Yupeng Hou
2025
Unlocking Decoding-time Controllability: Gradient-Free Multi-Objective Alignment with Contrastive Prompts
Tingchen Fu
|
Yupeng Hou
|
Julian McAuley
|
Rui Yan
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The task of multi-objective alignment aims at balancing and controlling the different alignment objectives, e.g., helpfulness, harmlessness and honesty) of large language models to meet the personalized requirements of different users. However, previous methods tend to train multiple models to deal with various user preferences, with the number of trained models growing linearly with the number of alignment objectives and the number of different preferences. Meanwhile, existing methods are generally poor in extensibility and require significant re-training for each new alignment objective considered. Considering the limitation of previous approaches, we propose MCA, which constructs an expert prompt and an adversarial prompt for each objective to contrast at the decoding time and balances the objectives through combining the contrast. Our approach is verified to be superior to previous methods in obtaining a well-distributed Pareto front among different alignment objectives.
2024
InstructGraph: Boosting Large Language Models via Graph-centric Instruction Tuning and Preference Alignment
Jianing Wang
|
Junda Wu
|
Yupeng Hou
|
Yao Liu
|
Ming Gao
|
Julian McAuley
Findings of the Association for Computational Linguistics: ACL 2024
Do current large language models (LLMs) better solve graph reasoning and generation tasks with parameter updates? In this paper, we propose InstructGraph, a framework that empowers LLMs with the abilities of graph reasoning and generation by instruction tuning and preference alignment. Specifically, we first propose a structured format verbalizer to unify all graph data into a universal code-like format, which can simply represent the graph without any external graph-specific encoders. Furthermore, a graph instruction tuning stage is introduced to guide LLMs in solving graph reasoning and generation tasks. Finally, we identify potential hallucination problems in graph tasks and sample negative instances for preference alignment, the target of which is to enhance the output’s reliability of the model. Extensive experiments across multiple graph-centric tasks exhibit that InstructGraph can achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13% and 38%, respectively.