fig. 2.
We set K to a relatively large number to better
approximate the local region, inspired by Izacard
and Grave (2021b)’s findings that QA performance
increases as more documents are used.

This fixed set of close documents can become
outdated and no longer close to the query anymore
as the retrieval attention gets better. To provide dy-
namic close sub-samples, we re-index the corpus
and retrieve a new set of K documents using the
current retrieval attention after each iteration. It is
similar in spirit to the hard negative mining meth-
ods used in Karpukhin et al. (2020); Khattab et al.
(2020), with a major difference that we do not man-
ually or heuristically annotate documents but in-
stead learn from the end loss with cross-document
adjustment, which will be explained in § 3.2.

In-batch Random Document Sub-sampling
We use close documents of other queries in the
same batch as the random documents of the current
query Drandom

q = ∪q′∈Q∧q′ ̸=qDclose
q′ where Q con-

tains all queries in a batch, as shown by the green
blocks in Fig. 2, which has the advantage of reusing
document representations across queries. This
is similar to the in-batch negatives used in DPR
(Karpukhin et al., 2020) with a major difference
that we reuse a token representations (KB+1,h

d , 1 ≤
h ≤ H) across queries instead of a single-vector
document representation.
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3.2 Cross-document Adjustment with
Decoder-to-Encoder Attention Distillation

Given the sub-sampled |Q| ×K documents Dq =
Dclose

q ∪ Drandom
q for each query q, we compute the

retrieval attention-based relevance scores r(q,d)
and adjust them across multiple documents d ∈ Dq

only relying on end task supervision. Since re-
trieval is simply a means to achieve the down-
stream task, documents useful for downstream
tasks should be promoted by retrieval. Inspired by
reader-to-retriever distillation (Izacard and Grave,
2021a; Yang and Seo, 2020), we measure docu-
ment usefulness based on cross-attention between
decoder and encoder, and minimize retrieval atten-
tion’s discrepancy from it through distillation. In
contrast to Izacard and Grave (2021a) that learns
two models iteratively and alternatively, we opti-
mize QA and distillation loss in a single model
simultaneously.

Minimizing KL-divergence Between Retrieval
and Target Attention Specifically, we denote
cross-attention before softmax of the first posi-
tion/token of the last decoder layer as target at-
tention Ca,q,Dq ∈ RH×|Dq |×(|d|+|q|) where a is
the answer, |Dq| is the number of sub-sampled
documents to be fused by the decoder (§ 2.1),
and |d| is document length.2 To aggregate token-
level target attention into document-level distribu-
tion P tgt(a, q,Dq) ∈ R|Dq |, we first perform soft-
max over all tokens in all query-document pairs
(|Dq|×(|d|+ |q|)), sum over tokens of each query-
document pair (|d|+ |q|), then average across mul-
tiple heads (H):

P tgt(a, q,Dq) = avg0

(
sum2

(
softmax1,2(Ca,q,Dq )

))
.

Given relevance scores obtained from retrieval at-
tention, the final cross-document adjustment loss is
the KL-divergence between relevance distribution
P ret and target distribution P tgt:

P ret(q,Dq) = softmax
(
r(q,d1), ..., r(q,d|Dq |)

)
.

Lcross-doc = KL
(
P tgt(a, q,Dq)

∣∣∣
∣∣∣P ret(q,Dq)

)
,

(2)

where the overline indicates stop gradient back
propagation to target distributions. Our final loss
combines QA loss and cross-document adjustment
loss with α as combination weight.

L = LQA + α · Lcross-doc. (3)
2We also attempted other variations of target attention and

found performances are similar, consistent with observations
in Izacard and Grave (2021a).

