Yuwei Du


2025

pdf bib
Hawkes based Representation Learning for Reasoning over Scale-free Community-structured Temporal Knowledge Graphs
Yuwei Du | Xinyue Liu | Wenxin Liang | Linlin Zong | Xianchao Zhang
Proceedings of the 31st International Conference on Computational Linguistics

Temporal knowledge graph (TKG) reasoning has become a hot topic due to its great value in many practical tasks. The key to TKG reasoning is modeling the structural information and evolutional patterns of the TKGs. While great efforts have been devoted to TKG reasoning, the structural and evolutional characteristics of real-world networks have not been considered. In the aspect of structure, real-world networks usually exhibit clear community structure and scale-free (long-tailed distribution) properties. In the aspect of evolution, the impact of an event decays with the time elapsing. In this paper, we propose a novel TKG reasoning model called Hawkes process-based Evolutional Representation Learning Network (HERLN), which learns structural information and evolutional patterns of a TKG simultaneously, considering the characteristics of real-world networks: community structure, scale-free and temporal decaying. First, we find communities in the input TKG to make the encoding get more similar intra-community embeddings. Second, we design a Hawkes process-based relational graph convolutional network to cope with the event impact-decaying phenomenon. Third, we design a conditional decoding method to alleviate biases towards frequent entities caused by long-tailed distribution. Experimental results show that HERLN achieves significant improvements over the state-of-the-art models.

pdf bib
AgentMove: A Large Language Model based Agentic Framework for Zero-shot Next Location Prediction
Jie Feng | Yuwei Du | Jie Zhao | Yong Li
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Next location prediction plays a crucial role in various real-world applications. Recently, due to the limitation of existing deep learning methods, attempts have been made to apply large language models (LLMs) to zero-shot next location prediction task. However, they directly generate the final output using LLMs without systematic design, which limits the potential of LLMs to uncover complex mobility patterns and underestimates their extensive reserve of global geospatial knowledge. In this paper, we introduce AgentMove, a systematic agentic prediction framework to achieve generalized next location prediction. In AgentMove, we first decompose the mobility prediction task and design specific modules to complete them, including spatial-temporal memory for individual mobility pattern mining, world knowledge generator for modeling the effects of urban structure and collective knowledge extractor for capturing the shared patterns among population. Finally, we combine the results of three modules and conduct a reasoning step to generate the final predictions. Extensive experiments utilizing mobility data from two distinct sources reveal that AgentMove surpasses the leading baseline by 3.33% to 8.57% across 8 out of 12 metrics and it shows robust predictions with various LLMs as base and also less geographical bias across cities. Our codes are available via https://github.com/tsinghua-fib-lab/AgentMove.