Tianshu Yu


2025

pdf bib
Unsupervised Speech-text word-level alignment with Dynamic Programming
Tianshu Yu | Zihan Gong | Minghuan Tan | Guhong Chen | Min Yang
Findings of the Association for Computational Linguistics: NAACL 2025

pdf bib
Diverse AI Feedback For Large Language Model Alignment
Tianshu Yu | Ting-En Lin | Yuchuan Wu | Min Yang | Fei Huang | Yongbin Li
Transactions of the Association for Computational Linguistics, Volume 13

Recent advances in large language models (LLMs) focus on aligning models with human values to minimize harmful content. However, existing methods often rely on a single type of feedback, such as preferences, annotated labels, or critiques, which can lead to overfitting and suboptimal performance. In this paper, we propose Diverse AIFeedback (DAIF), a novel approach that integrates three types of feedback—critique, refinement, and preference—tailored to tasks of varying uncertainty levels. Through an analysis of information gain, we show that critique feedback is most effective for low-uncertainty tasks, refinement feedback for medium-uncertainty tasks, and preference feedback for high-uncertainty tasks. Training with this diversified feedback reduces overfitting and improves alignment. Experimental results across three tasks—question answering, dialog generation, and text summarization–demonstrate that DAIF outperforms traditional methods relying on a single feedback type.1

2023

pdf bib
Speech-Text Pre-training for Spoken Dialog Understanding with Explicit Cross-Modal Alignment
Tianshu Yu | Haoyu Gao | Ting-En Lin | Min Yang | Yuchuan Wu | Wentao Ma | Chao Wang | Fei Huang | Yongbin Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, speech-text pre-training methods have shown remarkable success in many speech and natural language processing tasks. However, most previous pre-trained models are usually tailored for one or two specific tasks, but fail to conquer a wide range of speech-text tasks. In addition, existing speech-text pre-training methods fail to explore the contextual information within a dialogue to enrich utterance representations. In this paper, we propose Speech-text Pre-training for spoken dialog understanding with ExpliCiT cRoss-Modal Alignment (SPECTRA), which is the first-ever speech-text dialog pre-training model. Concretely, to consider the temporality of speech modality, we design a novel temporal position prediction task to capture the speech-text alignment. This pre-training task aims to predict the start and end time of each textual word in the corresponding speech waveform. In addition, to learn the characteristics of spoken dialogs, we generalize a response selection task from textual dialog pre-training to speech-text dialog pre-training scenarios. Experimental results on four different downstream speech-text tasks demonstrate the superiority of SPECTRA in learning speech-text alignment and multi-turn dialog context.

pdf bib
Learning Language-guided Adaptive Hyper-modality Representation for Multimodal Sentiment Analysis
Haoyu Zhang | Yu Wang | Guanghao Yin | Kejun Liu | Yuanyuan Liu | Tianshu Yu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Though Multimodal Sentiment Analysis (MSA) proves effective by utilizing rich information from multiple sources (*e.g.,* language, video, and audio), the potential sentiment-irrelevant and conflicting information across modalities may hinder the performance from being further improved. To alleviate this, we present Adaptive Language-guided Multimodal Transformer (ALMT), which incorporates an Adaptive Hyper-modality Learning (AHL) module to learn an irrelevance/conflict-suppressing representation from visual and audio features under the guidance of language features at different scales. With the obtained hyper-modality representation, the model can obtain a complementary and joint representation through multimodal fusion for effective MSA. In practice, ALMT achieves state-of-the-art performance on several popular datasets (*e.g.,* MOSI, MOSEI and CH-SIMS) and an abundance of ablation demonstrates the validity and necessity of our irrelevance/conflict suppression mechanism.

2022

pdf bib
Dependency-aware Prototype Learning for Few-shot Relation Classification
Tianshu Yu | Min Yang | Xiaoyan Zhao
Proceedings of the 29th International Conference on Computational Linguistics

Few-shot relation classification aims to classify the relation type between two given entities in a sentence by training with a few labeled instances for each relation. However, most of existing models fail to distinguish multiple relations that co-exist in one sentence. This paper presents a novel dependency-aware prototype learning (DAPL) method for few-shot relation classification. Concretely, we utilize dependency trees and shortest dependency paths (SDP) as structural information to complement the contextualized representations of input sentences by using the dependency-aware embedding as attention inputs to learn attentive sentence representations. In addition, we introduce a gate controlled update mechanism to update the dependency-aware representations according to the output of each network layer. Extensive experiments on the FewRel dataset show that DAPL achieves substantially better performance than strong baselines. For reproducibility, we will release our code and data upon the publication of this paper at https://github.com/publicstaticvo/DAPL.