Zero Target Attention for Random Documents
For a batch with |Q| queries, we need to com-
pute retrieval attention and target attention between
|Q| × |Q| ×K query-document pairs. This is both
computation- and memory-intensive when batch
size is large, especially for target attention because
it requires L−B layers of joint encoding of query-
document pairs in the cross-encoder. To alleviate
this, we make a simple and effective assumption
that in-batch random documents are not relevant to
the current query thus having zero target attention:
P tgt(a, q,Drandom

q ) ∈ R|Drandom
q | ← 0. As a result,

we only need to run cross-encoder and decoder
for K close documents of each query, as shown
in Fig. 2. In Appendix A we will introduce our
efficient implementation to make it possible to run
a large batch size over a limited number of GPUs.

3.3 Domain Adaptation Methods
One of the major benefits of a single end-to-end
trainable model is that given a new corpus from
a new domain, possibly without retrieval annota-
tions, we can easily adapt it by end-to-end training.
This section describes how we adapt ReAtt under
different setups.

We consider adapting ReAtt with (1) QA super-
vision, (2) information retrieval (IR) supervision,
or (3) unsupervised adaptation where we only have
access to the document corpus. Although our goal
is to learn retrieval through downstream tasks in-
stead of retrieval supervision, being able to con-
sume retrieval annotations is helpful when retrieval
supervision is indeed available. To do so, we con-
vert retrieval task with annotations in the form of
query-document-relevance triples ⟨q,d, l⟩ into a
generative task: given a query, the target is to gen-
erate its relevant document and the corresponding
relevance with the following format “relevance: l.
d”. If a query has multiple relevant documents,
we follow Izacard and Grave (2021b) to randomly
sample one of them. For unsupervised adaptation,
with simplicity as our primary goal, we randomly
choose one sentence from a document and mask
one entity, which is considered as the “query”, and
have our model generate the masked entity as the
“answer”, similar to salient span masking (SSM)
used in Guu et al. (2020).

4 In-domain Experiments

In this section, we examine if supervisedly training
ReAtt end-to-end with only QA supervision yields
both competitive retrieval and QA performance.
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Datasets, Baselines, and Metrics We train our
model using the Natural Questions dataset (NQ).
We compare retrieval performance with lexical
models BM25 (Robertson and Zaragoza, 2009),
passage-level dense retrievers DPR, ANCE, coCon-
denser, FiD-KD, YONO (with and without retrieval
pretraining) (Karpukhin et al., 2020; Oguz et al.,
2021; Xiong et al., 2021; Gao and Callan, 2022;
Izacard and Grave, 2021a; Lee et al., 2021a), and
token/phrase-level dense retrievers DensePhrase,
ColBERT, ColBERT-NQ (Lee et al., 2021b; Khat-
tab and Zaharia, 2020; Khattab et al., 2020).3

Among them ColBERT-NQ, FiD-KD and YONO
are the most fair-to-compare baselines because
of either similar token-level retrieval granularity
(ColBERT-NQ) or similar end-to-end training set-
tings (FiD-KD and YONO). We report top-k re-
trieval accuracy (R@k), the fraction of queries
with at least one retrieved document containing an-
swers. We compare QA performance with ORQA,
REALM, RAG, FiD, EMDR2, YONO, UnitedQA,
and R2-D2 (Lee et al., 2019; Guu et al., 2020;
Lewis et al., 2020; Izacard and Grave, 2021b,a;
Sachan et al., 2021; Lee et al., 2021a; Cheng et al.,
2021; Fajcik et al., 2021) using exact match (EM),
among which FiD, EMDR2, and YONO are the
most fair-to-compare baselines because they have
similar model sizes and training settings.

