Yongqi Tong


2025

pdf bib
BPO: Towards Balanced Preference Optimization between Knowledge Breadth and Depth in Alignment
Sizhe Wang | Yongqi Tong | Hengyuan Zhang | Dawei Li | Xin Zhang | Tianlong Chen
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Reinforcement Learning with Human Feedback (RLHF) is the key to the success of large language models (LLMs) in recent years. In this work, we first introduce the concepts of knowledge breadth and knowledge depth, which measure the comprehensiveness and depth of an LLM or knowledge source respectively. We reveal that the imbalance in the number of prompts and responses can lead to a potential disparity in breadth and depth learning within alignment tuning datasets by showing that even a simple uniform method for balancing the number of instructions and responses can lead to significant improvements. Building on this, we further propose Balanced Preference Optimization (BPO), designed to dynamically augment the knowledge depth of each sample. BPO is motivated by the observation that the usefulness of knowledge varies across samples, necessitating tailored learning of knowledge depth. To achieve this, we introduce gradient-based clustering, estimating the knowledge informativeness and usefulness of each augmented sample based on the model’s optimization direction. Our experimental results across various benchmarks demonstrate that BPO outperforms other baseline methods in alignment tuning while maintaining training efficiency. Furthermore, we conduct a detailed analysis of each component of BPO, providing guidelines for future research in preference data optimization.

2024

pdf bib
Can LLMs Learn from Previous Mistakes? Investigating LLMs’ Errors to Boost for Reasoning
Yongqi Tong | Dawei Li | Sizhe Wang | Yujia Wang | Fei Teng | Jingbo Shang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated striking reasoning capability. Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning?This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs’ errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet.

2023

pdf bib
ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in Real-World User-AI Conversation
Zi Lin | Zihan Wang | Yongqi Tong | Yangkun Wang | Yuxin Guo | Yujia Wang | Jingbo Shang
Findings of the Association for Computational Linguistics: EMNLP 2023

Despite remarkable advances that large language models have achieved in chatbots nowadays, maintaining a non-toxic user-AI interactive environment has become increasingly critical nowadays. However, previous efforts in toxicity detection have been mostly based on benchmarks derived from social media contents, leaving the unique challenges inherent to real-world user-AI interactions insufficiently explored. In this work, we introduce ToxicChat, a novel benchmark constructed based on real user queries from an open-source chatbot. This benchmark contains the rich, nuanced phenomena that can be tricky for current toxicity detection models to identify, revealing a significant domain difference when compared to social media contents. Our systematic evaluation of models trained on existing toxicity datasets has shown their shortcomings when applied to this unique domain of ToxicChat. Our work illuminates the potentially overlooked challenges of toxicity detection in real-world user-AI conversations. In the future, ToxicChat can be a valuable resource to drive further advancements toward building a safe and healthy environment for user-AI interactions.