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Abstract

Word order, an essential property of natural lan-
guages, is injected in Transformer-based neu-
ral language models using position encoding.
However, recent experiments have shown that
explicit position encoding is not always useful,
since some models without such feature man-
aged to achieve state-of-the art performance
on some tasks. To understand better this phe-
nomenon, we examine the effect of removing
position encodings on the pre-training objec-
tive itself (i.e., masked language modelling), to
test whether models can reconstruct position
information from co-occurrences alone. We
do so by controlling the amount of masked to-
kens in the input sentence, as a proxy to affect
the importance of position information for the
task. We find that the necessity of position
information increases with the amount of mask-
ing, and that masked language models without
position encodings are not able to reconstruct
this information on the task. These findings
point towards a direct relationship between the
amount of masking and the ability of Trans-
formers to capture order-sensitive aspects of
language using position encoding.

1 Introduction

Transformer-based language models have become
ubiquitous since they demonstrated improvements
in most NLP downstream tasks (Devlin et al., 2019;
Liu et al., 2019). A lot of ink has been spilled re-
garding the amount of linguistic structure that such
models captured (Jawahar et al., 2019), pointing to-
wards the acquisition of diverse linguistic abilities.
As neural language models need to process infor-
mation about the position of their input tokens to
capture structural generalizations, a plethora of pro-
posals to encode such information have been made
(Press et al., 2021; He et al., 2020; Su et al., 2021;
Chang et al., 2021; Chen et al., 2021; Chen, 2021).
Recent work, however, questioned whether word
order information is really useful for pre-trained

models to solve downstream tasks (Sinha et al.,
2021), showing that models could perform well
when using only higher-order co-occurrence statis-
tics. Other authors (Haviv et al., 2022) have shown
that some transformers could reconstruct partly po-
sition information without it being explicitly in-
jected. Examining performance on downstream
tasks can show that the task simply does not require
order information, or that the dataset used to test
the model is too easy (Abdou et al., 2022), leading
to indirect observations regarding a model’s ability
to reconstruct position information.

In turn, we choose to test the importance of
position encodings for the pre-training task itself,
masked language modeling, to get more direct evi-
dence about whether and when position matters
to language models. We do so under different
amounts of masking, as intuitively, position in-
formation should be increasingly important when
more tokens are missing from the context. Our ex-
periments show that when masking only one token,
the absence of position encoding has little effect
on the model’s performance. However, its impor-
tance increases with the number of masked tokens,
forcing the model to leverage position information
to perform better on its training objective. This
finding should draw our attention towards choos-
ing more carefully the amount of masking to train
masked language models – a choice as important
as the position encoding scheme itself.

2 Related work

A recent line of research investigated the impor-
tance of word order information during pre-training
for models to solve downstream tasks, showing lit-
tle variations when their input sentences are shuf-
fled (Pham et al., 2021; Sinha et al., 2021; Hessel
and Schofield, 2021). In a similar line of research,
(Haviv et al., 2022) found that even in absence of
position encoding, models were still able to recon-
struct the latter when probed for tokens’ absolute
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position information in their intermediate layers.
This finding in turn questioned the need for in-
jecting explicitly position information in language
models. (Abdou et al., 2022) also showed that shuf-
fled models were still able to capture position infor-
mation even when information about word order
was removed after subword segmentation, likely
because of the dependency between unigram oc-
currence probability and sentence length. Given all
this work, it is surprising that the importance of ex-
plicit word order information in a neural language
model still eludes us. In this study, we choose to
investigate more carefully this phenomenon, and
propose a methodology carefully designed to eval-
uate the importance of position encoding for the
pre-training objective.

3 Experimental Setup

3.1 Methodology

In our experiments, the goal is to investigate the ex-
tent to which a transformer neural model requires
explicit position encoding to perform well on the
masked language modeling objective. We do so
under different amounts of masking to examine
how this parameter affects the need for explicit po-
sition encoding. We make use of two variants for
each trained model, one in which we inject posi-
tion information, and one deprived from explicit
access to that information. To evaluate whether the
trained model reconstructs its input sentences using
position information, we compare its probability
estimates q to two versions of the language’s true
probabilities p on the validation set. The first ver-
sion, po, represents the probability of completions
given the original, ordered input context. The sec-
ond version, pu, is the probability given unordered
contexts. In the following sections, we explain how
we perform this comparison to evaluate the extent
to which explicit position encoding is required for
the masked language modeling task.