5 Implementation Details of ReAtt

ReAtt is based on T5-large with B = 12 encoder
layers as bi-encoder and temperatures τ = 0.001 to
select the best retrieval head. We retrieve K = 100
close documents for each query, and use a batch
size of |Q| = 64 queries to obtain in-batch ran-
dom documents. We use α = 8 to combine cross-
document adjustment loss with QA loss. We use
AdamW with a learning rate of 5e-5, 10% steps of
warmup, and linear decay. We first warmup cross-
attention’s ability to distinguish documents by only
using the QA loss for 3K steps, then train with
the combined losses (Eq. 3) for 4 iterations, where
the first iteration uses close documents returned
by BM25, and the following 3 iterations use close
documents returned by the previous ReAtt model
(denoted as ReAtt BM25). Each iteration has 8K
update steps and takes ∼ 1.5 days on a single node
with 8 × A100 GPUs with 80GB memory. Since
DPR (Karpukhin et al., 2020) achieves stronger
performance than BM25, training with close doc-

3ColBERT is trained on MS MARCO, ColBERT-NQ is on NQ.

Models R@1 R@5 R@20 R@100 #Params.

supervised retrievers
BM25 23.9 45.9 63.8 78.9 -
DPR 45.9 68.1 80.0 85.9 220M
DPRnew 52.5 72.2 81.3 87.3 220M
DPR-PAQ - 74.2 84.0 89.2 220M
ANCE - - 81.9 87.5 220M
coCondenser - 75.8 84.3 89.0 220M
DensePhrase 51.1 69.9 78.7 - 330M
ColBERT - - 79.1 - 110M
ColBERT-NQ 54.3 75.7 85.6 90.0 110M

semi/unsupervised retrievers
FiD-KD 49.4 73.8 84.3 89.3 220M
YONOw/o PT - - 72.3 82.2 165M
YONOw/ PT - 75.3 85.2 90.2 165M
ReAtt DPR 54.6 77.2 86.1 90.7 165M
ReAtt BM25 55.8 77.4 86.0 90.4 165M

Table 1: Retrieval performance on NQ. PT is retrieval
pretraining. Fair-to-compare baselines are highlighted
with background color. Best performance is in bold.

uments returned by DPR can potentially reduce
training time. We experimented with training on
close documents from DPR for a single iteration
with 16K steps (denoted as ReAtt DPR). Since both
approaches achieve similar performance (Tab. 1
and Tab. 2) and ReAtt DPR is cheaper to train, we
use it in other experimental settings.

At test-time, we save key vectors of all tokens
in the corpus and use exact index from FAISS (i.e.,
faiss.IndexFlatIP) to perform inner-product
search. We retrieve K ′ = 2048 document tokens
for each query token and return top-100 documents
with the highest aggregated scores (Eq. 1) to gen-
erate answers. We found compressing index with
clustering and quantization proposed by Santhanam
et al. (2021) can greatly reduce search latency and
index size with a minor retrieval accuracy loss.

5.1 Overall Results

We compare ReAtt with various retrievers and
readers in Tab. 1 and Tab. 2. ReAtt achieves
both slightly better retrieval performance than the
strongest retriever baseline ColBERT-NQ (Khat-
tab et al., 2020) and comparable QA performance
than the strong reader baseline FiD-KD (Izacard
and Grave, 2021a) on NQ, demonstrating for the
first time that fully end-to-end training using QA
supervision can produce both competitive retrieval
and QA performance. Compared to another single-
model architecture YONO (Lee et al., 2021a),
ReAtt offers better performance without cumber-
some pretraining to warm-up retrieval.
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Models EM #Params.

ORQA (Lee et al., 2019) 33.3 330M
REALM (Guu et al., 2020) 40.4 330M
RAG (Lewis et al., 2020) 44.5 220M
FiD (Izacard and Grave, 2021b) 51.4 990M
FiD-KD (Izacard and Grave, 2021a) 54.4 990M
EMDR2 (Sachan et al., 2021) 52.5 440M
YONOw/o PT (Lee et al., 2021a) 42.4 440M
YONOw/ PT (Lee et al., 2021a) 53.2 440M
UnitedQA (Cheng et al., 2021) 54.7 1.870B
R2-D2 (Fajcik et al., 2021) 55.9 1.290B
ReAtt DPR 54.0 770M
ReAtt BM25 54.7 770M

Table 2: QA performance on NQ. PT is retrieval pre-
training. Fair-to-compare baselines are highlighted.
Best performance is in bold.

