Rohit Saxena


2025

pdf bib
Are We Done with MMLU?
Aryo Pradipta Gema | Joshua Ong Jun Leang | Giwon Hong | Alessio Devoto | Alberto Carlo Maria Mancino | Rohit Saxena | Xuanli He | Yu Zhao | Xiaotang Du | Mohammad Reza Ghasemi Madani | Claire Barale | Robert McHardy | Joshua Harris | Jean Kaddour | Emile Van Krieken | Pasquale Minervini
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error annotation protocol. Then, we create MMLU-Redux, which is a subset of 5,700 manually re-annotated questions across all 57 MMLU subjects. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU’s error-ridden questions to enhance its future utility and reliability as a benchmark. Therefore, we open up MMLU-Redux for additional annotation.

2024

pdf bib
Select and Summarize: Scene Saliency for Movie Script Summarization
Rohit Saxena | Frank Keller
Findings of the Association for Computational Linguistics: NAACL 2024

Abstractive summarization for long-form narrative texts such as movie scripts is challenging due to the computational and memory constraints of current language models. A movie script typically comprises a large number of scenes; however, only a fraction of these scenes are salient, i.e., important for understanding the overall narrative. The salience of a scene can be operationalized by considering it as salient if it is mentioned in the summary. Automatically identifying salient scenes is difficult due to the lack of suitable datasets. In this work, we introduce a scene saliency dataset that consists of human-annotated salient scenes for 100 movies. We propose a two-stage abstractive summarization approach which first identifies the salient scenes in script and then generates a summary using only those scenes. Using QA-based evaluation, we show that our model outperforms previous state-of-the-art summarization methods and reflects the information content of a movie more accurately than a model that takes the whole movie script as input.

pdf bib
MovieSum: An Abstractive Summarization Dataset for Movie Screenplays
Rohit Saxena | Frank Keller
Findings of the Association for Computational Linguistics: ACL 2024

Movie screenplay summarization is challenging, as it requires an understanding of long input contexts and various elements unique to movies. Large language models have shown significant advancements in document summarization, but they often struggle with processing long input contexts. Furthermore, while television transcripts have received attention in recent studies, movie screenplay summarization remains underexplored. To stimulate research in this area, we present a new dataset, MovieSum, for abstractive summarization of movie screenplays. This dataset comprises 2200 movie screenplays accompanied by their Wikipedia plot summaries. We manually formatted the movie screenplays to represent their structural elements. Compared to existing datasets, MovieSum possesses several distinctive features: 1) It includes movie screenplays which are longer than scripts of TV episodes. 2) It is twice the size of previous movie screenplay datasets. 3) It provides metadata with IMDb IDs to facilitate access to additional external knowledge. We also show the results of recently released large language models applied to summarization on our dataset to provide a detailed baseline.

2018

pdf bib
EmotionX-Area66: Predicting Emotions in Dialogues using Hierarchical Attention Network with Sequence Labeling
Rohit Saxena | Savita Bhat | Niranjan Pedanekar
Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media

This paper presents our system submitted to the EmotionX challenge. It is an emotion detection task on dialogues in the EmotionLines dataset. We formulate this as a hierarchical network where network learns data representation at both utterance level and dialogue level. Our model is inspired by Hierarchical Attention network (HAN) and uses pre-trained word embeddings as features. We formulate emotion detection in dialogues as a sequence labeling problem to capture the dependencies among labels. We report the performance accuracy for four emotions (anger, joy, neutral and sadness). The model achieved unweighted accuracy of 55.38% on Friends test dataset and 56.73% on EmotionPush test dataset. We report an improvement of 22.51% in Friends dataset and 36.04% in EmotionPush dataset over baseline results.