3.2 Data

When using natural languages, it is hard to assess
whether the model indeed relies on order informa-
tion because it is not easy to design a dataset con-
trolled to target specifically the usage of position
information. In particular, as one does not have
access to the true probability distribution of natu-
ral languages, it is hard to make clear predictions
regarding how a model not using position informa-
tion should behave. On the other hand, artificial
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Figure 1: Examples of sentences found in the artificial
language used for our analysis.

languages obtained from a generative procedure
that is known a priori make it possible to get tight
estimates of their true probability distribution, both
with, and without access to position information.
The use of artificial languages has sparked interest
over the past years, as a proxy to test targeted prop-
erties of neural models in controlled settings (White
and Cotterell, 2021; Wang and Eisner, 2016). In
our experiments, we make use of data released by
White and Cotterell (2021).The dataset consists of
sentences generated from an artificial grammar, us-
ing a CFG such that all production rules have fixed
probabilities.1 This design makes it possible to
evaluate the true probability of completions given
masked input sentences, as a comparison point to
the model’s observed behavior. We display exam-
ples of generated trees in Fig. 1.2

3.3 Estimating the true probability
distribution of the task

We exploit our direct access to the generative pro-
cedure which produces our input sentences to esti-
mate the true probability distribution of the masked
language modeling task. We do so by assuming that

1The artificial language features certain constraints present
in natural languages such as morphological agreement rela-
tions.

2In our experiments, we used the unaffected artificial
language (Grammar 000000) released by White and Cot-
terell (2021). The original code can be found at https://
github.com/rycolab/artificial-languages.
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the context is either ordered or not. Specifically, we
generate sequences recursively using the artificial
language’s production rules, until the probability
sum of fully expanded sentences3 reaches a certain
coverage.4 We then iterate over these sentences to
mask words at each position and aggregate comple-
tions for sequences that share the same unmasked
context in the Masked Language Modelling setting.
We thus obtain a probability distribution of com-
pletions Y given (ordered) masked contexts Xo,
which we write {po(y|x) | x, y ∈ Xo × Yo}.5

We also compute a second version of the proba-
bility distribution that assumes no ordering of the
context, aggregating completions for unmasked se-
quences whose unordered masked context is the
same in Xu, obtaining {pu(y|x) | x, y ∈ Xu×Yu}.
To get the probability for unordered contexts, we
simply group input sequences by sorting their ele-
ments alphabetically to remove order information
and sum their probabilities for each unordered con-
text. As we only use this procedure to remove
information when estimating the task’s true prob-
ability, the inputs which are seen by our models
remain unchanged. As this removes all word or-
der information when estimating the MLM task’s
probability distribution, our estimate is only depen-
dent on information about each token’s number of
appearances in each input.

3.4 Is position information necessary for the
task ?

Given the true probabilities po and pu for our task,
we want to measure how different these are. We
compute the KL-divergence :

DKL(po, pu) =
∑

x,y∈Xo×Yo

po(y|x) log
po(y|x)
pu(y|x)

(1)
This statistical distance allows us to estimate

how different are the two distributions. We pre-
dict that by masking more tokens, the task would
increasingly require position information and the
divergence would also increase.6

3i.e. sequences that have no non-terminal label.
4We generate sentences along with their true sentence prob-

ability in our artificial language until we reach a probability
sum superior to 0.75

5Note that when using natural languages, automatic collec-
tion of sentences in real corpora does not allow access to all
possible completions in context, in addition to only providing
sparse, and often biased, samples of sentences. Thus the true
probability remains unknown, as noted in §3.2.

6Note that while the KL-divergence is asymmetric, in this

3.5 Is position encoding useful to the model?
We test two variants of the BERT architecture (De-
vlin et al., 2019), using Huggingface’s Transformer
library (Wolf et al., 2020). In the first model, posi-
tion information is encoded using learned absolute
position embeddings,7 while such explicit encod-
ing is removed from the second. We call such
models BERT and NP. Their hyperparameters are
described in App. B. For each model, we compare
its probability estimates q in context to the task’s
true distribution assuming both that position infor-
mation is present in contexts po, and absent pu. We
do so by computing the KL-divergence between q
and p ∈ (po, pu) as follows:

DKL(p, q) = H(p, q)−H(p)

We estimate the true entropy H(p) for the masked
language modeling (MLM) task using either po or
pu on our set of generated sentences:

H(Y |X) = −
∑

x,y∈X×Y

p(x, y) log
p(x, y)

p(x)

= −
∑

x,y∈X×Y

p(y|x)p(x) log p(y|x)

(2)

For each context, we compute the true entropy of
its completions :

∀x ∈ X , hY (x) = −
∑

y∈Y
p(y|x) log p(y|x)

And we finally compute the task entropy by aver-
aging these context entropies over our kept masked
contexts Xo or Xu :

H(Y |X) =
∑

x∈X
p(x)hY (x)

We obtain two true task entropy estimates, H(po)
for ordered contexts, and H(pu) for unordered
ones. For each model, we then estimate the cross
entropy to each true distribution. Denoting the
model’s output probability q, the cross-entropy
writes as follows :

H(p, q) = −
∑

x,y∈X×Y

p(y|x) log q(y|x)

order the quantity represents the information gain achieved by
having access to position information.