5.2 Ablations
We perform ablation experiments to understand
the contribution of each component. Due to re-
source limitations, all ablations are trained with
2K steps per iteration. We use ReAtt trained with
B=12 bi-encoder layers, |Q|=16 batch size, and
α=8 cross-document loss weight as the baseline,
remove one component or modify one hyperparam-
eter at a time to investigate its effect. As shown
in Tab. 3, we found: 1. Only using QA loss with-
out cross-document adjustment (#2) improves re-
trieval performance over the original T5 (#3), but
cross-document adjustment is necessary to achieve
further improvement (#1). 2. Iteratively retrieving
close documents with the current model is helpful
(#5 vs #1). 3. In-batch random documents are ben-
eficial (#4 vs #1), and a larger batch size leads to
larger improvements (#8-11). 4. A larger weight on
cross-document adjustment loss improves retrieval
performance but hurts QA performance, with 4∼8
achieving a good trade-off (#12-15). 5. A small
number of bi-encoder layers (#6) significantly hurts
retrieval while a large number of layers (#7) signif-
icantly hurts QA, suggesting choosing equal num-
bers of layers in bi-encoder and cross-encoder.

6 Out-of-domain Generalization and
Adaptation

In this section, we examine both zero-shot re-
trieval performance on out-of-domain datasets and
ReAtt’s end-to-end adaptability in supervised (QA,
IR) and unsupervised settings.

6.1 Datasets, Baselines, and Metrics
We choose 7 datasets from BEIR (Thakur et al.,
2021), a benchmark covering diverse domains

# Methods R@1 R@5 R@20 R@100 EM

ReAtt baseline with B=12, |Q|=16, α=8
1 41.9 68.8 82.5 88.9 46.3

remove one component
2 - cross-doc loss 21.7 49.0 71.5 83.5 46.0
3 - QA (=T5) 13.2 33.7 53.6 67.7 3.0
4 - in-batch 38.1 66.0 80.3 87.6 46.7
5 - iterative 41.2 68.3 82.0 88.4 45.0

different #layers in bi-encoder B
6 B=6 19.1 42.1 62.4 78.1 40.3
7 B=18 38.2 63.8 79.3 87.4 35.2

different batch sizes Q
8 |Q|=4 39.4 66.1 80.7 88.1 45.0
9 |Q|=8 40.7 67.1 82.1 88.6 45.7
10 |Q|=32 43.6 69.4 82.8 89.1 46.4
11 |Q|=64 45.5 71.0 83.3 89.4 47.3

different cross-doc loss weights α
12 α=1 37.4 65.4 80.9 88.0 47.3
13 α=2 39.7 66.9 81.7 88.4 47.4
14 α=4 40.9 68.0 82.1 88.8 46.9
15 α=16 42.0 68.8 82.5 88.8 45.5

Table 3: Ablations by removing one component or
changing one hyperparameter from the ReAtt baseline.

and tasks. On each dataset we compare ReAtt
with different types of retrievers including BM25,
DPR, and ColBERT. We consider 2 QA datasets
(BioASQ and FiQA (Tsatsaronis et al., 2015;
Maia et al., 2018)) and one IR dataset (MS
MARCO (Nguyen et al., 2016)) to evaluate su-
pervised adaptation capability, and 4 other datasets
(CQADupStack, TREC-COVID, SCIDOCS, Sci-
Fact (Hoogeveen et al., 2015; Voorhees et al., 2020;
Cohan et al., 2020; Wadden et al., 2020)) to eval-
uate unsupervised adaptation capability. Detailed
statistics are listed in Tab. 8. We report nDCG@10
to measure retrieval performance and EM to mea-
sure QA performance. We group all baselines into
three categories and denote them with different
colors in the following tables:

• Supervised adaptation models are trained with
downstream task supervision, including RAG
trained on BioASQ, Contriever fine-tuned on
FiQA, and docT5query, ANCE, ColBERT, and
Contriever fine-tuned on MS MARCO (Nogueira
and Lin, 2019; Xiong et al., 2021; Khattab and
Zaharia, 2020; Izacard et al., 2021).

