Pranjal A. Chitale

Also published as: Pranjal A Chitale


2025

pdf bib
Towards Inducing Long-Context Abilities in Multilingual Neural Machine Translation Models
Varun Gumma | Pranjal A Chitale | Kalika Bali
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Neural Machine Translation (NMT) models have traditionally used Sinusoidal Positional Embeddings (PEs), which often struggle to capture long-range dependencies and are inefficient for handling extended context or document-level translation tasks. This work addresses the challenge of transitioning pre-trained NMT models from absolute Sinusoidal PEs to Relative PEs, such as RoPE and ALiBi, without compromising performance. We demonstrate that parameter-efficient fine-tuning, using only a small amount of high-quality data, can successfully facilitate this transition. Experimental results indicate that switching from Sinusoidal to Relative PEs results in competitive translation quality on sentence-level evaluation benchmarks. Additionally, models trained with RoPE consistently outperform those using ALiBi and Sinusoidal PEs on document-level benchmarks across both string-based metrics and qualitative evaluations. Moreover, we find that a small amount of long-context data in a few languages is sufficient for cross-lingual length generalization, thereby inducing long-context capabilities.

2023

pdf bib
Developing State-Of-The-Art Massively Multilingual Machine Translation Systems for Related Languages
Jay Gala | Pranjal A. Chitale | Raj Dabre
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Tutorial Abstract

pdf bib
NICT-AI4B’s Submission to the Indic MT Shared Task in WMT 2023
Raj Dabre | Jay Gala | Pranjal A. Chitale
Proceedings of the Eighth Conference on Machine Translation

In this paper, we (Team NICT-AI4B) describe our MT systems that we submit to the Indic MT task in WMT 2023. Our primary system consists of 3 stages: Joint denoising and MT training using officially approved monolingual and parallel corpora, backtranslation and, MT training on original and backtranslated parallel corpora. We observe that backtranslation leads to substantial improvements in translation quality up to 4 BLEU points. We also develop 2 contrastive systems on unconstrained settings, where the first system involves fine-tuning of IndicTrans2 DA models on official parallel corpora and seed data used in AI4Bharat et al, (2023), and the second system involves a system combination of the primary and the aforementioned system. Overall, we manage to obtain high-quality translation systems for the 4 low-resource North-East Indian languages of focus.