7This encoding scheme is widespread in transformer-based
models, see Dufter et al. (2021) for an overview
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We then use the tasks’s true entropy and the model’s
cross-entropy to compute the KL-divergence.
For each model, by comparing DKL(po, q) to
DKL(pu, q), we can assess whether the model’s es-
timates fit better the task’s probability for ordered
contexts, or unordered contexts. If explicit position
encoding is necessary, we predict that DKL(pu, q)
should be greater than DKL(po, q) for BERT, and
lower for NP. Otherwise, both models should have
similar behavior.

3.6 Testing the effect of masking
In this study, we compare BERT and NP under
different amounts of masking. We surmise that
increasing that parameter should increase the ne-
cessity of using position information, as measured
by eq. (1). If this is the case, varying this parameter
will allow us to investigate whether position encod-
ing is necessary as the task increasingly requires
using that information.

Figure 2: KL-Divergence between the true task proba-
bilities assuming ordered and unordered inputs.

4 Results

We first display the KL-divergence between true
probability distributions assuming ordered and un-
ordered contexts in Fig. 2. In accordance with
our expectations,8 when increasing the amount of
masking, the true distribution of completions given
ordered contexts diverges from that of unordered
contexts. Interestingly though, when only one to-
ken is masked, the divergence is low. This suggests
that in this setting, models should have little dif-
ference regardless of whether they have access to
explicit position information. By increasing the
amount of masked tokens, we can further observe
that the two considered true probabilities po and pu
diverge. We thus expect that models should increas-
ingly rely on position information to approximate
the true ordered distribution.

We further display how well each model approx-
imates each probability estimate in Fig. 3 to verify

8see §3.4

Figure 3: KL-Divergence between the true task probabil-
ities and our models’ probability estimates (BERT-top
and NP-bottom), assuming contexts are ordered (orange
bars) and unordered (green bars).

whether the presence of position encoding is useful
to the masked language modeling task under dif-
ferent amounts of masking. Expectedly, the model
with no position encoding scheme performs sim-
ilarly to the BERT model when only one token
is masked. In this setting, the context contains
enough information for the model regardless of
whether it sees its input tokens as ordered or as a
bag of words. When masking more tokens however,
this difference becomes increasingly marked.9

Further, we observe that the BERT model has a
low divergence to the true probability assuming or-
dered contexts regardless of the amount of masking,
while it diverges increasingly from the distribution
that assumes no ordering of the context. The oppo-
site pattern holds for the NP model. Taken together,
these results show that position encoding is neces-
sary to approximate the true distribution of the task
when it requires position information, that is when
the number of masked tokens is increased.

In Fig. 4, we compare our models’ cross-
entropies to the task’s true entropies. The figure
aggregates the two main observations made in this
article, that when the number of masked tokens
increases : (i) the true entropy of the data with and
without position diverge from each other, and (ii)
that position encoding is required to approximate
the task’s true probability distribution assuming
ordered contexts. Accordingly to our previous ob-

9See App. D for our models’ perplexities.
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servations, the NP model, which does not have ac-
cess to the ordering of tokens, has a cross-entropy
that fits the true probability distribution’s entropy
assuming no ordering of the context (red lines).
Looking at BERT’s cross-entropy, we see that this
model, which has access to position information,
rather fits the true probability distribution assuming
the context is ordered.

Figure 4: A comparison between entropies of true prob-
abilities for the MLM task (assuming ordered and un-
ordered contexts), and our models’ cross-entropies

5 Discussion

5.1 Position encoding and language modeling

Previous work claimed that transformer autoregres-
sive language models without position encodings
could reconstruct position information by inferring
the number of preceding tokens, but not bidirec-
tional transformer models (Haviv et al., 2022). Test-
ing a RoBERTa model (Liu et al., 2019) led to great
difference in perplexity when removing position
information at the input level. However, we show
this difference to strongly depend on the amount
of masking : as autoregressive language models
predict only one token at a time, the task could
be equally easy for models deprived from position
information. Our results call for increased scrutiny
when comparing autoregressive and masked lan-
guage models, making sure that they are asked to
predict comparable numbers of tokens.

5.2 Mask more !

In our study, we have shown that the utility of
explicit position encoding increases with the num-
ber of masked tokens. This finding echoes Wettig
et al. (2022)’s study, showing that masking 40% of
tokens rather than 15% during pre-training leads
to better performance on downstream tasks. This
evidence could draw more attention towards un-
derstanding how different amounts of masking can

lead models to abstract away from position informa-
tion, and capture more structural knowledge about
the languages they model.