• Unsupervised adaptation models are trained on
domain corpus in an unsupervised way such as
contrastive learning or pseudo query generation,
including SimCSE and TSDAE+GPL (Gao et al.,
2021c; Wang et al., 2021a,b).

• Pretraining models are trained on corpora with-
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Tasks QA Retrieval
Datasets BioASQ FiQA MS MARCO

zero-shot performance
BM25 68.1 23.6 22.8
DPR 14.1 11.2 17.7
ColBERT-NQ 65.5 23.8 32.8
ReAtt 71.1 30.1 32.3

additional training
Contriever - 32.9 docT5query 33.8
SimCSE 58.1 31.4 ANCE 38.8
TSDAE+GPL 61.6 34.4 ColBERT 40.1
Contrieverw/ FT - 38.1 Contriever 40.7
ReAtt +5.876.9 +8.538.6 ReAtt +7.639.9

Table 4: nDCG@10 of zero-shot and supervised adapta-
tion experiments on two QA and one IR datasets. We
use colors to denote categories: pretraining, unsuper-
vised adaptation, and supervised adaptation. Baselines
comparable to ReAtt are highlighted with blue back-
ground color. We also show the improvement of ReAtt
over zero-shot performance in subscript.

# Ablations nDCG@1 @5 EM
1 RAG 14.6 13.0 1.3
2 + reader 14.6 13.0 - 27.5 26.2
3 + qry enc (e2e) 0.0 0.0 -13.0 25.7 -1.9
4 + doc/qry enc∗ 29.4 27.1 14.1 5.0 3.7
5 + reader (pipe) 29.4 27.1 - 27.8 22.8
6 + qry enc 23.3 23.2 -4.0 26.2 -1.6
7 T5 49.2 47.7 0.0
8 + e2e 75.2 73.5 25.7 44.4 44.4
9 ReAtt 72.8 70.1 17.2

10 + e2e 77.4 75.4 5.3 47.2 30.0

Table 5: RAG and ReAtt on BioASQ. Each indent in-
dicates fine-tuning one more component than its parent
with performance difference colored with green/red. ∗

denotes fine-tuning conducted sequentially instead of
jointly with the current component.

out direct exposure to the target domain, such
as Contriever (Izacard et al., 2021) trained with
contrastive learning on Wikipedia and CCNet.

We highlight baselines in the same category as
ReAtt in the following tables since comparison be-
tween them is relatively fair. Details of adaptation
of ReAtt can be found in Appendix B.

6.2 Experimental Results
Results of supervised and unsupervised adaptation
are listed in Tab. 4, Tab. 5, and Tab. 6 respectively.

Zero-shot Generalization Ability As shown in
Tab. 4 and Tab. 6, the zero-shot performance of
ReAtt is significantly better than other zero-shot
baselines on two QA datasets and one fact checking
dataset (+3.0/+6.5/+4.5 on BioASQ/FiQA/SciFact
than the second best), and overall comparable
on the rest of datasets (-0.5/-0.6/-3.0/-1.0 on MS

Methods CQA. TRECC. SCIDOCS SciFact

zero-shot performance
BM25 29.9 65.6 15.8 66.5
DPR 15.3 33.2 7.7 31.8
ANCE 29.6 65.4 12.2 50.7
ColBERT-NQ 33.9 48.9 15.6 65.3
ReAtt 33.3 62.6 14.8 71.0

additional training
Contriever 34.5 59.6 16.5 67.7
SimCSE 29.0 68.3 - 55.0
TSDAE+GPL 35.1 74.6 - 68.9
ReAtt +3.336.6 +13.476.0 +1.015.8 +0.271.2

Table 6: nDCG@10 of zero-shot and unsupervised adap-
tation on four datasets. Format is similar to Tab. 4

MARCO/CQA./TRECC./SCIDOCS than the best
which is usually BM25), demonstrating that our
end-to-end training with QA loss on NQ produces
a robust retriever. We conjecture that the superior
performance on QA datasets can be attributed to
our end-to-end training using QA loss which learns
retrieval that better aligns with the end task than
training with retrieval annotations.

