Xihui Lin


2025

pdf bib
A Practical Analysis of Human Alignment with *PO
Kian Ahrabian | Xihui Lin | Barun Patra | Vishrav Chaudhary | Alon Benhaim | Jay Pujara | Xia Song
Findings of the Association for Computational Linguistics: NAACL 2025

At the forefront of state-of-the-art human alignment methods are preference optimization methods (*PO). Prior research has often concentrated on identifying the best-performing method, typically involving a grid search over hyperparameters, which can be impractical for general practitioners. In this paper, we examine the robustness of existing state-of-the-art methods to varying hyperparameters in a realistic out-of-distribution (OOD) scenario that mirrors real-world applications of human alignment. Our goal is to empirically find the method that increases the likelihood of achieving better results through the lens of various metrics, such as KL divergence and response length. We also introduce LN-DPO, a simple length-normalized version of DPO that is more stable across hyperparameters, effectively reduces the average response length, and improves performance. Our analysis of state-of-the-art reference-free (i.e., SimPO) and reference-dependent (i.e., DPO and LN-DPO) methods reveals that they perform similarly at their peak (i.e., best possible scenario). However, we uncover that the pattern of change in performance greatly varies as we move away from the best possible scenario.

2023

pdf bib
Prompt Discriminative Language Models for Domain Adaptation
Keming Lu | Peter Potash | Xihui Lin | Yuwen Sun | Zihan Qian | Zheng Yuan | Tristan Naumann | Tianxi Cai | Junwei Lu
Proceedings of the 5th Clinical Natural Language Processing Workshop

Prompt tuning offers an efficient approach to domain adaptation for pretrained language models, which predominantly focus on masked language modeling or generative objectives. However, the potential of discriminative language models in biomedical tasks remains underexplored.To bridge this gap, we develop BioDLM, a method tailored for biomedical domain adaptation of discriminative language models that incorporates prompt-based continual pretraining and prompt tuning for downstream tasks. BioDLM aims to maximize the potential of discriminative language models in low-resource scenarios by reformulating these tasks as span-level corruption detection, thereby enhancing performance on domain-specific tasks and improving the efficiency of continual pertaining. In this way, BioDLM provides a data-efficient domain adaptation method for discriminative language models, effectively enhancing performance on discriminative tasks within the biomedical domain.