6 Conclusion

In this work, we evaluated the importance of posi-
tion encoding for a masked language model. We
showed that without explicit access to position in-
formation, a model can obtain performance sim-
ilar to a model that learns position embeddings,
when only one token is masked. We find that
when increasing the number of masked tokens,
the output probability distribution assuming un-
ordered inputs diverges from that which assumes
ordered sentences, reflecting that the task increas-
ingly requires making use of position information.
We further show that under this condition, models
with position encoding outperform their counter-
part deprived from position information. This in
turn could draw more attention to the amount of
masked tokens, which might be a crucial param-
eter for models to abstract away from their input
sentences’ position information, in addition to the
chosen position encoding scheme.

7 Limitations

The results we have presented in this paper were
obtained over artificial languages. Adapting the
method to natural languages may be difficult.

The true probability distribution is not acces-
sible for natural languages. In this study, we
investigate how the amount of masking impacts the
usage of position encoding by a neural language
model. We chose to carry out this experiment on an
artificial language, because of the ease to access the
true probability distributions in each setting. While
this result informs us that the amount of masking
could be key for masked language models to use
and abstract away from position information ex-
tracted from their input, this methodology is not
easy to adapt to natural languages, because the true
probability distribution is not accessible for natural
languages. In future work, one could try to find
proxies to estimate reference points for natural lan-
guages, with potentialy looser estimates than the
one used in this study.

Training several masked language models on
natural languages is computationally expensive.
In order to investigate how the amount of masking
impacts the degree to which a NLM makes use of
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its position encodings, or higher-order structural
properties of natural languages, one would need
to train a large neural model for each condition
under investigation, and for each retained amount
of masking. This, added to the potential hyper-
parameter space search would require substantial
computing resources as training a model on natural
languages requires large amounts of data during
training.

Natural languages are usually more flexible re-
garding word order. In our experiments, we
investigate the impact of masking on using posi-
tion information using artificial languages where
word order is fixed. We conclude that neural lan-
guage models make use of position information
on the masked language modeling objective when
the number of masked tokens increases. However,
while this should hold true for data similar to ours,
where the word order is fixed and hence position
information greatly affects which token needs to
be predicted at a certain position, we cannot make
claims regarding the impact of masking on lan-
guages where word order is more variable, which
is the case of any natural language. Further analy-
ses are needed to evaluate whether position encod-
ing impacts language modeling in different ways
when word order is rather fixed (like English), com-
pared to when it is more variable (like in Latin or
Finnish).
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A Data Statistics

We describe in Table 1 some statistics for the
dataset used to train our models.

Train size 100000
Test & Validation Size 10000
Vocabulary Size 1261
Mean Sentence Length 12.51

Table 1: Statistics of the dataset used to train our mod-
els.

B Model Hyperparameters

The architectures’ hyperparameters are common
to both our BERT and NP models. The learned
tokenizer has been trained without slicing tokens,
thus our model’s vocabulary is exactly our artificial
language’s vocabulary.

Layers 3
Attention Heads 4
Hidden Size 256
Intermediate Size 1024
Training steps 300000

Table 2: Hyperparameters of our tested models.

C Training Details

Here we display the parameters used to train our
models.

Weight Decay 0.01
Learning Rate 5e-5
Batch Size 8
Optimizer Adam

Table 3: Hyperparameters used to train our models.

D Model Perplexities

We display the perplexities reached by our models
on our validation sets in Table 4. Note that these
perplexities are obtained in the traditional masked
language modelling setting, where only one word
is considered to be the ground truth. This explains
the discrepancy when compared to model cross-
entropies in Fig. 4. Contrarily to the rest of our
analysis, these perplexity scores do not take the true
probability distribution of the task into account, as
only one label gets all the probability mass.

Model # Masked Words
1 2 3 4 5 6

BERT 15.12 17.06 17.6 19.02 20.24 20.37
NP 20.14 41.93 55.45 70.64 93.58 107.46

Table 4: Perplexities reached by our tested models for
varying numbers of masked words.

E Asymmetries in KL-divergences

In Fig. 3, when increasing the amount of masking,
the increase in DKL(pu, qBERT ) is greater than
that of DKL(po, qNP ). While this could look sur-
prising at first glance, it could simply be due to the
asymmetric nature of cross-entropy, driven by the
non-nullity of its left argument. BERT is strongly
penalized by the true probability of completions
it has never seen in ordered contexts: for those, it
should have close to zero probability. NP in turn is
less penalized, because it should have a non-zero
probability for any completion assuming ordered
context, as these sets of words are possible comple-
tions assuming unordered contexts.
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