Retrieval Adaptation with QA Supervision As
shown in the left-hand side of Tab. 4, end-to-end
adaptation with QA supervision significantly im-
proves ReAtt’s retrieval performance by 5.8/8.5 on
BioASQ/FiQA, achieving similar performance as
Contriever fine-tuned on FiQA, and better perfor-
mance than other unsupervised methods, confirm-
ing the end-to-end adaptability of our methods.

End-to-end QA Adaptation We perform end-to-
end adaptation on BioASQ and compare with RAG
as a baseline, which combines DPR as retriever and
BART as reader, and DPR has a query and docu-
ment encoder. Since updating document encoder
requires corpus re-indexing, it is fixed during fine-
tuning. We found end-to-end fine-tuning fails on
RAG. To understand why, we conduct a rigorous
experiment that breaks down each component of
RAG to find the failure point in Tab. 5.

Starting from the initial model trained on NQ
(#1), we first fine-tune the reader while fixing the
query encoder (#2), and as expected QA perfor-
mance improves. However fine-tuning both query
encoder and reader (end-to-end #3) makes the re-
triever collapse with zero relevant documents re-
turned, indicating end-to-end fine-tuning does not
work for RAG on new domains. In order to im-
prove both retrieval and QA, we need to fine-tune
RAG in a pipeline manner: first fine-tune the re-
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triever (both query and doc encoder) similarly to
DPR using retrieval annotations (#4), then fine-
tune the reader (#5). With the DPR-like fine-tuned
retriever, end-to-end fine-tuning of query encoder
and reader still fails (#6), although the retriever
does not completely collapse.

End-to-end fine-tuning of ReAtt improves re-
trieval and QA simultaneously. Fine-tuning start-
ing from ReAtt trained on NQ is better than starting
from T5, indicating the capability learned in NQ
could be transferred to BioASQ. Comparing RAG
and ReAtt, we identify several keys that enable end-
to-end adaptation. (1) ReAtt relying on token-level
attention has a strong initial performance, (2) cross-
document adjustment over both close and random
documents in ReAtt provides a better gradient es-
timation than only using retrieved documents in
RAG, (3) distillation-based loss in ReAtt might be
more effective than multiplying the retrieval proba-
bility into the final generation probability.

Leveraging Retrieval Annotations As shown
on the right-hand side of Tab. 4, ReAtt is able to
consume retrieval supervision in a generative for-
mat and achieve competitive performance as other
supervised dense retrievers.

Unsupervised Adaptation with SSM As shown
in Tab. 6, adaptation by simply masking salient
entities from sentences as input and generating
masked entities using ReAtt improves the retrieval
performance on 4 datasets, some by a large mar-
gin, achieving comparable or superior performance
than strong retrieval adaptation methods such as
TSDAE+GPL that relies on query generation. This
indicates that our end-to-end trainable model also
works well in unsupervised settings without involv-
ing too many engineering heuristics.

7 Related Work

Retrieval-augmented question answering utilizes
evidence retrieved from an external knowledge
source to facilitate question answering. There have
been several attempts to learn retrievers and readers
jointly. ORQA, REALM, RAG, EMDR2, YONO,
and Atlas (Lee et al., 2019; Guu et al., 2020; Sachan
et al., 2021; Lee et al., 2021a; Izacard et al., 2022)
first warm-up retrievers using unsupervised pre-
training methods such as inverse cloze task (ICT),
salient span masking (SSM), and large-scale con-
trastive learning, or initialize from supervised re-
trievers, then fine-tune both retriever and reader on

downstream tasks. They either use fixed index (Lee
et al., 2019; Lewis et al., 2020) or asynchronously
update the index during training (Guu et al., 2020;
Sachan et al., 2021; Lee et al., 2021a; Izacard et al.,
2022). Recently, retrieval-augmented models are
scaled up to very large corpora such as the web
(Piktus et al., 2021; Borgeaud et al., 2021), making
them capable of handling information out of the
scope of Wikipedia. Atlas (Izacard et al., 2022)
scales up retrieval-augmented models with T5-11B
as the reader and Contriever (Izacard et al., 2021)
as the retriever and achieves strong few-shot per-
formance on multiple benchmarks. Detailed com-
parisons of these models can be found in Tab. 7.
More related works on dense retrieval, unsuper-
vised retrieval learning, and retrieval augmentation
for language modeling can be found in Appendix C.

8 Conclusion
We propose retrieval as attention (ReAtt), a single
Transformer model that can be learned in an end-
to-end fashion only using end task loss. We demon-
strated on NQ dataset that ReAtt can achieve both
competitive retrieval and QA performance. We
further show that ReAtt is easy to adapt to other
domains in both supervised and unsupervised set-
tings, achieving both boosted retrieval and end task
performance. Future directions include better end-
to-end training objectives, efficient training and in-
ference, and transferring our solution to large-scale
pretraining.

Limitations
ReAtt is based on token-level representations, and
belongs to the same category as token-level dense
retrievers such as ColBERT (Khattab and Zaharia,
2020). Comparing to passage-level dense retrievers
such as DPR (Karpukhin et al., 2020), token-level
retrievers usually offer better performance (shown
in Tab. 1, Tab. 4, and Tab. 6) but require more
space to store the index and longer query time.
Our methods have the same limitation. We found
ColBERT’s practice in index compression and ap-
proximate search (Khattab and Zaharia, 2020; San-
thanam et al., 2021, 2022) also works for our model,
making this issue less of a concern.
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Model Architecture Retriever training Granu.Retriever Reader Single Init. Warm-up End-to-end loss

ORQA (Lee et al., 2019) BERT BERT ✗ BERT ICT Prob. marginalization Passage
REALM (Guu et al., 2020) BERT BERT ✗ BERT ICT, SSM Prob. marginalization Passage
RAG (Lewis et al., 2020) BERT BART ✗ DPR - Prob. marginalization Passage
EMDR2 (Sachan et al., 2021) BERT T5 ✗ BERT ICT, SSM Expectation maximization Passage
YONO (Lee et al., 2021a) T5 T5 ✓ T5 SSM Attention distillation Passage
Atlas (Izacard et al., 2022) BERT T5 ✗ Contriever MLM Perplexity distillation Passage

ReAtt T5 T5 ✓ T5 - Attention distillation Token

Table 7: Detailed comparison between end-to-end retriever-reader models. ICT is inverse cloze task, SSM is salient
span masking, and MLM is masked language modeling. Granu. is retrieval granularity.

Dataset Domain Task Train Test
#Queries #Annotations #Queries |Corpus|

In-domain
NQ Wiki Question answering 79K 133K 3,610 21.015M

Out-of-domain supervised adaptation
BioASQ Biomed Question answering 3K 32K 500 1.000M
FiQA Finance Question answering 6K 14K 648 58K
MS MARCO Misc Information retrieval 503K 533K 6,980 8.842M

Out-of-domain unsupervised adaptation
CQADupStack StackExchange Duplicate question retrieval - - 13,145 457K
TREC-COVID Biomed Information retrieval - - 50 171K
SCIDOCS Science Citation prediction - - 1,000 26K
SciFact Science Fact checking 1K 1K 300 5K

Table 8: Statistics of 8 datasets categorized by experimental settings, including the number of training/test queries,
retrieval annotations (query-document pairs), and documents in the corpus.

A Efficient Implementation

Under typical optimization setups where the loss is
point-wise with respect to each training data, like
training classifiers or readers, scaling batch size
can be easily achieved with gradient accumulation.
However, due to the use of in-batch negatives, our
systems, like others (Karpukhin et al., 2020; Qu
et al., 2021), require having all examples in a batch
to reside in GPUs simultaneously when trained di-
rectly. Larger batches therefore need proportionally
more GPU memory.

In order to accommodate large batches with our
limited memory hardware, we adopt the gradient
cache approach (Gao et al., 2021b) decouple in-
stances in the same batch. In particular, we run
an extra forward pass over the large batch in infer-
ence mode and record (1) representations for all
query and document tokens (QB+1,h

q and KB+1,h
d )

and (2) decoder-encoder target attention values
(Ca,q,Dq ). Note that we do not store model internal
activation nor perform gradient computation with
respect to model parameters in this step. With (1)
we can compute the retrieval attention, and with (2)
we can compute cross-document adjustment loss
(Eq. 2). We then compute and cache gradient vec-

tors of all query and document vectors with respect
to Eq. 2. We finally optimize the model with a
sufficiently small batch size to fit in GPU memory
and use cached gradient in the backward pass of
the Eq. 2.

B Details of Adaptation Experiments

For supervised adaptation, we train on BioASQ,
FiQA, and MS MARCO separately using all train-
ing queries. For CQADupStack, we merge the
document corpora of 12 sub-domains into a sin-
gle corpus to sample masked sentences for salient
span masking training. For each of the 4 unsuper-
vised domain adaptation datasets (CQADupStack,
TREC-COVID, SCIDOCS, SciFact), we sample
20∼100K sentences and mask one entity, which is
approximately proportional to the size of the corpus
with a larger sampling rate for small corpora. We
reuse the same hyperparameters as NQ (§ 5), ex-
cept that we train each model for a single iteration
using close documents from BM25 with 4K update
steps and a batch size of 16. Since MS MARCO
has a large number of annotations, we train for 12K
update steps.
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C Related Work

Dense Retrieval Models Dense retrieval mod-
els can be categorized into two groups, passage-
level retrievers (Karpukhin et al., 2020; Oguz et al.,
2021; Xiong et al., 2021; Gao and Callan, 2022)
and token/phrase-level retrievers (Khattab and Za-
haria, 2020; Khattab et al., 2020; Gao et al., 2021a;
Lee et al., 2021b). Passage-level retrievers en-
code queries and documents into a single vec-
tor, while token/phrase-level retrievers directly use
token/phrase representations, resulting in multi-
vector representations. Passage-level retrievers
are usually more efficient but less expressive than
token-level retrievers.

Unsupervised Retrieval Learning Unsuper-
vised retrieval learning methods can be categorized
into two types: pretraining-based (Lee et al., 2019;
Gao et al., 2021c; Wang et al., 2021a; Gao and
Callan, 2021; Izacard et al., 2021) and question
generation-based (Ma et al., 2021; Wang et al.,
2021b). SimCSE (Gao et al., 2021c) obtains rep-
resentations of the same input by passing through
the model twice with different dropout masks and
minimizes their distance. Contriever (Izacard et al.,
2021) is trained by large-scale contrastive learn-
ing with random cropping of text spans sampled
from Wikipedia and CCNet. GPL (Wang et al.,
2021b) leverages query generators to obtain pseudo
queries, and collect positive and negative docu-
ments by pseudo labeling using a cross-encoder.

Retrieval Augmentation for Language Modeling
Retrieval from external datastore to improve lan-
guage modeling perplexity has been explored by
many works, where additional tokens are retrieved
during generation based on contextual represen-
tations (Khandelwal et al., 2020; Borgeaud et al.,
2021; Wu et al., 2022; Zhong et al., 2022). They
differ in whether retrieval is fixed or learnable, re-
trieval frequency, and contextual representations
used to perform nearest neighbors search.
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